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Abstract

Structural equation modeling is commonly used to capture complex structures of relationships 

among multiple variables, both latent and observed. We propose a general class of structural 

equation models with a semiparametric component for potentially censored survival times. We 

consider nonparametric maximum likelihood estimation and devise a combined Expectation-

Maximization and Newton-Raphson algorithm for its implementation. We establish conditions for 

model identifiability and prove the consistency, asymptotic normality, and semiparametric 

efficiency of the estimators. Finally, we demonstrate the satisfactory performance of the proposed 

methods through simulation studies and provide an application to a motivating cancer study that 

contains a variety of genomic variables. Supplementary materials for this article are available 

online.
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1. INTRODUCTION

Structural equation modeling (SEM) is a very general and powerful approach to capture 

complex relationships among multiple factors, both observed and latent (Bollen 1989). A 

typical SEM framework consists of a structural model that connects latent variables and a 

measurement model that relates latent variables to observed variables. SEM is extremely 

popular in the social sciences and psychology, where unmeasured quantities and 

psychological constructs, such as human intelligence and creativity, can be related to and 

investigated through observed data. The text of Bollen (1989) has been cited more than 

20,000 times. Recently, SEM has gained popularity in medical and public health research 

(Dahly et al. 2009; Naliboff et al. 2012).
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Our interest in SEM was motivated by its potential application to integrative analysis in 

genomic studies. Recent technological advances have made it possible to collect different 

types of genomic data, including DNA copy number, SNP genotype, DNA methylation 

level, and expression levels of mRNA, microRNA, and protein, on a large number of 

subjects. There is a growing interest in integrating these genomic platforms so as to 

understand their biological relationships and predict disease progression and death, which 

are considered potentially censored survival times (The Cancer Genome Atlas (TCGA); 

https://tcga-data.nci.nih.gov/tcga/).

SEM with discrete survival times has been studied by Rabe-Hesketh et al. (2001; 2004), 

Muthén and Masyn (2005), and Moustaki and Steele (2005). For continuous survival time, 

Larsen (2004; 2005) adopted the proportional hazards model (Cox 1972) with a single latent 

variable to capture the association between the survival time and other observed variables; 

Asparouhov et al. (2006) considered a more general formulation of the association among 

the latent and observed variables. SEM with the Cox proportional hazards model for the 

survival component has been adopted for more complex settings, such as multivariate 

survival times (Stoolmiller and Snyder 2006) and competing risks (Stoolmiller and Snyder 

2013). A popular software program, Mplus (Muthén and Muthén 1998–2015), has 

implemented SEM with survival data under the proportional hazards model. The estimation 

of the nonparametric baseline hazard function is based on piecewise-constant splines, and no 

theoretical justification is available. In fact, the standard error estimator for the baseline 

hazard function is incorrect.

In this article, we propose a general SEM framework that includes a semiparametric 

component of the measurement model for potentially censored survival times. Specifically, 

we formulate the effects of latent and observed covariates on survival times through a broad 

class of semiparametric transformation models that includes the proportional hazards model 

as a special case. The observed covariates may include manifest variables that depend on 

latent variables. We study nonparametric maximum likelihood estimation (NPMLE), under 

which the cumulative hazard functions are estimated by step functions with jumps at 

observed survival times.

The proposed SEM is reminiscent of joint modeling for survival and longitudinal data 

(Henderson et al. 2000; Tsiatis and Davidian 2004). With the latter, the observed 

longitudinal variables are considered error-prone measurements of some underlying latent 

variables, but the measurements themselves are not causal determinants of the survival time. 

By contrast, our SEM framework allows latent variables to have direct effects on survival 

times, as well as indirect effects through other manifest variables. In addition, our 

framework accommodates much more complex relationships among latent variables.

A major challenge in our theoretical development is model identifiability. Even for an SEM 

with normally distributed variables, no single set of conditions exists that is both necessary 

and sufficient for model identifiability. Methods that deal with special cases of the normal 

SEM were proposed by Bollen (1989), Reilly and O’Brien (1996), Vicard (2000), and 

Bollen and Davis (2009), among others. Most of the methods are based on the fact that 

identifiability can be established by solving the equations relating the first two model-
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implied moments to the sample moments. This approach is not directly applicable to models 

with nonparametric components, as infinite-dimensional parameters cannot be identified 

through a finite number of equations. Because the proportional hazards structure results in a 

likelihood function that takes the form of a Laplace transform, however, we are able to 

develop sufficient conditions under which the identifiability of a semiparametric SEM can 

be established by inspecting simpler parametric models.

Another theoretical challenge is the invertibility of the information operator. For the 

information operator to be invertible, we require that the score statistic along any nontrivial 

submodel is non-zero. As in the case of model identifiability, general conditions for the 

invertibility of the information operator for semiparametric models do not exist. In the 

existing work involving latent variables for survival times (Kosorok et al. 2004; Zeng and 

Lin 2010), verifying the invertibility of the information operator involves inspecting the 

local behavior of the score statistic around the zero survival time. This approach does not 

make full use of the variability of the score statistic contributed by the survival times and 

cannot deal with the proposed general modeling framework. We show that the invertibility of 

the information operator can be verified by inspecting the parametric components of the 

SEM under some mild conditions in the survival model.

The rest of this article is structured as follows. In Section 2, we formulate the model and 

describe our approach to establish model identifiability. In Section 3, we discuss the 

numerical implementation of the NPMLE. In Section 4, we present theoretical results for 

model identifiability and describe the asymptotic properties of the estimators. In Section 5, 

we report the results from simulation studies. In Section 6, we provide an application to the 

TCGA data, which motivated this work. We make some concluding remarks in Section 7 

and relegate theoretical proofs to the Appendix.

2. BASIC FRAMEWORK

2.1 Model and Likelihood

Let η denote a q-vector of latent variables, Y denote an r-vector of uncensored manifest 

variables, (T1, …, TK) denote K potentially censored survival times, and W and Z denote 

two vectors of observed covariates. Without loss of generality, assume that the support of the 

covariates includes zero. We specify the conditional distributions of η given Z, Y given Z 
and η, and Tk given W, Z, Y, and η as follows:

η ∣ Z Fη ( · ∣ Z; ν), (1)

Y ∣ (Z, η) FY ( · ∣ Z, η; ψ), (2)
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ΛTk
(t ∣ W, Z, Y, η) = Gk{Λk (t) e

WTϑk + ZTβk + YTαk + ηTϕk}, k = 1, …, K, (3)

where Fη (· | Z, ν) denotes a q-variate normal distribution function indexed by a parameter 

vector ν, FY (· | Z, η; ψ) denotes an r-variate parametric distribution function indexed by a 

parameter vector ψ, ΛTk is the cumulative hazard function of Tk given (W,Z,Y, η), Gk is a 

known increasing function, Λk is an unspecified positive increasing function with Λk(0) = 0, 

and (ϑk, βk, αk,ϕk) are unknown regression parameters.

Model (1) is the structural model of the latent variables. Model (2) is the measurement 

model of Y. We assume that Y and η are independent of W given Z. Models (1) and (2) 

represent the existing SEM framework with Y not restricted to be normally distributed. 

Equation (3) includes the proportional hazards and proportional odds models as special 

cases with the choices of Gk (x) = x and Gk (x) = log (1 + x), respectively. The proportional 

hazards model has been considered in the literature.

The survival time Tk is subject to right censoring by Ck. It is assumed that (C1, …, CK) are 

independent of (T1, …, TK) and η conditional on Y, Z, and W. Define T̃
k = min(Tk,Ck) and 

Δk = I(Tk ≤ Ck), where I(·) is the indicator function. For a sample of size n, the observed data 

consist of i ≡ (T̃
1i, … T̃

Ki,Δ1i, …, ΔKi,Yi,Zi,Wi) (i = 1, …, n).

