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Abstract

Structural equation modeling is commonly used to capture complex structures of relationships
among multiple variables, both latent and observed. We propose a general class of structural
equation models with a semiparametric component for potentially censored survival times. We
consider nonparametric maximum likelihood estimation and devise a combined Expectation-
Maximization and Newton-Raphson algorithm for its implementation. We establish conditions for
model identifiability and prove the consistency, asymptotic normality, and semiparametric
efficiency of the estimators. Finally, we demonstrate the satisfactory performance of the proposed
methods through simulation studies and provide an application to a motivating cancer study that
contains a variety of genomic variables. Supplementary materials for this article are available
online.
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1. INTRODUCTION

Structural equation modeling (SEM) is a very general and powerful approach to capture
complex relationships among multiple factors, both observed and latent (Bollen 1989). A
typical SEM framework consists of a structural model that connects latent variables and a
measurement model that relates latent variables to observed variables. SEM is extremely
popular in the social sciences and psychology, where unmeasured quantities and
psychological constructs, such as human intelligence and creativity, can be related to and
investigated through observed data. The text of Bollen (1989) has been cited more than
20,000 times. Recently, SEM has gained popularity in medical and public health research
(Dahly et al. 2009; Naliboff et al. 2012).
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Our interest in SEM was motivated by its potential application to integrative analysis in
genomic studies. Recent technological advances have made it possible to collect different
types of genomic data, including DNA copy number, SNP genotype, DNA methylation
level, and expression levels of MRNA, microRNA, and protein, on a large number of
subjects. There is a growing interest in integrating these genomic platforms so as to
understand their biological relationships and predict disease progression and death, which
are considered potentially censored survival times (The Cancer Genome Atlas (TCGA);
https://tcga-data.nci.nih.gov/tcgal).

SEM with discrete survival times has been studied by Rabe-Hesketh et al. (2001; 2004),
Muthén and Masyn (2005), and Moustaki and Steele (2005). For continuous survival time,
Larsen (2004; 2005) adopted the proportional hazards model (Cox 1972) with a single latent
variable to capture the association between the survival time and other observed variables;
Asparouhov et al. (2006) considered a more general formulation of the association among
the latent and observed variables. SEM with the Cox proportional hazards model for the
survival component has been adopted for more complex settings, such as multivariate
survival times (Stoolmiller and Snyder 2006) and competing risks (Stoolmiller and Snyder
2013). A popular software program, Mplus (Muthén and Muthén 1998-2015), has
implemented SEM with survival data under the proportional hazards model. The estimation
of the nonparametric baseline hazard function is based on piecewise-constant splines, and no
theoretical justification is available. In fact, the standard error estimator for the baseline
hazard function is incorrect.

In this article, we propose a general SEM framework that includes a semiparametric
component of the measurement model for potentially censored survival times. Specifically,
we formulate the effects of latent and observed covariates on survival times through a broad
class of semiparametric transformation models that includes the proportional hazards model
as a special case. The observed covariates may include manifest variables that depend on
latent variables. We study nonparametric maximum likelihood estimation (NPMLE), under
which the cumulative hazard functions are estimated by step functions with jumps at
observed survival times.

The proposed SEM is reminiscent of joint modeling for survival and longitudinal data
(Henderson et al. 2000; Tsiatis and Davidian 2004). With the latter, the observed
longitudinal variables are considered error-prone measurements of some underlying latent
variables, but the measurements themselves are not causal determinants of the survival time.
By contrast, our SEM framework allows latent variables to have direct effects on survival
times, as well as indirect effects through other manifest variables. In addition, our
framework accommodates much more complex relationships among latent variables.

A major challenge in our theoretical development is model identifiability. Even for an SEM
with normally distributed variables, no single set of conditions exists that is both necessary
and sufficient for model identifiability. Methods that deal with special cases of the normal
SEM were proposed by Bollen (1989), Reilly and O’Brien (1996), Vicard (2000), and
Bollen and Davis (2009), among others. Most of the methods are based on the fact that
identifiability can be established by solving the equations relating the first two model-
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implied moments to the sample moments. This approach is not directly applicable to models
with nonparametric components, as infinite-dimensional parameters cannot be identified
through a finite number of equations. Because the proportional hazards structure results in a
likelihood function that takes the form of a Laplace transform, however, we are able to
develop sufficient conditions under which the identifiability of a semiparametric SEM can
be established by inspecting simpler parametric models.

Another theoretical challenge is the invertibility of the information operator. For the
information operator to be invertible, we require that the score statistic along any nontrivial
submodel is non-zero. As in the case of model identifiability, general conditions for the
invertibility of the information operator for semiparametric models do not exist. In the
existing work involving latent variables for survival times (Kosorok et al. 2004; Zeng and
Lin 2010), verifying the invertibility of the information operator involves inspecting the
local behavior of the score statistic around the zero survival time. This approach does not
make full use of the variability of the score statistic contributed by the survival times and
cannot deal with the proposed general modeling framework. We show that the invertibility of
the information operator can be verified by inspecting the parametric components of the
SEM under some mild conditions in the survival model.

The rest of this article is structured as follows. In Section 2, we formulate the model and
describe our approach to establish model identifiability. In Section 3, we discuss the
numerical implementation of the NPMLE. In Section 4, we present theoretical results for
model identifiability and describe the asymptotic properties of the estimators. In Section 5,
we report the results from simulation studies. In Section 6, we provide an application to the
TCGA data, which motivated this work. We make some concluding remarks in Section 7
and relegate theoretical proofs to the Appendix.

2. BASIC FRAMEWORK
2.1 Model and Likelihood

Let ndenote a g-vector of latent variables, Y denote an r~vector of uncensored manifest
variables, (73, ..., Tk) denote K potentially censored survival times, and W and Z denote
two vectors of observed covariates. Without loss of generality, assume that the support of the
covariates includes zero. We specify the conditional distributions of 5 given Z, Y given Z
and n, and Txgiven W, Z, Y, and 5 as follows:

n1Z~F, (- | Zv), (1)

Y| Zn~Fy(- | Zmy), (2)
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where ~, (- | Z, v) denotes a g-variate normal distribution function indexed by a parameter
vector v, Fy (- | Z, i; ) denotes an r-variate parametric distribution function indexed by a
parameter vector y, A 7, is the cumulative hazard function of 7 given (W,Z)Y, 5), Gxis a
known increasing function, A 4 is an unspecified positive increasing function with A ,0) =0,
and (%4 B ax ) are unknown regression parameters.

Model (1) is the structural model of the latent variables. Model (2) is the measurement
model of Y. We assume that Y and n are independent of W given Z. Models (1) and (2)
represent the existing SEM framework with Y not restricted to be normally distributed.
Equation (3) includes the proportional hazards and proportional odds models as special
cases with the choices of Gy (X) = xand Gk (x) = log (1 + X), respectively. The proportional
hazards model has been considered in the literature.

