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Abstract

Low plasma fibrinogen level is common after cardiopulmonary bypass (CPB). Current sub-

stitution practice with fibrinogen concentrate generally follows a single measurement and

cut-off values from the literature, whereas early postoperative endogenous fibrinogen kinet-

ics is incompletely described and widely disregarded. The aim of this study was to determine

the short-term recovery pattern of plasma fibrinogen after CPB weaning. Our hypothesis

was that in the absence of surgical bleeding, CPB-induced hypofibrinogenemia would

resolve spontaneously and predictably within a few hours. In a prospective, observational

study of 26 patients undergoing conventional CPB (cCPB) or minimally invasive extracorpo-

real circulation (MiECC), Clauss fibrinogen level (C-FIB) was determined at 10 closely

spaced time points after protamine administration. Primary endpoint was the time to recov-

ery of post-CPB fibrinogen levels to�1.5 g/L. C-FIB reached its nadir after protamine

administration corresponding to 62 ± 5% (mean ± SD) of the baseline level after cCPB and

68 ± 7% after MiECC (p = 0.027 vs. cCPB). C-FIB recovered spontaneously at a nearly con-

stant rate of approximately 0.08 g/L per hour. In all patients, C-FIB was�1.5 g/L at 4 hours

and�2.0 g/L at 13 hours after CPB weaning. Following cardiac surgery with CPB and in the

absence of surgical bleeding, spontaneous recovery of normal endogenous fibrinogen lev-

els can be expected at a rate of 0.08 g/L per hour. Administration of fibrinogen concentrate

triggered solely by a single-point measurement of low plasma fibrinogen some time after

CPB is not justified.

Introduction

Fibrinogen reaches critically low levels during acute bleeding. [1] A close association has been

reported between hypofibrinogenemia and severe post-cardiopulmonary bypass (CPB)
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bleeding. [2–6] Consequently, monitoring fibrinogen levels and function and algorithm-based

substitution with fibrinogen concentrate or fresh frozen plasma (FFP) is recommended.

[2,3,7–11] However, variation in the recommended tests, their exact timing, and published

thresholds for substitution with exogenous fibrinogen sources render fibrinogen substitution

practices quite inconsistent at present. Some authors have even challenged the indication for

fibrinogen substitution. [12]

Fibrinogen is also an acute phase protein with plasma levels that rapidly increase in

response to tissue trauma or inflammation. [13] As early as one day after CPB surgery, normal

or even supranormal fibrinogen levels are regularly observed and induce a prothrombotic situ-

ation. [14–16] Sparse data are available describing the spontaneous development of endoge-

nous plasma fibrinogen during the first few hours after CPB, whereas the early

pharmacokinetics and effects of exogenous fibrinogen concentrate are much better docu-

mented. [17]

Reduction of fibrinogen levels after CPB is a physiologically expectable phenomenon. How-

ever, recommendations for exogenous fibrinogen substitution are often based on an early

plasma fibrinogen measurement at only one point after CPB weaning. [11] Thus, knowledge

of spontaneous plasma fibrinogen recovery during the initial hours after CPB appears to be a

basic requirement for rational post-CPB coagulation therapy and specifically for factor substi-

tution. Particularly in patients with mild post-CPB hypofibrinogenemia, this knowledge may

justify watchful waiting and prevent costly overtreatment with exogenous fibrinogen sources.

The primary aim of this study was to closely monitor the time course of endogenous plasma

fibrinogen during the first 24 hours after cardiac surgery with CPB. Second, we quantified the

influence of CPB-induced hemodilution on endogenous fibrinogen decline and recovery by

comparing conventional CPB (cCPB) and CPB with a reduced priming volume (minimally

invasive extracorporeal circulation, MiECC) in a prospectively planned sub-analysis. Our

hypothesis was that hypofibrinogenemia associated with hemodilution rather than bleeding

would resolve spontaneously within a few hours after weaning from CPB.