Let θ denote the collection of all Euclidean parameters, and write  = (Λ1, …, ΛK). The 

likelihood function for θ and  is proportional to

Ln (θ, 𝒜) = ∏
i = 1

n ∫ ∏
k = 1

K
λk T∼ki e

Wi
Tϑk + Zi

Tβk + Yi
Tαk + ηTϕk × Gk′ Λk T∼ki e

Wi
Tϑk + Zi

Tβk + Yi
Tαk + ηTϕk

Δki

× exp −Gk Λk T∼ki e
Wi

Tϑk + Zi
Tβk + Yi

Tαk + ηTϕk

× f Y (Yi ∣ Zi, η; ψ) f η (η ∣ Zi; ν) dη,

(4)

where f′(x) = df(x)/dx for any function f, λk = Λk′ , f Y = FY′ , and f η = Fη′ . The NPMLE is 

defined to be the maximizer of Ln(θ, ), in which Λk is treated as a step function with 

jumps at T̃
ki with Δki = 1 (i = 1, …, n).

2.2 Model Identifiability

We describe our approach to establish model identifiability in this section and defer the 

technical details to Section 4. The identifiability results can be summarized by two simple 

rules. Suppose that we have arranged the survival times such that for some 0 ≤ K1 ≤ 
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min(q,K), each of (T1, …, TK1) regresses on and only on one latent variable and a set of 

covariates that are independent of the latent variables. (We allow K1 = 0 if no survival time 

satisfies the given conditions, in which case Rule 1 below is vacuous.) We call an observed 

variable X an indicator of a latent variable η if X follows a generalized linear model with η 
as a covariate and is independent of all other manifest variables and survival times 

conditional on η. We have the following rules:

Rule 1. The latent variables attached to (T1, …, TK1) can be treated as observed if 

each of (T1, …, TK1) depends on at least one observed covariate.

Rule 2. If each latent variable has a separate continuous indicator and the 

distributions of the latent variables and the indicators are identifiable, then the whole 

model is identifiable.

To illustrate the usefulness of the two identifiability rules, we present two examples.

Example 1—Consider the model depicted in Figure 1. In the model, Y1, Y2, and Y3 are 

conditionally independent normal manifest variables of η, and T is a survival time that 

follows the proportional hazards model with covariate η. Assume that the regression 

parameter of Y1 on η is fixed to be one, E(η) = 0, and the regression parameters of η in the 

models of Y2 and Y3 are non-zero.

The above model is similar to the joint model for survival and longitudinal variables. By 

Bollen (1989)’s three-indicator rule, the model of (Y1, Y2, Y3, η) is identifiable. With Y1 

serving as an indicator of η, Rule 2 implies that the remaining parameters are identifiable. 

Note that Rule 1 is not applicable in this case because T does not depend on an independent 

covariate. In fact, the model is not identifiable without (Y1, Y2, Y3) because the scale of the 

baseline hazard function and the variance of η cannot be separated.

Example 2—Consider the model depicted on the left-hand side of Figure 2. In the model, 

Y1, Y2, and Y3 are conditionally independent normal manifest variables of η2, T1 is a 

survival time that follows the proportional hazards model with covariates W and η1, and T2 

is a survival time that follows the proportional hazards model with covariates η1 and η2. 

Assume that W and Z are non-constant and linearly independent, the regression parameters 

for the latent variables in the models of T1 and Y1 are fixed to be one, E(η1) = E(η2) = 0, 

and the regression parameters of W in the model of T1 and η2 in the models of Y2 and Y3 

are non-zero.

First, we use T1 to help identify the latent variable distributions. By Rule 1, η1 can be treated 

as observed when identifying the model. The problem thus reduces to identifying the model 

shown on the right-hand side of Figure 2. The model can then be shown identifiable by the 

arguments used in Example 1.

3. COMPUTATION OF THE NPMLE

In this section, we use Z to denote both W and Z with βk (k = 1, …,K) as the corresponding 

vector of regression parameters. Application of a transformation Gk can be viewed as 

inclusion of an extra latent variable log sk in the regression equation, where sk is a random 
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variable with density gk such that Gk (x) = − log ∫ 0
∞e−xtgk (t) dt. We adopt the Expectation-

Maximization (EM) algorithm (Dempster et al. 1977) by treating the latent variables, 

including those introduced by the transformations, as missing data. We perform occasional 

Newton-Raphson steps to speed up the convergence.

In the combined algorithm, either an EM step or a Newton-Raphson step is performed at 

each iteration. To avoid confusion, we call the latter an outer Newton-Raphson step. For an 

EM step, note that the conditional expectation for any function φ of (ηi, si) ≡ (ηi, s1i, …, sKi) 

given the observed data is

E {φ (ηi, si) ∣ 𝒪i} = 𝒞−1∫ ∫ φ (η, s) ∏
k = 1

K
Λk{T∼ki}ske

Zi
Tβk + Yi

Tαk + ηTϕk

Δki

× exp ( − ∫0

T∼kiske
Zi

Tβk + Yi
Tαk + ηTϕkdΛk (t))

× f Y Yi ∣ Zi, η; ψ f η η ∣ Zi; ν g (s) dη ds1⋯dsK,

where Λk {t} is the jump size of the step function Λk at t, s = (s1, …, sK), 

g (s) = ∏k = 1
K gk (sk), and  equals the above integral evaluated at φ(·, ·) = 1. We use the 

Gauss-Hermite quadrature to approximate the integrals. To reduce the number of abscissas, 

we adopt an adaptive quadrature approach (Liu and Pierce 1994). Denote the approximation 

of the conditional expectation as Ê(·). After taking expectation on the functions involved, we 

update (βk, αk,ϕk) by the one-step Newton-Raphson algorithm on

∑
i = 1

n
log

E {ski exp (Zi
Tβk + Yi

Tαk + ηi
Tϕk)}

∑ j = 1
n I(T∼k j ≥ T∼ki)E {sk j exp (Z j

Tβk + Y j
Tαk + η j

Tϕk)}

Δki

.

Then, we update the cumulative baseline hazard function by

Λk {Tki} =
Δki

∑ j = 1
n I(T∼k j ≥ T∼ki)E {sk j exp (Z j

Tβk + Y j
Tαk + η j

Tϕk)}
,

where (βk, αk,ϕk) are evaluated at the current estimates. In addition, we update the 

remaining parameters at the maximum of

∑
i = 1

n
E [ log { f Y (Yi ∣ Zi, ηi; ψ) f η (ηi ∣ Zi; ν)}] .
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If a closed-form solution is not available, then we apply the one-step Newton-Raphson 

algorithm to the above expression instead. The above algorithm can be generalized to the 

case where components of Yi that do not appear in the model of the survival times are 

missing at random for some subjects. In this case, we simply drop the corresponding fY 

terms in the evaluation of Ê and the complete-data log-likelihood.

For an outer Newton-Raphson step, we apply the one-step Newton-Raphson algorithm 

directly to the logarithm of Ln(θ, ) given in (4) using a similar adaptive quadrature 

approximation. At the current estimates, the first derivative of log Ln(θ, ), i.e., the score 

statistic, is the same as the first derivative of the expected complete-data log-likelihood. The 

Hessian matrix used in the Newton-Raphson algorithm can be obtained by Louis (1982)’s 

formula.

To determine whether an EM step or an outer Newton-Raphson step is to be performed, we 

keep track of the difference in the log-likelihood at the previous iteration, either an EM or an 

outer Newton-Raphson step, and the difference at the previous outer Newton-Raphson step. 

For each iteration, if the log-likelihood difference at the previous step is too small relative to 

that at the previous outer Newton-Raphson step, then an outer Newton-Raphson step is 

performed; otherwise, an EM step is performed. Upon convergence, Louis (1982)’s formula 

is used to obtain the information matrix for the estimation of the standard errors.

The reason that we use a combination of the EM and Newton-Raphson algorithms instead of 

the Newton-Raphson algorithm alone is two-fold. First, EM steps are more stable, which is 

important, especially in early iterations. Second, in the estimation of the survival model 

under the EM algorithm, the regression parameters can be obtained by maximizing the 

partial-likelihood-type function, and the estimators of the baseline hazard functions take the 

form of the Breslow estimator. Unlike the Newton-Raphson algorithm, the EM algorithm 

does not involve the inversion of a high-dimensional matrix.