The survival time 7 is subject to right censoring by Cy It is assumed that (G, ..., Ck) are
independent of (7, ..., 7x) and 7 conditional on Y, Z, and W. Define 7= min(7y,Cy) and
D= (Tr< Cp, where /() is the indicator function. For a sample of size 7, the observed data
consist of 7, = (f]_/, 7:/(,',A1,', e D YGZiW) (F=1, ..., n).

Let &denote the collection of all Euclidean parameters, and write .o = (Ay, ..., Ag). The
likelihood function for @and <7 is proportional to

A, .
T T T T T T T T ki
2 (]N* )eWi3k+Zl.ﬁk+Yl.ak+n &y ~ W HZ P +Y ¢kH
K\* ki

X G AT e

n K
INCEDE H/]L[l

i=1

Ak(Tki)e !

XfyX | Zymy)f, (| Z;v)dn,

X exp (-G,

T T T T
o\ WIS ZIp Y ¢kH

4)

where 7 (x) = dAx)/dx for any function £, A=A}, fy=Fy, and fy=Fy The NPMLE is
defined to be the maximizer of L,(8,27), in which A 4 is treated as a step function with
jumps at Tyywith Agi=1(i=1, ..., n).

2.2 Model Identifiability

We describe our approach to establish model identifiability in this section and defer the
technical details to Section 4. The identifiability results can be summarized by two simple
rules. Suppose that we have arranged the survival times such that for some 0 < Kj <
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min(g,K), each of (71, ..., Tk;) regresses on and only on one latent variable and a set of
covariates that are independent of the latent variables. (We allow K;j = 0 if no survival time
satisfies the given conditions, in which case Rule 1 below is vacuous.) We call an observed
variable Xan indicator of a latent variable 7 if X follows a generalized linear model with
as a covariate and is independent of all other manifest variables and survival times
conditional on 7. We have the following rules:

Rule 1. The latent variables attached to (73, ..., 7x;) can be treated as observed if
each of (71, ..., Txkq) depends on at least one observed covariate.

Rule 2. If each latent variable has a separate continuous indicator and the
distributions of the latent variables and the indicators are identifiable, then the whole
model is identifiable.

To illustrate the usefulness of the two identifiability rules, we present two examples.

Example 1—Consider the model depicted in Figure 1. In the model, Y3, Y5, and Yz are
conditionally independent normal manifest variables of », and 7is a survival time that
follows the proportional hazards model with covariate 7. Assume that the regression
parameter of Y7 on pis fixed to be one, E(7) = 0, and the regression parameters of nin the
models of Y, and Y3 are non-zero.

The above model is similar to the joint model for survival and longitudinal variables. By
Bollen (1989)’s three-indicator rule, the model of (Y3, Y2, Y3, n) is identifiable. With Y3
serving as an indicator of 7, Rule 2 implies that the remaining parameters are identifiable.
Note that Rule 1 is not applicable in this case because 7 does not depend on an independent
covariate. In fact, the model is not identifiable without ( Y7, Y5, Y3) because the scale of the
baseline hazard function and the variance of 7 cannot be separated.

Example 2—Consider the model depicted on the left-hand side of Figure 2. In the model,
Y1, Y, and Yj3 are conditionally independent normal manifest variables of 7p, 77 is a
survival time that follows the proportional hazards model with covariates Wand 7, and 7;
is a survival time that follows the proportional hazards model with covariates 7, and 7p.
Assume that Wand Zare non-constant and linearly independent, the regression parameters
for the latent variables in the models of 7; and Y; are fixed to be one, E(7) = E(p) =0,
and the regression parameters of Win the model of 77 and 7, in the models of Y5 and Y3
are non-zero.

First, we use 77 to help identify the latent variable distributions. By Rule 1, 7; can be treated
as observed when identifying the model. The problem thus reduces to identifying the model
shown on the right-hand side of Figure 2. The model can then be shown identifiable by the
arguments used in Example 1.

3. COMPUTATION OF THE NPMLE

In this section, we use Z to denote both W and Z with B (k= 1, ...,K) as the corresponding
vector of regression parameters. Application of a transformation G, can be viewed as
inclusion of an extra latent variable log s in the regression equation, where Sy is a random
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variable with density gy such that G, (x)= — log / 8°e‘x’gk (¢) dt. We adopt the Expectation-

Maximization (EM) algorithm (Dempster et al. 1977) by treating the latent variables,
including those introduced by the transformations, as missing data. We perform occasional
Newton-Raphson steps to speed up the convergence.

In the combined algorithm, either an EM step or a Newton-Raphson step is performed at
each iteration. To avoid confusion, we call the latter an outer Newton-Raphson step. For an
EM step, note that the conditional expectation for any function ¢ of (5, S) = (%), S, ---» Ski)
given the observed data is

T T T ki
Ziﬂk+Yiak+11 (l)k

K
Elp@,s)|0,) =?5_1f/<p(n,S) 1
k=1

Ak{Tki}ske

7“ Zl.Tﬂk + Y;.rak + nszk
x exp (— / spe dA, (@)

XfY(Yi | Z;, n;u/)f,?('l | Z; V)g (s)dnds,---dsg.

where A, {# is the jJump size of the step function Agat t, s=(sy, ..., Sk),
g(s) = ]‘[f= 185 650 and ¢ equals the above integral evaluated at ¢(:, -) = 1. We use the

Gauss-Hermite quadrature to approximate the integrals. To reduce the number of abscissas,
we adopt an adaptive quadrature approach (Liu and Pierce 1994). Denote the approximation
of the conditional expectation as E(-). After taking expectation on the functions involved, we
update (Bk ax @) by the one-step Newton-Raphson algorithm on

= T T T ki
i log Efs,;exp (Z; B+ Y, o +n;¢))}

) n ~ .~ = T T T
i=1 ijll(TkaTki)E{skjeXp ZiB+Y o +n;0p)

Then, we update the cumulative baseline hazard function by

~ Ari

NAT Y = ,
k' ki ~ R T T T
Z;f: 1I(Tka Tki)E{SkjeXp (Zjﬂk+Yjak+nj¢k)}

where (B ax @y are evaluated at the current estimates. In addition, we update the
remaining parameters at the maximum of

n
Y Ellog (fy (¥ 1 Zonzw)f, (1 Zgo)).
i=1
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If a closed-form solution is not available, then we apply the one-step Newton-Raphson
algorithm to the above expression instead. The above algorithm can be generalized to the
case where components of Y;that do not appear in the model of the survival times are
missing at random for some subjects. In this case, we simply drop the corresponding £y
terms in the evaluation of E and the complete-data log-likelihood.

For an outer Newton-Raphson step, we apply the one-step Newton-Raphson algorithm
directly to the logarithm of L,(6,.<7) given in (4) using a similar adaptive quadrature
approximation. At the current estimates, the first derivative of log L,(68,.%/), i.e., the score
statistic, is the same as the first derivative of the expected complete-data log-likelihood. The
Hessian matrix used in the Newton-Raphson algorithm can be obtained by Louis (1982)’s
formula.