4. THEORETICAL PROPERTIES

4.1 Identifiability Conditions

As discussed in Section 2, we set aside K1 survival times, T1, …, TK1, that are used to 

identify the distribution of the underlying latent variables. We assume that span(ϕ1, …, ϕK1) 

= ℝK1. We can choose the K1 survival times such that each is associated with a few, 

preferably only one, latent variables. (K1 is allowed to be 0, in which case we rely solely on 

the manifest variable Y to identity the latent variable distribution.) Without loss of generality, 

we assume that ϕk = ek (k = 1, …, K1), where ek is a q-vector with 1 at the kth position and 0 

elsewhere. This assumption can be satisfied by applying a linear transformation to the latent 

variables. Effectively, we fix the scale of the first K1 latent variables, as is common when 

establishing model identifiability for SEM. We partition η into (η1, η2), where η1 ≡ (η11, 

…, η1K1) consists of the first K1 components of η.

We consider the following identifiability conditions. For the “baseline” hazard functions 

(Λ1, …, ΛK), we only require identifiability on [0, τ], where τ denotes the study duration.
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(C1) If (1,WT,ZT,YT)Tc = 0 almost surely for some vector c of appropriate dimension, 

then c = 0. For k = 1, …,K, λk is continuous and strictly positive on [0, τ], and 

there exists a positive and measurable function gk such that 

exp { − Gk (t)} = ∫ 0
∞e−tsgk (s) dmk (s), where mk is the Lebesgue measure or the 

counting measure at 1.

(C2) For k = 1, …,K1, E(YTαk | Z = 0) = 0, and E(η | Z = 0) = 0. Also, for any vectors 

c1 and c2 of appropriate dimensions, E(eYTc1+ηTc2 | Z) is finite almost surely.

(C3) For k = 1, …,K1, ϑk is non-zero, and αk and βk are zero.

(C4) Consider two sets of parameters (ψ, ν) and (ψ̃, ν̃). Let fY,η1 be the density of 

(Y, η1) given Z. Then, fY,η1 (Y, η1 | Z; ψ, ν) = fY,η1 (Y, η1 | Z; ψ̃, ν̃) for all Z, 

Y, and η1 implies that ψ = ψ̃ and ν = ν̃.

(C5) Let (Y+, η1
+) be the components of (Y, η1) that appear in the regression of Tk for 

some k = K1 + 1, …,K, and let (Y−, η1
−) be the remaining components. Let Fη2|

Y,η1 be the distribution function of η2 given (Z,Y, η1) with (Y−, η1
−) treated as a 

parameter vector. Then, η2 is complete sufficient in {Fη2|Y,η1 (· | Z,Y, η1): Z = 

z0,Y+ = y0, η1
+ = η10 for any fixed z0, y0, and η10.

Remark 1—Condition (C1) pertains to basic requirements on the covariates, the baseline 

hazard functions, and the transformation functions such that the survival model with 

observed covariates is identifiable. If mk is a point mass at 1, then Gk is simply the identity 

function. Condition (C2) fixes the location parameters of the latent variables and the 

manifest variables that appear in the regression models of the first K1 survival times. 

Condition (C3) requires that the first K1 survival times depend only on their corresponding 

latent variable and W. The presence of a covariate besides the latent variable is necessary for 

distinguishing the contributions of the baseline hazard function and the latent variable to the 

distribution of a survival time that follows a mixture distribution. Condition (C4) requires 

that the model with observed (Y, η1) is identifiable. Condition (C5) requires that η2 is 

complete sufficient conditional on (Y, η1), where components of (Y, η1) that do not appear 

in the regression of Tk (k = K1 + 1, …, K) are treated as parameters, and the rest are held 

fixed. Conditions (C2) and (C3) are vacuous if K1 = 0, and condition (C5) is vacuous if K1 = 

K.

We have the following identifiability result.

Theorem 1: Under conditions (C1)–(C5), the model specified by (1)–(3) is identifiable.

Remark 2—The condition that αk and βk are zero for k = 1, …, K1 separates the first K1 

survival times from the remaining observed variables that are associated with the latent 

variables. This condition is used to simplify the presentation of the identifiability conditions. 

In the proof of Theorem 1, we consider generalized versions of conditions (C3)–(C5), where 

αk and βk are allowed to be non-zero.
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Remark 3—Theorem 1 implies that the distribution of the latent variable underlying a 

given survival time can be completely identified if the survival time only regresses on the 

latent variable and a set of independent covariates. Thus, the survival times make it easy to 

identify the model, as only a single survival time is enough to identify an underlying latent 

variable. By contrast, this property does not hold for normal random variables.

Remark 4—The derivation of model identifiability from condition (C5) utilizes the 

property of complete sufficient statistics. The derivation is applicable to general latent 

variable models; the general result is given by Lemma 1 in the Appendix. Lemma 1 allows 

for the establishment of model identifiability by inspecting just a part of the model. It 

includes Reilly and O’Brien (1996)’s side-by-side rule, which states that the loadings of an 

observed variable on any number of latent variables are identifiable if each of the latent 

variables is attached to a separate independent observed variable whose distribution is 

identifiable, as a special case.

4.2 Asymptotic Properties

Let d be the dimension of θ, θ0 denote the true value of θ, and Λ0k denote the true value of 

Λk (k = 1, …, K). We impose the following conditions.

(D1) The parameter θ0 lies in the interior of a compact set Θ ⊂ ℝd, and the function 

Λ0k is continuously differentiable with λ0k(t) ≡ Λ0k′ (t) > 0 on [0, τ] for each k = 

1, …,K.

(D2) With probability one, P(T̃
ki = τ | W,Z) > δ0 (k = 1, …,K) for some fixed δ0 > 0.

(D3) Consider any fixed Z and (ψ, ν) ∈ Θψν, where Θψν consists of the (ψ, ν)-

component of every θ ∈ Θ. For any constant a1 > 0 and δ = 0, 1,

E ∫ e
a1(1 + ∣ Y ∣ + ∣ η ∣ )

f Y (Y ∣ Z, η; ψ)δ f η (η ∣ Z; ν) dη < ∞ .

Also, for j = 1, 2, 3, there exists a constant a2 > 0 such that

∂ j

∂ψ j f Y (Y ∣ Z, η; ψ)

f Y (Y ∣ Z, η; ψ) +

∂ j

∂ν j f η (η ∣ Z; ν)

f η (η ∣ Z; ν) ≤ e
a2(1 + ∣ Y ∣ + ∣ η ∣ )

.

In addition, for some positive constants Mj and cj, Nj ∈ ℝr, and φ1 ∈ ℓ∞(ℝr),

e
∑ j = 1

q −M j ∣ b j ∣
≤ e

∑ j = 1
q (N j

TYb j + c jb j
2)

φ1 (Y) f Y (Y ∣ Z, η; ψ) f η (η ∣ Z; ν)

≤ e
∑ j = 1

q M j ∣ b j ∣
,

where b = S (η) for some one-to-one linear transformation S.
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(D4) The function Gk is four-times differentiable, Gk (0) = 0, and 

K1k (1 + x)
−κ1k ≤ Gk′ (x) ≤ K2k (1 + x)

κ2k for some positive constants κ1k, κ2k, 

K1k, and K2k. Also, Gk(x)/xρk → Mk or Gk(x)/log(x) → Mk as x → ∞ for 

some positive constants Mk and ρk. In addition, exp {−Gk(x)} ≤ μk (1 + x)−κ3k 

for some μk and κ3k > κ2k + 1. Furthermore, for some rk,

sup
x ≥ 0

Gk″ (x) + Gk
(3) (x) + Gk

(4) (x)

Gk′ (x) (1 + x)
rk

< ∞ ,

where Gk″ and Gk
( j) denote the second and jth derivatives of Gk, respectively.

(D5) Let (Z(k),Y(k)) be the components of (Z,Y) that appear in the regression of Tk (k 
= 1, …,K1). For any vectors h1, h2k, and h3k of appropriate dimensions, if

∂
∂(ψ, ν) f Y , η1

Y, η1 ∣ Z; ψ, ν Th1 − ∑
k = 1

K1
Z(k)Th2k + Y(k)Th3k

∂
∂η1k

f Y , η1
Y, η1 ∣ Z; ψ, ν

is equal to 0 for all Z, Y, and η1, then h1 = 0, h2k = 0, and h3k = 0 for k = 1, 

…,K1, where fY,η1 is defined in condition (C4).

Remark 5—Conditions (D1)–(D4) are similar to the conditions of Zeng and Lin (2010) for 

joint modeling of longitudinal and survival data. Extra conditions are imposed on the 

transformations and the distributions of Y and η to accommodate the presence of unbounded 

covariate Y in the survival model. Condition (D5) is for the invertibility of the information 

operator. If αk = 0 and βk = 0 for k = 1, …, K1, then condition (D5) simply requires that the 

information matrix of the model for (Y, η1) is invertible. This is parallel to condition (C4) 

for identifiability.

Remark 6—The conditions for identifiability and the invertibility of the information 

operator (C1)–(C5), and (D5) differ significantly from the corresponding conditions (C5) 

and (C7) of Zeng and Lin (2010). The latter are stated under very general settings, but they 

are hard to verify for specific models, especially under our SEM framework. By contrast, 

our conditions are easier to verify and have intuitive interpretations. For the model in 

Example 1, (D5) simply requires that the model of (Y1, Y2, Y3, η1) given Z has a non-zero 

score statistic, which clearly holds.

Let 0 = (Λ01, …,Λ0K) and (θ̂, 𝒜̂) be the NPMLE of (θ, ). Also, let  = {v ∈ ℝd, |v| ≤ 

1} and  = {h (t): ||h (t)||V [0,τ] ≤ 1} with ||·||V [0,τ] being the total variation norm on [0, τ]. 

We consider (θ̂ − θ0, 𝒜̂ − 0) as a random element in l∞(  × K) with

θ − θ0, 𝒜 − 𝒜0 (v, h1, …, hK) = θ − θ0
Tv + ∑

k = 1

K ∫0
τ
hk (s) d Λk − Λ0k (s) .
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We have the following results.

Theorem 2: Under conditions (C1)–(C5) and (D1)–(D5),

1. ∣ θ − θ0 ∣ + ∑k = 1
K supt ∈ [0, τ] ∣ Λk (t) − Λ0k(t) ∣ a . s . 0; and

2. n1/2(θ̂ − θ0, 𝒜̂ − 0) →d  in l∞(  × K), where  is a continuous zero-mean 
Gaussian process. Furthermore, the limiting covariance matrix of n1/2(θ̂ − θ0) 

attains the semiparametric efficiency bound.

Remark 7—The proof of Theorem 2 relies on the Donsker properties of certain classes of 

functions. It is more challenging to establish the Donsker results in our setting than in 

previous settings (e.g., Kosorok et al. (2004) and Zeng and Lin (2010)) because the 

likelihood function of the proposed model may contain the unbounded variable Y.

Remark 8—A key step in proving the asymptotic normality of the NPMLE is to show that 

the information operator is invertible. The result is given by Lemma 2 in the Appendix, 

which states that condition (D5), together with conditions (C1)–(C3), and (C5), implies that 

the information operator of the model is invertible. With this result, we can verify the 

invertibility of the information operator of the semiparametric model by inspecting the 

parametric part of the model that contains the observed and latent variables. For the frailty 

models in Kosorok et al. (2004), verification of the invertibility of the information operator 

involves inspection of the local behavior of the score around T = 0. However, that approach 

is limited to frailty distributions that are indexed by a one-dimensional parameter and is not 

directly applicable to cases with more complex latent variable distributions such as those in 

our setting.

5. SIMULATION STUDIES

We considered a model with covariates Z = (Z1,Z2)T, two latent variables (η1, η2), observed 

continuous variables (Y1, …, Y5), observed binary variables (Y6, Y7), and a survival time T. 

Their distributions are given by

ΛT (t ∣ Z, Y6, Y7, η2) = G{Λ0(t) exp (XT
TβT + ϕTη2)}, XT = (Z1, Z2, Y6, Y7)T,

logit {P(Y6 = 1 ∣ Z, η2)} = XY6
T βY6

+ ϕY6
η2, XY6

= (1, Z1, Z2)T,

logit {P(Y7 = 1 ∣ Z, Y6, η2)} = XY7
T βY7

+ ϕY7
η2, XY7

= (1, Z1, Z2, Y6)T,

Y j ∣ η1 N(βY j
+ ϕY j

η1, σY j
2 ), j = 1, 2, 3,

Y j ∣ η2 N(βY j
+ ϕY j

η2, σY j
2 ), j = 4, 5,

η2 N(βηη1, ση2
2 ),

η1 N(0, ση1
2 ) .
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The parameters ϕY1 and ϕY4 are fixed to be one. The model is depicted in Figure 3.

We set Z1 and Z2 to independent standard normal and Bernoulli(0.5), respectively, and Λ0(t) 
= t2. We considered the class of logarithmic transformations G(x) = r−1 log(1 + rx) with r = 0 

or 1, which correspond to the proportional hazards and proportional odds models, 

respectively. We generated the censoring times from Exp(c), where c was chosen to yield 

approximately 30% censored observations. We set (Y1, …, Y5) to be missing completely at 

random for 30% of the subjects. We set the sample size to 400 and set the number of 

abscissa points to 20 for each Gauss-Hermite quadrature. We simulated 1,000 datasets for 

each setting. The results are summarized in Table 1.

The estimators of all parameters are virtually unbiased for both the proportional hazards and 

proportional odds models. The standard error estimators accurately reflect the true 

variations, and the coverage probabilities of the confidence intervals are close to the nominal 

level. Standard error estimators for the parameters in the survival model are larger under the 

proportional odds model than under the proportional hazards model. As a result, the standard 

error estimators for the parameters associated with η2 are larger. The standard error 

estimators for the remaining parameters are very similar between the two models.

We also evaluated Mplus (Muthén and Muthén 1998–2015) under the proportional hazards 

model, and the results are presented in Table S.1 of the Supplementary Materials. The results 

for the Euclidean parameters are similar to those presented in Table 1. Mplus provides 

estimator for the baseline hazard function instead of the cumulative baseline hazard 

function. Its standard error estimator does not reflect the true variation, and the coverages of 

the confidence intervals are far below the nominal level.

6. REAL DATA ANALYSIS

We analyzed a dataset on patients with serous ovarian cancer from the TCGA project (The 

Cancer Genome Atlas Research Network 2011). Genomic variables include DNA copy 

number, SNP genotype, DNA methylation level, and levels of expression of mRNA, 

microRNA, total protein, and phosphorylated protein. Demographic and clinical variables 

include age at diagnosis, race, tumor stage, tumor grade, time to tumor progression, and time 

to death. There are a total of 586 patients. The median follow-up time was about 2.5 years, 

and roughly 30% of the patients were lost to follow-up before tumor progression or death. 

The data are available from http://gdac.broadinstitute.org/.

We focused on the integrative analysis of clinical outcomes and expression levels of mRNA, 

total protein, and phosphorylated protein. We considered mRNA expression as a latent 

variable that can only be observed with error through three microarray platforms, namely 

Agilent 244K Whole Genome Expression Array, Affymetrix HT-HG-U133A, and 

Affymetrix Exon 1.0. We assumed that the effects of a gene on clinical outcomes are 

mediated through unobserved protein activity. The latent protein activity is modified by 

mRNA expression and is manifest through the observed protein expression measurements, 

which were obtained from the reverse-phase protein arrays platform. Figure 4 depicts the 

SEM fit for each gene. We assumed that the observed variables follow the distributions 
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described in Section 5, with (Y1, Y2, Y3) being the three microarray measurements, (Y4, Y5) 

= (Total protein expression, Phosphorylated protein expression), (Y6, Y7) = (Tumor stage, 

Tumor grade), (Z1, Z2) = (Age, Race), and T being progression-free survival time.