To determine whether an EM step or an outer Newton-Raphson step is to be performed, we
keep track of the difference in the log-likelihood at the previous iteration, either an EM or an
outer Newton-Raphson step, and the difference at the previous outer Newton-Raphson step.
For each iteration, if the log-likelihood difference at the previous step is too small relative to
that at the previous outer Newton-Raphson step, then an outer Newton-Raphson step is
performed; otherwise, an EM step is performed. Upon convergence, Louis (1982)’s formula
is used to obtain the information matrix for the estimation of the standard errors.

The reason that we use a combination of the EM and Newton-Raphson algorithms instead of
the Newton-Raphson algorithm alone is two-fold. First, EM steps are more stable, which is
important, especially in early iterations. Second, in the estimation of the survival model
under the EM algorithm, the regression parameters can be obtained by maximizing the
partial-likelihood-type function, and the estimators of the baseline hazard functions take the
form of the Breslow estimator. Unlike the Newton-Raphson algorithm, the EM algorithm
does not involve the inversion of a high-dimensional matrix.

4. THEORETICAL PROPERTIES

4.1 ldentifiability Conditions

As discussed in Section 2, we set aside Kj survival times, 7y, ..., Tk, that are used to
identify the distribution of the underlying latent variables. We assume that span(g, ..., ¢x;)
= RXL, We can choose the Kj survival times such that each is associated with a few,
preferably only one, latent variables. (Kj is allowed to be 0, in which case we rely solely on
the manifest variable Y to identity the latent variable distribution.) Without loss of generality,
we assume that ¢ = e, (k= 1, ..., K1), where e is a g-vector with 1 at the Ath position and 0
elsewhere. This assumption can be satisfied by applying a linear transformation to the latent
variables. Effectively, we fix the scale of the first K7 latent variables, as is common when
establishing model identifiability for SEM. We partition ninto (7, 7p), where 71 = (11,

..., T k1) consists of the first K3 components of 7.

We consider the following identifiability conditions. For the “baseline” hazard functions
(A1, ..., Ag), we only require identifiability on [0, 7], where z denotes the study duration.

JAm Stat Assoc. Author manuscript; available in PMC 2019 June 06.
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(C1) 1f (1,WT,ZT,YT)Tc = 0 almost surely for some vector c of appropriate dimension,
then c=0. For k=1, ...,K, A4is continuous and strictly positive on [0, 7], and
there exists a positive and measurable function g such that

exp { =G (0} = [8°e_”gk (s)dmy (s), where myis the Lebesgue measure or the
counting measure at 1.

(C2) Fork=1,..,K, E(YTa,|Z=0)=0,and E(p| Z=0) = 0. Also, for any vectors
c1 and ¢, of appropriate dimensions, E(e¥ €1*7 €2 | Z) is finite almost surely.

(C3) For k=1, ...,Ky, ¥isnon-zero, and a,and By are zero.

(C4) Consider two sets of parameters (y, v) and (y, v). Let fy, y, be the density of
(Y, m) given Z. Then, fy, (Y, m | Z; 9, V) = Fyy (Y, m | Z; y, v) forall Z,
Y, and 7, implies that = yrand v=v.

(C5)  Let (Y, ﬂ) be the components of (Y, 7,) that appear in the regression of 7 for
some k= Ky +1,...,K and let (Y7, #]) be the remaining components. Let £,

v, be the distribution function of n, given (Z,Y, m) with (Y7, ) treated as a
parameter vector. Then, n, is complete sufficient in {#,|y.;y (- | Z,Y, m): Z =
20,Y* = Yo, 11} =n,, for any fixed z, yo, and n0.

Remark 1—Condition (C1) pertains to basic requirements on the covariates, the baseline
hazard functions, and the transformation functions such that the survival model with
observed covariates is identifiable. If my is a point mass at 1, then G is simply the identity
function. Condition (C2) fixes the location parameters of the latent variables and the
manifest variables that appear in the regression models of the first K7 survival times.
Condition (C3) requires that the first K7 survival times depend only on their corresponding
latent variable and W. The presence of a covariate besides the latent variable is necessary for
distinguishing the contributions of the baseline hazard function and the latent variable to the
distribution of a survival time that follows a mixture distribution. Condition (C4) requires
that the model with observed (Y, 7,) is identifiable. Condition (C5) requires that 7, is
complete sufficient conditional on (Y, n;), where components of (Y, 7) that do not appear
in the regression of 7, (k= K1 + 1, ..., K) are treated as parameters, and the rest are held
fixed. Conditions (C2) and (C3) are vacuous if K1 =0, and condition (C5) is vacuous if K} =
K

We have the following identifiability result.
Theorem 1: Under conditions (C1)—(C5), the model specified by (1)-(3) is identifiable.

Remark 2—The condition that a4 and By are zero for k=1, ..., Ki separates the first K3
survival times from the remaining observed variables that are associated with the latent
variables. This condition is used to simplify the presentation of the identifiability conditions.
In the proof of Theorem 1, we consider generalized versions of conditions (C3)-(C5), where
aand By are allowed to be non-zero.
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Remark 3—Theorem 1 implies that the distribution of the latent variable underlying a
given survival time can be completely identified if the survival time only regresses on the
latent variable and a set of independent covariates. Thus, the survival times make it easy to
identify the model, as only a single survival time is enough to identify an underlying latent
variable. By contrast, this property does not hold for normal random variables.

Remark 4—The derivation of model identifiability from condition (C5) utilizes the
property of complete sufficient statistics. The derivation is applicable to general latent
variable models; the general result is given by Lemma 1 in the Appendix. Lemma 1 allows
for the establishment of model identifiability by inspecting just a part of the model. It
includes Reilly and O’Brien (1996)’s side-by-side rule, which states that the loadings of an
observed variable on any number of latent variables are identifiable if each of the latent
variables is attached to a separate independent observed variable whose distribution is
identifiable, as a special case.

4.2 Asymptotic Properties

Let o' be the dimension of 8, &, denote the true value of 8, and Agx denote the true value of
Ag(k=1, ..., K). We impose the following conditions.

(D1) The parameter & lies in the interior of a compact set ® C R and the function
Aok is continuously differentiable with Ao = Ay (> 00n [0, 7] for each k=

1,..K
(D2)  With probability one, A 74;= | W,Z) > & (k= 1, ...,K) for some fixed & >0.