We dichotomized tumor stage into stage II/III versus stage IV and tumor grade into grade 2 

versus grade 3/4. Race was dichotomized into white and non-white. We allowed mRNA 

expression and protein expression data to be missing for some subjects. We excluded 

patients with tumor stage I or grade 1, as those patients may have a disease that is 

biologically different from that of patients with tumors of other stages or grades. For each 

gene, we fit the class of transformation models with G(x) = r−1 log(1 + rx) over a grid of r = 

(0, 0.1, …, 2). We selected the model with the smallest AIC or, equivalently, the largest log-

likelihood value.

We present the results for the gene ACACA. The sample size is 542. About 30% of the 

subjects do not have protein expression data, and over 10% of the subjects miss at least one 

mRNA expression measurement. The best-fitting model is obtained at r = 1, which 

corresponds to the proportional odds model. The point estimates and standard error 

estimates of the parameters associated with the latent variables are shown in Figure 4. The 

remaining results are shown in Table S.2 of the Supplementary Materials. The latent 

variables have strong positive association with the measurement platforms. As expected, 

latent protein activity and latent mRNA expression are highly correlated. Latent protein 

activity is positively associated with progression-free survival time, with a p-value of 0.100. 

Specifically, higher latent protein activity is associated with shorter progression-free survival 

time, which agrees with the findings of the literature (Menendez and Lupu 2007). The 

association of ACACA with tumor stage or tumor grade is weak.

The results for the parameters in the non-survival models are similar between r = 0 and 1. 

The parameters in the survival model have different interpretations between r = 0 and 1. 

With r = 0, a unit increase in latent protein activity would have a multiplicative effect of 

exp(0.068) on the hazard function. With r = 1, a unit increase in the latent protein activity 

would have a multiplicative effect of exp(−0.192) on the survival odds. For this dataset, the 

proportional odds model provides much stronger evidence for the effect of protein activity 

on progression-free survival than the proportional hazards model.

For the Cox proportional hazards model, we also present the results from Mplus in Table S.

2. The results from NPMLE and Mplus are similar for most parameters. There are 

considerable differences between the cumulative baseline hazard function estimates. The 

standard error estimates for the cumulative baseline hazard function are not available from 

Mplus.

For comparisons, we also fit a proportional odds model without latent variables for 

progression-free survival on the covariates and the two protein expression variables, where 

the subjects with missing protein expression data were discarded. The p-value of the Wald 

test for the joint effect of protein expression is 0.157. With r = 0, the Wald test p-value is 

0.578. Therefore, analyses based on standard models fail to conclude a strong association 

between the protein expression and progression-free survival. The power of the proposed 
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SEM framework stems from the appropriate handling of missing data, the dimension 

reduction of the observed covariates, and the flexibility of the survival model.

7. DISCUSSION

In this article, we consider semiparametric SEM for potentially right-censored survival time 

data. We prove the consistency, asymptotic normality, and semiparametric efficiency of the 

NPMLE. We propose new rules for establishing model identifiability and invertibility of the 

information operator. We construct an EM algorithm to compute the NPMLE and introduce 

occasional Newton-Raphson steps to accelerate the convergence.

One contribution of Theorem 1 is that it reduces a semiparametric identifiability problem to 

a parametric one; it shows that the inclusion of the semiparametric component does not 

make the model less identifiable but, in some sense, makes the model more easily 

identifiable. With that being said, the result hinges on correct specification of the model and 

does not guarantee empirical identifiability in a finite sample. Therefore, care should be 

taken when fitting a model that is nearly non-identifiable. Another main result of ours is 

given by Lemma 1. This lemma is applicable to a wide range of latent variable models and 

allows one to deduce the identifiability of a model by inspecting just part of it.

Invertibility of the information operator has received much less attention in the literature 

than model identifiability. In this article, we prove a general result for invertibility of the 

information operator. It is evident from the proof that the invertibility of the information 

operator can be established using techniques similar to those used to establish model 

identifiability. Specifically, the key to the proof of the identifiability of the mixture Cox 

model is that with the presence of a covariate that is independent of the latent variable, the 

contributions to the likelihood from the latent variable and the baseline hazard function can 

be separated by considering different values of the covariate. (In a normal mixture model, 

however, we lack such identifiability results precisely because the random effect and error 

term are combined linearly and their distributions cannot be distinguished.) As a result, if 

two sets of parameters give rise to the same marginal survival function, then they must do so 

by giving rise to the same random-effect distribution. Based on the proportional hazards 

structure, we prove a parallel result for the invertibility of the information operator: the 

existence of a submodel with zero score implies that the random-effect distribution has zero 

score along that submodel as well. Therefore, to ensure the invertibility of the information 

operator of the mixture Cox model, one only has to ensure that the information matrix of the 

random-effect distribution is invertible.

Our work can be extended in several directions. First, one may be interested in expanding 

the model by inclusion of more latent and observed variables. As the number of variables 

increases, the number of parameters to be estimated increases as well. Then, it may be 

desirable to perform variable selection. Because a single variable may be associated with 

multiple parameters, one may prefer not to treat parameters as the basic unit of selection, as 

in traditional lasso methods (Tibshirani 1996). Instead, methods like group lasso (Yuan and 

Lin 2006) that penalize parameters associated with a variable as a group may be considered.
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In our model, the distribution of the manifest variable Y is fully parametric. One can allow a 

nonparametric transformation on Y. A major challenge arises in extending the asymptotic 

results to unbounded nonparametric transformation, as the estimator of the transformation 

function can be unbounded (Zeng and Lin 2010).

Finally, it would be of interest to consider interval-censored data. Interval censoring results 

in a different likelihood function, which makes the computation of the NPMLE and the 

derivation of its asymptotic properties challenging, even for univariate survival time data. 

The asymptotic theory for interval-censored data is only available in a few simple cases; see 

Huang and Wellner (1997) for a review.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX: TECHNICAL DETAILS

We present the following conditions, which are clearly implied by conditions (C3)–(C5):

(C3′) For k = 1, …, K1, ϑk is a non-zero vector.

(C4′) Consider two sets of parameters (αk, βk, ψ, ν) and (α̃
k, β̃k, ψ̃, ν̃) for k = 1, …, 

K1, and let η̃
1 = (η̃

11, …, η1̃K1), where η̃
1k = YT(αk−α̃

k)+ZT(βk−β̃k)+η1k. Let 

fY, η1 be the density of (Y, η1) given Z. Then, fY, η1 (Y, η1 | Z; ψ, ν) = fY, η1 (Y, 
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η̃
1 | Z; ψ̃, ν̃) for all Z, Y, and η1 implies that αk = α̃

k, βk = β̃k, ψ = ψ̃, and ν = 

ν̃.

(C5′) For k = K1 + 1, …, K, let (Y(k), η1
(k), η2

(k)) be the components of (Y, η1, η2) that 

appear in the regression of Tk, and let (Y−(k), η1
−(k), η2

−(k)) be the remaining 

components. If η2
(k) is non-empty, then (Y−(k), η1

−(k)) is non-empty, and η2
(k) is 

complete sufficient in { F
η2
(k) ∣ Y , η1

( · ∣ Z, Y, η1):Z = z0, Y(k) = y0, η1
(k) = η10} for 

any fixed z0, y0, and η10, where F
η2
(k) ∣ Y , η1

 is the distribution function of η2
(k)

given (Z,Y, η1) with (Y−(k), η1
−(k)) treated as a parameter vector.

We prove Theorem 1 under the generalized conditions (C1), (C2), and (C3′)-(C5′). The 

proof makes use of two lemmas given at the end of this appendix. We first provide an 

overview of the proof. For any two sets of parameters (ϑk, αk, βk, ϕk, Λk, ψ, ν) and (ϑ̃
k, α̃

k, 

βk̃, ϕ̃k, Λk̃, ψ̃, ν̃), assume that the likelihood values at the two sets of parameters are 

identical almost surely. By definition, the model is identifiable if the equality of the 

likelihood values implies the equality of the two sets of parameters. We derive the equality 

of the two sets of parameters in the following steps:

1. By conditions (C1), (C2), and (C3′) and the identifiability of the mixture Cox 

model (Kortram et al. 1995), ϑk = ϑ̃
k and Λk = Λ̃

k for k = 1, …, K1.