(D3) Consider any fixed Z and (y; v) € ®,,, where 8, consists of the (y, v)-
component of every 6 € ®. For any constant &y >0and §=0, 1,

< © .

a1+ Y]+ n]) s
E fe Fy@ N Zaw)'f, (| Z:v)dn

Also, for j=1, 2, 3, there exists a constant & >0 such that

2 rwizaw| |Lr a1z
ay,] o’ n

a1+ 1Y |+ [7])
‘ Ty 1 Zmy) *‘ 7, @1Z:0) ‘ '

<e

In addition, for some positive constants AM;and ¢;, N;€ R/, and ¢; € (R,

Y -Mb | T (NYb e b
/ Il e P e 0y Zay) £ Zw)

Q

9 M.|b.
SKZJ:I ]I ]I’

where b = S (7)) for some one-to-one linear transformation S.
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(D4) The function G is four-times differentiable, G4 (0) =0, and

1k

K
K (1+x) <G () <Ky (14+x) 2k for some positive constants xyx x4

K1k and Koy Also, GX)IxPk — My.or Gi(x)llog(x) — Myas x— oo for
some positive constants Mg and pg. In addition, exp {-Gu(X)} < tx (1 + X)"*3k
for some pgand x3x > xo4+ 1. Furthermore, for some 7y,

0| + |6 0] + \G“) (x)\

r20 A W+ k

where G; and G denote the second and jth derivatives of Gy, respectively.

(D5)  Let (2(4,Y(R) be the components of (Z,Y) that appear in the regression of 74 (k
=1, ...,K1). For any vectors hq, hyy and hgy of appropriate dimensions, if

K

1
X (20T, + Y(k)Th3k) an v (Y.ny 1 Z:y)

)fYn(Y”HZ"”’)T”l‘k_l

oy, v

isequal to 0 forall Z, Y, and 7, then h1 =0, hog =0, and h3,= 0 for k=1,
..,K1, where fy,, is defined in condition (C4).

Remark 5—Conditions (D1)-(D4) are similar to the conditions of Zeng and Lin (2010) for
joint modeling of longitudinal and survival data. Extra conditions are imposed on the
transformations and the distributions of Y and 7 to accommodate the presence of unbounded
covariate Y in the survival model. Condition (D5) is for the invertibility of the information
operator. If ax=0and B,=0 for k=1, ..., Ki, then condition (D5) simply requires that the
information matrix of the model for (Y, z) is invertible. This is parallel to condition (C4)
for identifiability.

Remark 6—The conditions for identifiability and the invertibility of the information
operator (C1)—(C5), and (D5) differ significantly from the corresponding conditions (C5)
and (C7) of Zeng and Lin (2010). The latter are stated under very general settings, but they
are hard to verify for specific models, especially under our SEM framework. By contrast,
our conditions are easier to verify and have intuitive interpretations. For the model in
Example 1, (D5) simply requires that the model of (Y1, Y5, Y3, m) given Zhas a non-zero
score statistic, which clearly holds.

Let <79 = (Ap1, ...,Agk) and (é, o) be the NPMLE of (6, 7). Also, let 7 = {vE RY |v| <
1} and 2={A(D: 17 (Il v 0,4 < 1} with -]/ 0,4 being the total variation norm on [0, ].
We consider (é— 6, o — /) as a random element in /(7 x 2K) with

5—00&—.;2{0)@,}11,...,}11()=(A— T+ Z /hk(s)d Ag)®).-
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We have the following results.

Theorem 2: Under conditions (C1)—(C5) and (D1)-(D5),
Lo 1001 + 5y sup, o | A0 = Ag) | =, 0, and

2. M0~ 6y, d — o) — 49 in PPV x 9K), where% is a continuous zero-mean
Gaussian process. Furthermore, the limiting covariance matrix of nl/Z(é - &)
attains the semiparametric efficiency bound.

Remark 7—The proof of Theorem 2 relies on the Donsker properties of certain classes of
functions. It is more challenging to establish the Donsker results in our setting than in
previous settings (e.g., Kosorok et al. (2004) and Zeng and Lin (2010)) because the
likelihood function of the proposed model may contain the unbounded variable .

Remark 8—A key step in proving the asymptotic normality of the NPMLE is to show that
the information operator is invertible. The result is given by Lemma 2 in the Appendix,
which states that condition (D5), together with conditions (C1)—(C3), and (C5), implies that
the information operator of the model is invertible. With this result, we can verify the
invertibility of the information operator of the semiparametric model by inspecting the
parametric part of the model that contains the observed and latent variables. For the frailty
models in Kosorok et al. (2004), verification of the invertibility of the information operator
involves inspection of the local behavior of the score around 7= 0. However, that approach
is limited to frailty distributions that are indexed by a one-dimensional parameter and is not
directly applicable to cases with more complex latent variable distributions such as those in
our setting.

5. SIMULATION STUDIES

We considered a model with covariates Z = (2,2)7, two latent variables (7, 7p), observed
continuous variables (Y1, ..., Yg), observed binary variables ( Y5, Y7), and a survival time 7.
Their distributions are given by

T T
AT tlZz, Y6’ Y7’ 772) = G{Ao(t) exXp (XTﬂT + d)T”Z)}’ XT = (Zl’ 223 Y6’ Y7) B

. _ T _ T
logit (P(Y = 1| Z,ny)} = xyﬁﬁy6+¢y6q2, XY6 =(1,Z,,2,)",

. _ _ T _ T
logit {P(Y7 =1]|Z Y6’772)} = XY7ﬂY7 +¢Y7’72’ XY7 = (1721722, y6) B
2 .
Yj | m~ N(ﬂY.+¢Y.n1’6Y.)’ Jj=12,3,
J J J
2 .
Yj | Ny ~ N(ﬁy_"'(f)yv’?z’ﬂy_)a j=4,5,
J J J
Ny ~ N(B 111,62 )»
n o)

2
n o~ N(, 6’11) .
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The parameters ¢y, and ¢y, are fixed to be one. The model is depicted in Figure 3.

We set Z; and 2, to independent standard normal and Bernoulli(0.5), respectively, and Ag(2)
= £. We considered the class of logarithmic transformations G(x) = 71 log(1 + rx) with r=0
or 1, which correspond to the proportional hazards and proportional odds models,
respectively. We generated the censoring times from Exp(c), where ¢ was chosen to yield
approximately 30% censored observations. We set (Y7, ..., Y¥5) to be missing completely at
random for 30% of the subjects. We set the sample size to 400 and set the number of
abscissa points to 20 for each Gauss-Hermite quadrature. We simulated 1,000 datasets for
each setting. The results are summarized in Table 1.

The estimators of all parameters are virtually unbiased for both the proportional hazards and
proportional odds models. The standard error estimators accurately reflect the true
variations, and the coverage probabilities of the confidence intervals are close to the nominal
level. Standard error estimators for the parameters in the survival model are larger under the
proportional odds model than under the proportional hazards model. As a result, the standard
error estimators for the parameters associated with 7, are larger. The standard error
estimators for the remaining parameters are very similar between the two models.

We also evaluated Mplus (Muthén and Muthén 1998-2015) under the proportional hazards
model, and the results are presented in Table S.1 of the Supplementary Materials. The results
for the Euclidean parameters are similar to those presented in Table 1. Mplus provides
estimator for the baseline hazard function instead of the cumulative baseline hazard
function. Its standard error estimator does not reflect the true variation, and the coverages of
the confidence intervals are far below the nominal level.