2. With some algebraic manipulation, the likelihood function can be expressed in 

the form of the Laplace transform of the distribution of a function of (Y, η1). The 

uniqueness of the Laplace transform, together with condition (C4′), implies that 

(αk, βk, ψ, ν) = (α̃
k, β̃k, ψ̃, ν̃) for k = 1, …, K1.

3. By the uniqueness of the Laplace transform and the complete sufficiency of η2 

imposed by condition (C5′), the equality of the likelihood functions of (TK1+1, 

…, TK, Y) implies the equality of the likelihood functions of (TK1+1, …, TK, Y, 

η). By the identifiability of the Cox model, we conclude that (ϑk, αk, βk, ϕk) = 

(ϑ̃
k, α̃

k, β̃k, ϕ̃k) for k = K1 + 1, …, K.

Proof of Theorem 1

The likelihood is given in (4). Here, we consider a single observation and drop the subscript 

i. Using the arguments in Section 10.1 of Zeng and Lin (2010), we can set each survival time 

to be right censored at any time point within [0, τ] when establishing identifiability. 

Consider two sets of parameters (ϑk, αk, βk, ϕk, Λk, ψ, ν) and (ϑ̃
k, α̃

k, β̃k, ϕ̃k, Λ̃
k, ψ̃, ν̃) 

such that the likelihood values for an observation with the K survival times being right 

censored are equal almost surely, i.e.,

Wong et al. Page 17

J Am Stat Assoc. Author manuscript; available in PMC 2019 June 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∫ ∏
k = 1

K ∫ exp −Λk (tk) ske
WTϑk + ZTβk + YTαk + ηTϕk gk (sk) dmk (sk) × f Y , η Y, η ∣ Z; ψ, ν dη

= ∫ ∏
k = 1

K ∫ exp −Λ∼k (tk) ske
WTϑ

∼
k + ZTβ

∼
k + YTα∼k + ηTϕ

∼
k gk (sk) dmk (sk) × f Y , η Y, η ∣ Z; ψ∼, ν∼ dη

(A.1)

for all t1, …, tK ∈ [0, τ], W, Z, and Y, where fY,η is the density of (Y, η) given Z. If mk is a 

point mass at one, then sk is fixed at one, gk = 1, and the integration with respect to mk(sk) 

can be omitted. For simplicity of description, assume that mk is the Lebesgue measure. Note 

that

∫ sgk (s) ds = − lim
t 0+

d
dt∫0

∞
e−tsgk (s) ds = − lim

t 0+
d
dt exp { − Gk (t)} = Gk′ (0) < ∞ .

Thus, a transformation model can be written as a random-effect proportional hazards model 

with known distributions (g1, …, gK) for random effects (s1, …, sK) with finite means.

First, we show that the baseline hazard functions of the first K1 survival times are 

identifiable. For each k = 1, …, K1, set tl → 0 for l ≠ k on both sides of (A.1). On each side 

of the resulting equation, integration with respect to Y results in the likelihood of a mixture 

Cox model with skeYTαk+η1k or skeYTα̃k+η1k as a latent variable. Let E(· | Z) and Ẽ(· | Z) be 

the expectations under fY,η(· | Z; ψ, ν) and fY,η(· | Z; ψ̃, ν̃), respectively. Theorem 3 of 

Kortram et al. (1995) implies that E(skeYTαk+η1k | Z = 0)Λk = Ẽ(skeYTα̃k+η1k | Z = 0)Λk̃ on 

[0, τ], ϑk = ϑ̃
k, and the distribution of E(skeYTαk+η1k | Z = 0)−1skeYTαk+η1k under fY,η(· | 

Z;ψ, ν) is equal to that of Ẽ(skeYTα̃k+η1k | Z = 0)−1skeYTα̃k+η1k under fY,η(· |Z; ψ̃, ν̃). 

Because E(YTαk + η1k | Z = 0) = Ẽ(YT α̃
k + η1k| Z = 0) = 0 by condition (C2), we see that 

Λk = Λ̃
k on [0, τ].

Second, we show that the likelihood function takes the form of a Laplace transform and use 

the uniqueness of the Laplace transform to prove the identifiability of (αk, βk, ψ, ν) (k = 1, 

…, K1). Setting tk → 0 for k = K1 + 1, …, K and W = 0 on both sides of (A.1), we have

∫ ∏
k = 1

K1 ∫ exp −Λk (tk) ske
ZTβk + YTαk + η1k gk (sk) dsk f Y , η (Y, η ∣ Z; ψ, ν) dη

= ∫ ∏
k = 1

K1 ∫ exp −Λk (tk) ske
ZTβ

∼
k + YTα∼k + η1k gk (sk) dsk f Y , η Y, η ∣ Z; ψ∼, ν∼ dη .

(A.2)
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Let U = (U1, …, UK1), Uk = skeη1k, and fU|Y be the density function of U given Z and Y. By 

the uniqueness of the Laplace transform, for any continuous functions f and f̃, any open set 

, and any positive real numbers c and c̃,

∫0
∞

e−cst f (t) dt = ∫0
∞

e−c∼st f
∼(t) dt ∀s ∈ 𝒮

implies that f(t) = (c/c̃)f̃(ct/c̃) for all t > 0. Therefore, the equality of (A.2) for all t1, …, tK1, 

Z, and Y implies that

f U ∣ Y U ∣ Z, Y; ψ, ν = e
∑k = 1

K1 ZT(βk − β
∼

k) + YT(αk − α∼k)
f U ∣ Y U∼ ∣ Z, Y; ψ∼, ν∼ (A.3)

for all U, Z, and Y, where Ũ = (Ũ1, …, ŨK1), and Ũk = eZT(βk−β̃k)+YT(αk−α̃k)Uk. Let fη1|Y be 

the density of η1 given Z and Y. By the definition of U,

f U ∣ Y (U ∣ Z, Y; ψ, ν)∫sk > 0
f η1 ∣ Y ( log U1 − log s1, …, log UK1

− log sK1
∣ Z, Y; ψ, ν) ∏

k = 1

K1
Uk

−1gk (sk) d (s1, …, sK1
)

∫
ℝ

K1
f η1 ∣ Y ( log U1 − v1, …, log UK1

− vK1
∣ Z, Y; ψ, ν) ∏

k = 1

K1
Uk

−1gk (vk) e
vkd (v1, …, vK1

),

where ḡk(v) = gk(ev). Thus, (A.3) implies that

∫
ℝ

K1
f η1 ∣ Y ( log U1 − v1, …, log UK1

− vK1
∣ Z, Y; ψ, ν)− f η1 ∣ Y ( log U∼1 − v1, …,

log U∼K1
− vK1

∣ Z, Y; ψ∼, ν∼) ∏
k = 1

K1
gk (vk) e

vk d (v1, …, vK1
) = 0.

(A.4)

Consider two arbitrary continuous functions f, g: ℝ → ℝ. Note that

∫−∞
∞

e−st ( f ∗ g) (t) dt = ∫−∞
∞

e−st f (t) dt∫−∞
∞

e−stg (t) dt

for any s such that the integrals are defined, where ( f ∗ g)(t) ≡ ∫ −∞
∞ f (t − s)g(s) ds is the 

convolution of f and g. Therefore, (f * g)(·) = 0 implies that
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∫−∞
∞

e−st f (t) dt∫−∞
∞

e−stg (t) dt = 0,

which, if g is positive, implies that f(·) = 0 by the uniqueness of the bilateral Laplace 27 

transform (Chareka 2007). Because ḡk(·)e(·) is positive, (A.4) implies that fη1|Y (η1 | Z,Y; ψ, 

ν) = fη1|Y (η̃
1 | Z,Y; ψ̃, ν̃), where η̃

1 is defined in condition (C4′). By condition (C4′), (αk, 

βk, ψ, ν) = (α̃
k, β̃k, ψ̃, ν̃) for k = 1, …, K1.