6. REAL DATA ANALYSIS

We analyzed a dataset on patients with serous ovarian cancer from the TCGA project (The
Cancer Genome Atlas Research Network 2011). Genomic variables include DNA copy
number, SNP genotype, DNA methylation level, and levels of expression of mMRNA,
microRNA, total protein, and phosphorylated protein. Demographic and clinical variables
include age at diagnosis, race, tumor stage, tumor grade, time to tumor progression, and time
to death. There are a total of 586 patients. The median follow-up time was about 2.5 years,
and roughly 30% of the patients were lost to follow-up before tumor progression or death.
The data are available from http://gdac.broadinstitute.org/.

We focused on the integrative analysis of clinical outcomes and expression levels of mMRNA,
total protein, and phosphorylated protein. We considered mRNA expression as a latent
variable that can only be observed with error through three microarray platforms, namely
Agilent 244K Whole Genome Expression Array, Affymetrix HT-HG-U133A, and
Affymetrix Exon 1.0. We assumed that the effects of a gene on clinical outcomes are
mediated through unobserved protein activity. The latent protein activity is modified by
MRNA expression and is manifest through the observed protein expression measurements,
which were obtained from the reverse-phase protein arrays platform. Figure 4 depicts the
SEM fit for each gene. We assumed that the observed variables follow the distributions

JAm Stat Assoc. Author manuscript; available in PMC 2019 June 06.


http://gdac.broadinstitute.org/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Wong et al.

Page 13

described in Section 5, with (Y3, Y5, Y3) being the three microarray measurements, (Y4, Y5)
= (Total protein expression, Phosphorylated protein expression), (Y5, Y7) = (Tumor stage,
Tumor grade), (21, 2) = (Age, Race), and T being progression-free survival time.

We dichotomized tumor stage into stage I1/111 versus stage 1V and tumor grade into grade 2
versus grade 3/4. Race was dichotomized into white and non-white. We allowed mRNA
expression and protein expression data to be missing for some subjects. We excluded
patients with tumor stage | or grade 1, as those patients may have a disease that is
biologically different from that of patients with tumors of other stages or grades. For each
gene, we fit the class of transformation models with G(x) = 71 log(1 + rx) over a grid of r=
(0,0.1, ..., 2). We selected the model with the smallest AIC or, equivalently, the largest log-
likelihood value.

We present the results for the gene ACACA. The sample size is 542. About 30% of the
subjects do not have protein expression data, and over 10% of the subjects miss at least one
MRNA expression measurement. The best-fitting model is obtained at = 1, which
corresponds to the proportional odds model. The point estimates and standard error
estimates of the parameters associated with the latent variables are shown in Figure 4. The
remaining results are shown in Table S.2 of the Supplementary Materials. The latent
variables have strong positive association with the measurement platforms. As expected,
latent protein activity and latent mMRNA expression are highly correlated. Latent protein
activity is positively associated with progression-free survival time, with a p-value of 0.100.
Specifically, higher latent protein activity is associated with shorter progression-free survival
time, which agrees with the findings of the literature (Menendez and Lupu 2007). The
association of ACACA with tumor stage or tumor grade is weak.

The results for the parameters in the non-survival models are similar between r= 0 and 1.
The parameters in the survival model have different interpretations between r= 0 and 1.
With r=0, a unit increase in latent protein activity would have a multiplicative effect of
exp(0.068) on the hazard function. With r= 1, a unit increase in the latent protein activity
would have a multiplicative effect of exp(-0.192) on the survival odds. For this dataset, the
proportional odds model provides much stronger evidence for the effect of protein activity
on progression-free survival than the proportional hazards model.

For the Cox proportional hazards model, we also present the results from Mplus in Table S.
2. The results from NPMLE and Mplus are similar for most parameters. There are
considerable differences between the cumulative baseline hazard function estimates. The
standard error estimates for the cumulative baseline hazard function are not available from
Mplus.

For comparisons, we also fit a proportional odds model without latent variables for
progression-free survival on the covariates and the two protein expression variables, where
the subjects with missing protein expression data were discarded. The p-value of the Wald
test for the joint effect of protein expression is 0.157. With r= 0, the Wald test p-value is
0.578. Therefore, analyses based on standard models fail to conclude a strong association
between the protein expression and progression-free survival. The power of the proposed
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SEM framework stems from the appropriate handling of missing data, the dimension
reduction of the observed covariates, and the flexibility of the survival model.

7. DISCUSSION

In this article, we consider semiparametric SEM for potentially right-censored survival time
data. We prove the consistency, asymptotic normality, and semiparametric efficiency of the

NPMLE. We propose new rules for establishing model identifiability and invertibility of the
information operator. We construct an EM algorithm to compute the NPMLE and introduce
occasional Newton-Raphson steps to accelerate the convergence.

One contribution of Theorem 1 is that it reduces a semiparametric identifiability problem to
a parametric one; it shows that the inclusion of the semiparametric component does not
make the model less identifiable but, in some sense, makes the model more easily
identifiable. With that being said, the result hinges on correct specification of the model and
does not guarantee empirical identifiability in a finite sample. Therefore, care should be
taken when fitting a model that is nearly non-identifiable. Another main result of ours is
given by Lemma 1. This lemma is applicable to a wide range of latent variable models and
allows one to deduce the identifiability of a model by inspecting just part of it.

Invertibility of the information operator has received much less attention in the literature
than model identifiability. In this article, we prove a general result for invertibility of the
information operator. It is evident from the proof that the invertibility of the information
operator can be established using techniques similar to those used to establish model
identifiability. Specifically, the key to the proof of the identifiability of the mixture Cox
model is that with the presence of a covariate that is independent of the latent variable, the
contributions to the likelihood from the latent variable and the baseline hazard function can
be separated by considering different values of the covariate. (In a normal mixture model,
however, we lack such identifiability results precisely because the random effect and error
term are combined linearly and their distributions cannot be distinguished.) As a result, if
two sets of parameters give rise to the same marginal survival function, then they must do so
by giving rise to the same random-effect distribution. Based on the proportional hazards
structure, we prove a parallel result for the invertibility of the information operator: the
existence of a submodel with zero score implies that the random-effect distribution has zero
score along that submodel as well. Therefore, to ensure the invertibility of the information
operator of the mixture Cox model, one only has to ensure that the information matrix of the
random-effect distribution is invertible.

Our work can be extended in several directions. First, one may be interested in expanding
the model by inclusion of more latent and observed variables. As the number of variables
increases, the number of parameters to be estimated increases as well. Then, it may be
desirable to perform variable selection. Because a single variable may be associated with
multiple parameters, one may prefer not to treat parameters as the basic unit of selection, as
in traditional lasso methods (Tibshirani 1996). Instead, methods like group lasso (Yuan and
Lin 2006) that penalize parameters associated with a variable as a group may be considered.
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In our model, the distribution of the manifest variable Y is fully parametric. One can allow a
nonparametric transformation on Y. A major challenge arises in extending the asymptotic
results to unbounded nonparametric transformation, as the estimator of the transformation
function can be unbounded (Zeng and Lin 2010).

Finally, it would be of interest to consider interval-censored data. Interval censoring results
in a different likelihood function, which makes the computation of the NPMLE and the
derivation of its asymptotic properties challenging, even for univariate survival time data.
The asymptotic theory for interval-censored data is only available in a few simple cases; see
Huang and Wellner (1997) for a review.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: TECHNICAL DETAILS

We present the following conditions, which are clearly implied by conditions (C3)—(C5):
(C3’) For k=1, ..., Ky, ¥is anon-zero vector.

(C4’) Consider two sets of parameters (ax Bx ¥, V) and (ax Bi . v) for k=1, ...,
Ki, and let g, = (m11, ..., k), Where 714 = YT (a~a)+ZT(Bi-B+ mx Let
fy, iy be the density of (Y, m) given Z. Then, fy, ,, (Y, m | Z; v v) = fy, jy (Y,
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m | Z; v, v)forall Z, Y, and 7, implies that @y = ay, Bx= Bi w= v, and v=
V.

(C5") For k= Ky+1, ..., K, let (Y, 50, 5{0) be the components of (Y, 7, 7) that
appear in the regression of 7, and let (Y~(4), nl_(k),ng(k)) be the remaining
components. If 45 is non-empty, then (Y=, ;7 ®) is non-empty, and 4 is

complete sufficient in { F (1 Z.Y.q):Z =2, YO =y g0 =, } for

k
n(z)l Y.m

any fixed z, yo, and 7,0, where F is the distribution function of 4"

k
'1(2) |Y.n,

given (Z,Y, my) with (Y=, ;) treated as a parameter vector.

We prove Theorem 1 under the generalized conditions (C1), (C2), and (C3")-(C5"). The
proof makes use of two lemmas given at the end of this appendix. We first provide an
overview of the proof. For any two sets of parameters (&, ax Bk ¢x Ak ¥, V) and (% ax
B # Ax w, v), assume that the likelihood values at the two sets of parameters are
identical almost surely. By definition, the model is identifiable if the equality of the
likelihood values implies the equality of the two sets of parameters. We derive the equality
of the two sets of parameters in the following steps:

1 By conditions (C1), (C2), and (C3”) and the identifiability of the mixture Cox
model (Kortram et al. 1995), # = d#and Ay = Agfor k=1, ..., Ki.

2. With some algebraic manipulation, the likelihood function can be expressed in
the form of the Laplace transform of the distribution of a function of (Y, #n1). The
uniqueness of the Laplace transform, together with condition (C4"), implies that
(ak Bu ¥ V) = (ak Bi v, V) for k=1, ..., Ki.

3. By the uniqueness of the Laplace transform and the complete sufficiency of 7,
imposed by condition (C5”), the equality of the likelihood functions of ( Try+1s
...» T Y) implies the equality of the likelihood functions of (7x;+1, ..., Tk Y,
7). By the identifiability of the Cox model, we conclude that (¥ ax Bk ¢4 =
(lik, C;k, ﬂﬁ’k, Jk) fork=K1+1,..., K

Proof of Theorem 1

The likelihood is given in (4). Here, we consider a single observation and drop the subscript
/. Using the arguments in Section 10.1 of Zeng and Lin (2010), we can set each survival time
to be right censored at any time point within [0, z] when establishing identifiability.
Consider two sets of parameters (% ax B ¢k Ak ¥, V) and (Fy, ax Bi ¢ Ak ¥ V)
such that the likelihood values for an observation with the K'survival times being right
censored are equal almost surely, i.e.,
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T T T T
W +Z p+Y o +1 ¢,

_Ak (t) se 8, (sp) dmk (s) Xfy,ﬂ(YJT | Z;w,v)dn

/ exp
/ exp

wT 8 +Z ﬁk+YT¢7k+'l ¢k

_Kk (t) se 8y (sp) dmy (s;)

(A1)

forall 4, ..., ik € [0, z], W, Z, and Y, where £y, is the density of (Y, ) given Z. If myis a
point mass at one, then s is fixed at one, gx = 1, and the integration with respect to /()
can be omitted. For simplicity of description, assume that m; is the Lebesgue measure. Note
that

oo
fsgk(s)dsz - 11m+ dt/ gk(v)ds— - lim+%exp {—Gk(t)}=G}€(O)< oo .
—0

t—0

Thus, a transformation model can be written as a random-effect proportional hazards model
with known distributions (g1, ..., gk) for random effects (sy, ..., Sx) with finite means.

First, we show that the baseline hazard functions of the first K survival times are
identifiable. For each k=1, ..., K1, set &y7— 0 for /# kon both sides of (A.1). On each side
of the resulting equation, mtegratlon with respect to Y results in the likelihood of a mixture
Cox model with skeYT“k”’?lk or skeY ak*Mkas a latent variable. Let E(-|Z) and E(- | Z) be
the expectations under fy,,(- | Z; y, v) and fy,,( | Z; yr, V), respectlvely Theorem 3 of
Kortram et al. (1995) implies that E(skeYT“k*Wlk| Z = 0)Ay= E(s4e” @k k| Z = 0)A 4 0n
[0, 7], #= & and the distribution of E(s;e¥" ak* M| Z = 0) Lye¥" ak* Mk under "yl |
Z;y, v) is equal to that of B(see" “k+’71k| Z = 0)~Ls,e" @k mk under Fy.o( 12 . V).
Because E(YTax+ 74| Z=0) = E(YT ax+ m4 Z = 0) = 0 by condition (C2), we see that
A= Agon [0, 7].

Second, we show that the likelihood function takes the form of a Laplace transform and use
the uniqueness of the Laplace transform to prove the identifiability of (ax Bk ¥, V) (k=1,
., K1). Setting t,— 0 for k= K1 +1, ..., Kand W = 0 on both sides of (A.1), we have

K
1 25+ ¥ a4,
I1]/ e {-Ac@0se 2 (s dse| fy , (Vo | Zsw,w) dn
k=1
(A2)
Kl ZTﬂNk+YT¢7k+f11k ~ o~
:/H /exp =N (1) sie 8 (sp) dsy fy’”(YJHZ;'I/sV)d’W
k=1
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LetU= (U, ..., Uxy), Ux= sxe™Kk and fy be the density function of U given Z and Y. By
the uniqueness of the Laplace transform, for any continuous functions and 7 any open set
&, and any positive real numbers cand ¢

[ee] [e¢] N oop~
[) e_CStf'(t)dt=A T Fdr Vse s

implies that {5 = (d0)A ¢t ) for all > 0. Therefore, the equality of (A.2) for all 4, ..., Iy,
Z, and Y implies that

K ~
> L 2T B+ Y @ -y ~ o
fU|y(U|Z,Y;l[/,1/)=e =17k Tk k kaIY(UIZ,Y;I//,V> (A.3)

forall U, Z, and Y, where U= (O, ..., Uxy), and U= BB+ ak-ak . Let folvbe
the density of 7; given Z and Y. By the definition of U,

K,

-1
fUl Y(U | Z,Y;w,u)[k>0f”1 | Y(log U1 — log Spseees log UK] — log SK] |Z,Y;y/,1/)kl:[1 Uk gk(sk)d(sl,...,sKl)

Ky

—1- Vk
/Klfﬂ1 |y(log Uy =v ... log UKl—vKl |Z,Y;w,v)kH1 Uy g e d(vl,...,vKl),
R =

where gi(V) = gu(€"). Thus, (A.3) implies that

/Kl[f”1 | y(log U, —vy, ..., log UK1 —vK1 |Z,Y;1[/,1/)—f,]1 | y(log U, —v,, ..., (A.4)
R

~ Kl Vk
log UK1 —vKl | Z,Y;y,v) knlgk(vk)e d(vl,...,vKl) =0.