It remains to identify the parameters associated with (TK1+1, …, TK). By the uniqueness of 

the Laplace transform, (A.1) implies that

∫ ∏
k = K1 + 1

K ∫ e
−Λk (tk)ske

WTϑk + ZTβk + YTαk + ηTϕk
gk (sk) dsk f Y , η (Y, η ∣ Z; ψ, ν) dη2

= ∫ ∏
k = K1 + 1

K ∫ e
−Λ∼k (tk)ske

WTϑ
∼

k + ZTβ
∼

k + YTα∼k + ηTϕ
∼

k
gk (sk) dsk f Y , η (Y, η ∣ Z; ψ, ν) dη2

for all tK1+1, …, tK, W, Z, Y, and η1, i.e., η1 can be treated as observed for identifying the 

remaining parameters. Under condition (C5′), we can use the arguments in the proof of 

Lemma 1 to show that the integrands in the above equality are equal at each value of η2. We 

conclude that (ϑk, αk, βk, ϕk, Λk) = (ϑ̃
k, α̃

k, β̃k, ϕ̃k, Λ̃
k) for k = K1+1, …, K.

We provide an overview for the proof of Theorem 2. The consistency of the NPMLE is 

proved in the following steps:

1. By conditions (D2)–(D4), the NPMLE exists, i.e., Λ̂k(τ) < ∞.

2. By conditions (D3) and (D4), Λ̂k(τ) is uniformly bounded. Helly’s selection 

theorem then implies that every subsequence of Λ̂k has a further converging 

subsequence.

3. By the Glivenko-Cantelli properties of the log-likelihood and related functions 

given by Lemma S2 in the Supplementary Materials, the identifiability of the 

model, and the non-negativity of the Kullback-Leibler divergence, we conclude 

the consistency of the NPMLE.

The asymptotic normality of the NPMLE follows mainly from the arguments of van der 

Vaart (1998, pp. 419–424). Donsker properties of the score and related functions are given 

by Lemma S2 in the Supplementary Materials, and the invertibility of the information 

operator is given by Lemma 2.
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Proof of Theorem 2

We use Z to denote both W and Z with βk (k = 1, …, K) being the corresponding vector of 

regression parameters. Let

Ψ 𝒪i; θ, 𝒜 = ∏
k = 1

K ∫ e
Zi

Tβk + Yi
Tαk + ηTϕkGk′ e

Zi
Tβk + Yi

Tαk + ηTϕkΛk T∼ki

Δki

× exp −Gk e
Zi

Tβk + Yi
Tαk + ηTϕkΛk T∼ki f Y Yi ∣ Zi, η; ψ f η η ∣ Zi; ν dη,

Ψ̇θ( i; θ, ) be the derivative of Ψ( i; θ, ) with respect to θ, and Ψ̇
k( i; θ, )[Hk] be 

the derivative of Ψ( i; θ, ) along the path (Λk + εHk).

First, we prove the consistency. By condition (D4),

e
Zi

Tβk + Yi
Tαk + ηTϕkGk′ e

Zi
Tβk + Yi

Tαk + ηTϕkΛk T∼ki

Δki

e

−Gk e
Zi

Tβk + Yi
Tαk + ηTϕkΛk (T∼ki)

≤ eO(1 + ∣ Y ∣ + ∣ η ∣ ) 1 + Λk T∼ki
−Δki − κ3k + κ2k + 1

.

Thus, condition (D3) implies that

Ψ (𝒪i; θ, 𝒜) ≤ ∏
i = 1

n
ℱ(𝒪i; θ) ∏

k = 1

K
1 + Λk (T∼ki)

−Δki − κ3k + κ2k + 1
, (A.5)

where ℱ( i; θ) is a random variable with |E{log ℱ( i; θ)}| < ∞ for any θ. By condition 

(D2), P(Tk̃i = τ) is positive. Therefore, if Λk (τ) = ∞, then the right-hand side of (A.5) is 

zero for large n. We conclude that Λk̂ (τ) < ∞, such that the NPMLE exists.

We then show that lim supnΛ̂
k (τ) < ∞ almost surely. From (A.5),

1
n log Ln θ , 𝒜 = 1

n ∑
i = 1

n
∑

k = 1

K
Δki log Λk{T∼ki} + 1

n ∑
i = 1

n
log Ψ(𝒪i; θ , 𝒜)

≤ 1
n ∑

i = 1

n
log ℱ(𝒪i; θ) + 1

n ∑
i = 1

n
∑

k = 1

K
Δki log Λk{T∼ki} − 1

n ∑
i = 1

n
∑

k = 1

K
(Δki + κ3k − κ2k − 1) log 1 + Λk (T∼ki) .

Let N∼ = n−1∑i = 1
n (Δ1iI(T∼1i ≤ · ), …, ΔKiI(T∼Ki ≤ · )). Clearly,
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1
n log Ln (θ0, N∼) = − 1

n ∑
i = 1

n
∑

k = 1

K
Δki log n + 1

n ∑
i = 1

n
log Ψ(𝒪i; θ0, N∼) .

The second term on the right-hand side of the above equation is Op (1). Thus,

1
n log Ln θ , 𝒜 − 1

n log Ln θ0, N∼ + Op (1)

≤ 1
n ∑

i = 1

n
∑

k = 1

K
Δki log [nΛk{T∼ki}] − 1

n ∑
i = 1

n
∑

k = 1

K
(Δki + κ3k − κ2k − 1) log 1 + Λk (T∼ki) .

Note that (κ3k − κ2k − 1) is positive by condition (D4). Using the partitioning argument 

similar to those of Murphy (1994) and Parner (1998), we can show that the right-hand side 

of the above inequality tends to −∞ if lim supn Λ̂
k (τ) = ∞. By definition of (θ̂, 𝒜̂), the left-

hand side of the inequality is bounded below by an Op(1) term. Therefore, Λ̂
k (τ) is 

uniformly bounded.

Given the boundedness of Λ̂
k (τ), Helly’s selection theorem implies that, for any 

subsequence of n, we can always choose a further subsequence such that Λ̂
k converges 

pointwise to some monotone function Λk
∗ and θ̂ converges to θ*. The desired consistency 

result follows if we can show that Λk
∗ = Λ0k and θ* = θ0 almost surely. With an abuse of 

notation, let {n}1,2, … be the subsequence. Define

Λ∼k (t) = − ∑
i = 1

n
ΔkiI T∼ki ≤ t ∑

j = 1

n Ψ
.
k (𝒪 j; θ0, 𝒜0) I T∼ki ≤ ·

Ψ(𝒪 j; θ0, 𝒜0)

−1
.

By Lemma S2 in the Supplementary Materials and the properties of Donsker (and therefore, 

Glivenko-Cantelli) classes,

1
n ∑

j = 1

n Ψ
.
k (𝒪 j; θ0, 𝒜0) I (s ≤ · )

Ψ(𝒪 j; θ0, 𝒜0) E
Ψ
.
k (𝒪i; θ0, 𝒜0) I (s ≤ · )

Ψ(𝒪i; θ0, 𝒜0)

uniformly on [0, τ]. Because the score function along the path Λk = Λ0k + εI (· ≥ s) with 

other parameters fixed at their true values has zero expectation,

−E
Ψ
.
k (𝒪i; θ0, 𝒜0) I (s ≤ · )

Ψ(𝒪i; θ0, 𝒜0) =
dP T∼kiΔki < s /ds

λ0k (s) .

Algebraic manipulation yields that the uniform limit of Λ̃
k on [0, τ] is Λ0k. Note that
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Λk (t) = ∫0
t n−1∑ j = 1

n Ψ
.
k (𝒪 j; θ0, 𝒜0) I (s ≤ · ) /Ψ(𝒪 j; θ0, 𝒜0)

n−1∑ j = 1
n Ψ

.
k (𝒪 j; θ , 𝒜) I (s ≤ · ) /Ψ(𝒪 j; θ , 𝒜)

dΛ∼k (s) .