Consider two arbitrary continuous functions 7, g: R — R. Note that

/oo (g dt = /ooe‘”f(t)dt/oo e dr
— 0 — o0 — o0

for any ssuch that the integrals are defined, where (f = g)(®) = [ i"oo f(t—s)g(s)ds is the

convolution of fand g. Therefore, (£* g)(-) = 0 implies that
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/ooe_”f(t)dz/ooe_”g(z)dt:0,
— o0 — 0

which, if gis positive, implies that f:) = 0 by the uniqueness of the bilateral Laplace 27
transform (Chareka 2007). Because gk(-)e(') is positive, (A.4) implies that 7,y (m. | Z)Y; v,
V) =y (m | Z)Y; y, v), where 7 is defined in condition (C4"). By condition (C4"), (a
B v, V)= (ihﬁh 1[;; 17)f0r k=1,..., Ki.

It remains to identify the parameters associated with (7x;+1, ..., 7). By the uniqueness of
the Laplace transform, (A.1) implies that

wly +ZTﬂ +Ya +nT¢
k k k k
—Ak(tk)ske
f I1 / e 8 s Fy. , Vo | Zww)
k +1 ’

Ty T T~ Tz
W8, +Z p,+Y o, +n ¢,

K —Xk(tk)ske
IT / e 8 (s dsy (fy , (Vo | Zeyv)dny
K1 +1

forall fxq+1, -, s W, Z, Y, and 73, i.e., m can be treated as observed for identifying the
remaining parameters. Under condition (C5”), we can use the arguments in the proof of
Lemma 1 to show that the integrands in the above equality are equal at each value of 7. We
conclude that (#, ax Bk b Ak = (l;k, a~k, ﬁk, Jk, Kk) for k= Ki+1, ..., K

We provide an overview for the proof of Theorem 2. The consistency of the NPMLE is
proved in the following steps:

1 By conditions (D2)-(D4), the NPMLE exists, i.e., /(k(r < 00,

2. By conditions (D3) and (D4), /(k( 7) is uniformly bounded. Helly’s selection
theorem then implies that every subsequence of A has a further converging
subsequence.

3. By the Glivenko-Cantelli properties of the log-likelihood and related functions
given by Lemma S2 in the Supplementary Materials, the identifiability of the
model, and the non-negativity of the Kullback-Leibler divergence, we conclude
the consistency of the NPMLE.

The asymptotic normality of the NPMLE follows mainly from the arguments of van der
Vaart (1998, pp. 419-424). Donsker properties of the score and related functions are given
by Lemma S2 in the Supplementary Materials, and the invertibility of the information
operator is given by Lemma 2.
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Proof of Theorem 2

We use Z to denote both W and Z with B¢ (k=1, ..., K) being the corresponding vector of
regression parameters. Let

A,
T T T T T T ki
LibrYiotm by, | Ziht Yot by
k

\P(@i;a,ﬂ):kllj fe

Ve end,
e’ ! A (T )
k\" ki

)

x exp |-G Py (Y1 Zpmw)f, (n] Z;v)dn,

Y (0} 6, /) be the derivative of ¥ (0}, 6, /) with respect to 6, and ¥ (0, 6, /)[H,] be
the derivative of V(7 6, «7) along the path (Ax+ eH)).

First, we prove the consistency. By condition (D4),

. Z. ﬁk+Y;Fak+11T¢kA (? |
T T T T T T ki =Gpye kM ki
eZl. ﬁk+ Yi o +1 ¢kG’ eZl. ﬂk+Yl. o+ ¢kAk(?k_)H . i
o1+ Y|+ 10l e R R
se {1+ a7 :
Thus, condition (D3) implies that
n K —A, . —Kyy + Ky + 1
~ ki 3k T Rk
¥(0:0,) < [[70:0 [T {1+0T ) ., (A5)

i=1 k=1

where &#(7, 6) is a random variable with |[E{log #(¢; 6)}| < oo for any 6. By condition
(D2), A(Ty;= 7) is positive. Therefore, if A (z) = oo, then the right-hand side of (A.5) is
zero for large 7. We conclude that A4 (7) < 00, such that the NPMLE exists.

We then show that lim sup,A 4 (z) < oo almost surely. From (A.5),

%log Ln(éﬁ) 21 kz Ay log A (T, }+,11 21 log W(0:0, 5)
l_ = i=

n n K
%Z ogg(@i;§)+}12 Z Ay log AT %Z Z A+ Kqp =g —1)10g{1+Kk(7N"kl.)}.

Let N =n' 20 |8 1T ;< ) B I(T 4, < ). Clearly,
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K
Z Apilogn+ Z log ¥(6,;6,, N).

1 ~ | <
;logLn(ﬂo,N): - E |
= l_

The second term on the right-hand side of the above equation is Oy (1). Thus,

ilogL(o )—flogL(O N)+o0,m

a
n K K

1 1 ~

;2 2 clog [nA (T 1] - kzl(Aki+K3k—K2k—1)log{1+Ak(Tki)}.
= = i =

v

Note that (x3x — x24— 1) is positive by condition (D4). Using the partitioning argument
similar to those of Murphy (1994) and Parner (1998), we can show that the right-hand side
of the above inequality tends to —oo if lim sup,, A4 () = co. By definition of (8, &), the left-
hand side of the inequality is bounded below by an O,(1) term. Therefore, /(k(r) is
uniformly bounded.

Given the boundedness of A4 (z), Helly’s selection theorem implies that, for any
subsequence of 7, we can always choose a further subsequence such that /ik converges

pointwise to some monotone function AZ and éconverges to &". The desired consistency

result follows if we can show that A; = Ay and 6" = 6, almost surely. With an abuse of

notation, let {/7}1 o ... be the subsequence. Define

SN PRI @k(@j;HO’MO)[I(TkiS N
P G

By Lemma S2 in the Supplementary Materials and the properties of Donsker (and therefore,
Glivenko-Cantelli) classes,

1 W (000, Al 5 < )]

nj ] ‘P(@j; 00, MO)

¥, (000 AU (5 < )]
¥(0,:0,

—E

oZo

uniformly on [0, z]. Because the score function along the path A= Agx+ e/ (- = 5) with
other parameters fixed at their true values has zero expectation,

V(00 A (s < )]
‘I’(@i;ao, MO)

_ap (T klA 4 < s)/ds

k (s)

Algebraic manipulation yields that the uniform limit of Agon [0, 7] is Agx Note that
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—1lon ;
TR (0500 Al (s < WO 30y )
j=1 “o O‘dA ().

t
A (t)—/
k 0 ‘n‘127 W (036, DI s < IO 39, 9[)’

We have shown that the numerator of the integrand in the above equation converges
uniformly. Similarly, we can show that the denominator of the integrand in the above
equation converges uniformly to |[E{¥ (0 6,5/ ")[/(s< )Y}, 6,)} and that the
limit is bounded away from 0. Because A 4 converges uniformly to Agy Which is
differentiable with respect to # A} is also differentiable with respect to £ It follows that dA4

dA  converges uniformly to 27/2,, on [0, =], where 77 = (A). As /% log LAB ) - mlog
L {6, <) is non-negative,

K ), n ¥(0;:0, g{)
1 - - - -
; 4 T, T ; ¥(0.:0, il

==
IIM:

By the Glivenko-Cantelli properties of the class of functions of log ¥ (0 ; 6, «7) given by
Lemma S2 and the uniform convergence of d/(k/d/(k, setting 7— oo on both sides of the
above inequality yields

ne_ (T) kig(o . 0%, o)
E| log —X= 1% ! }>0.

I - }‘Ok(Tkz) \P(@i?”o"‘”o)

The left-hand side of the above inequality is the negative Kullback-Leibler distance of the
density indexed by (&",.+/™). From the identifiability of the model implied by Theorem 1, we

conclude that " = &, and Ay = A The desired consistency result follows.

To prove the asymptotic normality of the NPMLE, we adopt the arguments of van der Vaart
(1998, pp. 419-424). Let @, be the empirical measure determined by 7 i.i.d. observations,
and let @ be the true probability measure. Let £y 6, /) be the derivative of log L (6, .%/)
with respect to 8, and let £(8, .«/)[ H,] be the derivative of log L (6, .«7) along the path (A 4+
eHy). Forany v E R%and ¥ = (f, ..., hy) with i € BV[0, 1], where BV[0, 1] is the space
of functions of bounded variation on [0, z], we have

2 f(0.szi)+ Zf(a.;z/)[/h dAk]

In addition,
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Lemma 1

Page 24

=0.

K
T . .
gv(v fa(ao,do)+kzlfk(00,d0)[ / hy A, ]

Therefore,

K
viE,@.9)+ ) fk(a,d)[fhdek]
k=1

Vi, - 7)

= — nP| (A.6)

K
viZy@.9)+ Y fk(G,QY)[/hdek]
k=1

}.

K
_(vag O A+ Y, 7,0 Ayl / hy dAg,]
k=1

From the Donsker properties of the classes of functions of ¢and & implied by Lemma S2
and the consistency of dand </, we conclude that the left-hand side of (A.6) equals

K

Va2, - @)(Jka O ) + kZI 2,0 do)[fhk dAgel|+0, ().

This term converges to a Gaussian process in /(7 x2K). By the Taylor series expansion,
the right-hand side of (A.6) is of the form

K
~ValB . W1 0 -0, + k21/32k . 7 1dA, ~ Agy)

+
p

K
-0+ £ [t f

where 8 = (By,B1, ...,Byx) is the information operator and is linear in R?xBV[0, ]X. By
Lemma 2, & is invertible. The rest of the proof then follows the arguments of van der Vaart
(1998, pp. 419-424). Finally, because v Gis an asymptotically linear estimator of v' &) with
the influence function lying in the space spanned by the score functions, Bis an efficient
estimator for 6.

The following two lemmas are used in the proofs of Theorem 1 and Theorem 2 and are
proved in Section S2 of the Supplementary Materials.

Let Model A be
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d
Xl(nl,ﬂ2)=X|ﬂ1 "'FXl,,Il(' |'Il)y

Y| (’]17’72) ~ FY [ '7(. |’117']2),

772|’11’“'F,72|;,]1(' |’11)7

m ”’Fﬂl,

where (X,Y) are observed, and (m, 1) are latent. Model A is depicted inFigure A.1. Let
fx| 0 = Fy, . Iy in=Fy iy fn2 I, = F;72 ny’ ano’f”] = F;“. Assume that: (a) for any

density functions fy jyand ¥, .,
/fy [ ,](Y | n]’ﬂz)f,]z | n (772 | ﬂ])dnz = /fy [ ,](Y | '11,'12)f,12 [ n (’72 | n])dﬂz VY»’T]

implies that (fy|p, Fopim) = (Fy | Trpim). £:€., the model for Y is identifiable if my is
observead, (b) Fxj;y and F,y, are identifiable based on (X,Y), and (c) m Is a complete
sufficient statistic in{Fy x(- | X) : X € 2}, where F,, | x IS the conditional distribution
function of gy given X, and %" is the range of X. Then, Model A is identifiable. A sufficient
condition for i to be complete sufficient is that the density of X is of the form

q
[ exo (x50 —a;mpib X,

lenl(Xlﬂl)cx 1
j=1

where X = (X1, ..., Xg), m > (s1(m), --., S(m)) /s one-to-one, and bj is non-zero on some
open set.

FigureA.l.
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Lemma 2

Page 26

SEM Considered in Lemma 1. The SEM consists of two sets of latent variables and two sets
of observed variables that may all be multivariate. The observed variable X depends only on
the latent variable 7, but the observed variable Y depends on both sets of latent variables.

Under condiitions (C1), (C2), (C3°), (C5°), and (D5), the model given by (1)—(3) has an
invertible information operator.

JAm Stat Assoc. Author manuscript; available in PMC 2019 June 06.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Wong et al.

Page 27

Yy

Figurel.
The First Example of SEM to Illustrate the Identifiability Rules. The SEM con- sists of one

latent variable, one survival time, and three conditionally independent normal manifest
variables.
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Figure 2.

1

Page 28

m

T,

7]2

Y

Y, Y;

The Second Example of SEM to Illustrate the Identifiability Rules. The left panel is an SEM
that consists of two latent variables, two observed covariates, two survival times, and three

conditionally independent normal manifest variables. The right panel is an intermediate step
in identifying the SEM on the left.
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Ys

Y

Yz

Y

Y;

Yy Y5

Figure 3.
Model Used in Simulation Studies. The SEM consists of two latent variables, an observed

covariate, seven binary or normal manifest variables, and a survival time that regresses on
the latent variable, some manifest variables, and the observed covariates.
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Figure 4.

Page 30

Results from the SEM Analysis of the Gene ACACA. Analysis results are from 542 patients
with ovarian cancer in the TCGA project. The numbers besides an arrow correspond to the

point estimate and standard error estimate (in parentheses) of the regression parameter.

numbers below the latent variables correspond to the point estimate and standard error
estimate (in parentheses) of the error variance.
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