We have shown that the numerator of the integrand in the above equation converges 

uniformly. Similarly, we can show that the denominator of the integrand in the above 

equation converges uniformly to |E{Ψ̇
k( i; θ*, *)[I (s ≤ ·)]/Ψ( i; θ*, *)}| and that the 

limit is bounded away from 0. Because Λk̃ converges uniformly to Λ0k, which is 

differentiable with respect to t, Λk
∗ is also differentiable with respect to t. It follows that dΛ̂

k/

dΛ̃
k converges uniformly to λk

∗/λ0k on [0, τ], where λk
∗ = Λk

∗ ′. As n−1 log Ln(θ̂, 𝒜̂) − n−1 log 

Ln(θ0, 𝒜̃) is non-negative,

1
n ∑

i = 1

n
∑

k = 1

K
Δki log

dΛk T∼ki
dΛk T∼ki

+ 1
n ∑

i = 1

n
log

Ψ(𝒪i; θ , 𝒜)

Ψ(𝒪i; θ0, 𝒜)
≥ 0.

By the Glivenko-Cantelli properties of the class of functions of log Ψ( i; θ, ) given by 

Lemma S2 and the uniform convergence of dΛ̂
k/dΛk̃, setting n → ∞ on both sides of the 

above inequality yields

E log
∏k = 1

K λk
∗(T∼ki)

ΔkiΨ(𝒪i; θ∗, 𝒜∗)

∏k = 1
K λ0k(T∼ki)

ΔkiΨ(𝒪i; θ0, 𝒜0)
} ≥ 0.

The left-hand side of the above inequality is the negative Kullback-Leibler distance of the 

density indexed by (θ*, *). From the identifiability of the model implied by Theorem 1, we 

conclude that θ* = θ0 and Λk
∗ = Λk0. The desired consistency result follows.

To prove the asymptotic normality of the NPMLE, we adopt the arguments of van der Vaart 

(1998, pp. 419–424). Let ℘n be the empirical measure determined by n i.i.d. observations, 

and let ℘ be the true probability measure. Let ℓ̇θ(θ, ) be the derivative of log Ln(θ, ) 

with respect to θ, and let ℓ̇k(θ, )[Hk] be the derivative of log Ln(θ, ) along the path (Λk + 

εHk). For any v ∈ ℝd and  = (h1, …, hK) with hk ∈ BV [0, τ], where BV [0, τ] is the space 

of functions of bounded variation on [0, τ], we have

𝒫n vTℓ
.
θ (θ , 𝒜) + ∑

k = 1

K
ℓk (θ , 𝒜)[∫ hk dΛk] = 0.

In addition,
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𝒫 vTℓ
.
θ (θ0, 𝒜0) + ∑

k = 1

K
ℓ
.
k (θ0, 𝒜0)[∫ hk dΛ0k] = 0.

Therefore,

n 𝒫n − 𝒫 vTℓ
.

θ (θ , 𝒜) + ∑
k = 1

K
ℓ
.

k (θ , 𝒜)[∫ hk dΛk]

= − n𝒫{ vTℓ
.

θ (θ , 𝒜) + ∑
k = 1

K
ℓ
.

k (θ , 𝒜)[∫ hk dΛk]

− vTℓ
.

θ (θ0, 𝒜0) + ∑
k = 1

K
ℓ
.

k (θ0, 𝒜0)[∫ hk dΛ0k] } .

(A.6)

From the Donsker properties of the classes of functions of ℓ̇θ and ℓ̇k implied by Lemma S2 

and the consistency of θ̂ and 𝒜̂, we conclude that the left-hand side of (A.6) equals

n 𝒫n − 𝒫 vTℓ
.
θ (θ0, 𝒜0) + ∑

k = 1

K
ℓ
.
k (θ0, 𝒜0)[∫ hk dΛ0k] + op (1) .

This term converges to a Gaussian process in l∞(  × K). By the Taylor series expansion, 

the right-hand side of (A.6) is of the form

− n B1 [v, 𝒲]T (θ − θ0) + ∑
k = 1

K ∫ B2k [v, 𝒲] d(Λk − Λ0k)

+op n θ − θ0 + n ∑
k = 1

K
Λk − Λ0k V[0, τ] ,

where ℬ ≡ (B1,B21, …,B2K) is the information operator and is linear in ℝd ×BV [0, τ]K. By 

Lemma 2, ℬ is invertible. The rest of the proof then follows the arguments of van der Vaart 

(1998, pp. 419–424). Finally, because vTθ̂ is an asymptotically linear estimator of vTθ0 with 

the influence function lying in the space spanned by the score functions, θ̂ is an efficient 

estimator for θ0.

The following two lemmas are used in the proofs of Theorem 1 and Theorem 2 and are 

proved in Section S2 of the Supplementary Materials.

Lemma 1

Let Model A be
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X ∣ (η1, η2) =d X ∣ η1 FX ∣ η1
( · ∣ η1),

Y ∣ (η1, η2) FY ∣ η ( · ∣ η1, η2),

η2 ∣ η1 Fη2 ∣ η1
( · ∣ η1),

η1 Fη1
,

where (X,Y) are observed, and (η1, η2) are latent. Model A is depicted in Figure A.1. Let 
f X ∣ η1

= FX ∣ η1
′ , f Y ∣ η = FY ∣ η′ , f η2 ∣ η1

= Fη2 ∣ η1
′ , and f η1

= Fη1
′ . Assume that: (a) for any 

density functions f̃Y |η and f̃η2|η1,

∫ f Y ∣ η (Y ∣ η1, η2) f η2 ∣ η1
(η2 ∣ η1) dη2 = ∫ f

∼
Y ∣ η (Y ∣ η1, η2) f

∼
η2 ∣ η1

(η2 ∣ η1) dη2 ∀Y, η1

implies that (fY |η, fη2|η1) = (f̃Y |η, f̃η2|η1), i.e., the model for Y is identifiable if η1 is 
observed, (b) FX|η1 and Fη1 are identifiable based on (X,Y), and (c) η1 is a complete 
sufficient statistic in {Fη1|X(· | X) : X ∈ }, where Fη1|X is the conditional distribution 
function of η1 given X, and  is the range of X. Then, Model A is identifiable. A sufficient 
condition for η1 to be complete sufficient is that the density of X is of the form

f X ∣ η1
(X ∣ η1) ∝ ∏

j = 1

q
exp {X js j (η1) − a j (η1)} b j (X j),

where X = (X1, …,Xq), η1 ↦ (s1(η1), …, sq(η1)) is one-to-one, and bj is non-zero on some 
open set.

Figure A.1. 
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SEM Considered in Lemma 1. The SEM consists of two sets of latent variables and two sets 

of observed variables that may all be multivariate. The observed variable X depends only on 

the latent variable η1, but the observed variable Y depends on both sets of latent variables.

Lemma 2

Under conditions (C1), (C2), (C3′), (C5′), and (D5), the model given by (1)–(3) has an 
invertible information operator.
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Figure 1. 
The First Example of SEM to Illustrate the Identifiability Rules. The SEM con- sists of one 

latent variable, one survival time, and three conditionally independent normal manifest 

variables.
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Figure 2. 
The Second Example of SEM to Illustrate the Identifiability Rules. The left panel is an SEM 

that consists of two latent variables, two observed covariates, two survival times, and three 

conditionally independent normal manifest variables. The right panel is an intermediate step 

in identifying the SEM on the left.
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Figure 3. 
Model Used in Simulation Studies. The SEM consists of two latent variables, an observed 

covariate, seven binary or normal manifest variables, and a survival time that regresses on 

the latent variable, some manifest variables, and the observed covariates.
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Figure 4. 
Results from the SEM Analysis of the Gene ACACA. Analysis results are from 542 patients 

with ovarian cancer in the TCGA project. The numbers besides an arrow correspond to the 

point estimate and standard error estimate (in parentheses) of the regression parameter. The 

numbers below the latent variables correspond to the point estimate and standard error 

estimate (in parentheses) of the error variance.
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