Methods

This prospective, observational study investigated patients who underwent cardiac surgery

with CPB between November 12, 2015, and July 29, 2016, at a tertiary referral hospital. Ethical

approval (No. 193/15) was provided by the Cantonal Ethical Committee on September 22,

2015. The study protocol was registered with the US National Institutes of Health

(NCT02605330, www.ClinicalTrials.gov). All study measures were performed according to the

Declaration of Helsinki. The manuscript adheres to the statement of the EQUATOR Network

(www.equator-network.org).

Elective adult patients scheduled for cardiac surgery with CPB for either isolated coronary

artery bypass grafting (CABG), isolated aortic valve replacement (AVR), or ascending aorta

replacement (AAR) with hypothermic circulatory arrest (HCA) were studied. The inclusion

criteria were patients above 18 years of age who signed an informed consent. The exclusion

criteria were emergency or redo surgery, anticoagulant medication other than acetylsalicylic

acid within 14 days preceding surgery, a preoperative plasma fibrinogen concentration below

the lower limit of the institutional laboratory reference of 1.75 g/L, known coagulation disor-

ders, a hemoglobin level less than 100 g/L, renal insufficiency with an estimated glomerular fil-

tration rate<60 mL/min/1.73 m2, affiliation with Jehovah’s Witnesses, participation in

another trial, or intraoperative supplementation with any plasma product.

All patients received general anesthesia in accordance with institutional standards. Periop-

erative monitoring included American Society of Anesthesiologists standard monitoring,
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invasive arterial and central venous pressure, transesophageal echocardiography, and pro-

cessed EEG. Cardiac surgery was performed through median sternotomy. CABG was per-

formed exclusively using MiECC (Maquet AG, Rastatt, Germany). For the AVR and AAR

procedures, a cCPB circuit (Maquet AG) was employed. The main differences between

MiECC and cCPB were as follows: 1) the total amount and composition of the priming volume

(MiECC: 600 mL of lactated Ringer’s solution and 5000 IU of unfractionated heparin; cCPB:

1000 mL of lactated Ringer’s solution, 500 mL of hydroxyethyl starch (HES, 130/0.4), and

10000 IU of heparin); 2) the type of driving pump (MiECC: centrifugal pump and cCPB: roller

pump); and 3) the processing method used for shed blood and residual pump blood. In

MiECC, shed blood was recovered and filtered into a reservoir using an automated suction

device (Cardiosmart AG, Muri, Switzerland) designed to minimize air entrainment and

then returned to the venous line. In cCPB, shed blood was filtered and returned to the venous

reservoir via a roller pump. Neither the MiECC nor the cCPB tubing was heparin-coated.

The extracorporeal flow rate was set to 2.0 L/min/m2 of body surface area (MiECC) or to

2.4 L/min/m2 (cCPB). The nasopharyngeal temperature was maintained between 32˚C and

36˚C in CABG and AVR. In AAR, hypothermia was induced to a bladder temperature of

28˚C. Cardioplegic arrest was achieved using a single dose of 100 mL of crystalloid cardiople-

gia (Cardioplexol1, Bichsel AG, Interlaken, Switzerland), and maintained by high potassium

cold blood cardioplegia (Buckberg Solution, Bichsel AG, Switzerland). The anticoagulation

regimen consisted of an IV bolus of heparin (MiECC: 400 IU/kg and cCPB: 500 IU/kg) prior

to aortic cannulation, with the aim of an activated clotting time >480 sec (kaolin-activated

HR-ACT, ACT II Plus, Medtronic Inc., Minneapolis, MN, USA). All patients received a bolus

of tranexamic acid (30 mg/kg) followed by continuous infusion of 15 mg/kg/hour until sternal

closure. No topical hemostasis techniques (e.g., agents containing fibrinogen or thrombin)

were used. After weaning from CPB, heparin was neutralized with protamine chloride in a

1:1 ratio to the initial heparin dose. In MiECC, residual pump blood was completely reinfused

into the patient prior to heparin neutralization. In cCPB, residual blood was processed (Med-

tronic Autolog, Medtronic Inc., Minneapolis, MN, USA) and re-transfused as an autologous

red cell concentrate.

According to Ranucci, an increased a priori risk of bleeding was assumed if the duration of

CPB was expected to exceed 90 minutes, patient age was>65 years, or the serum creatinine

level was >1.36 mg/dL. [18] Perioperative bleeding was defined according to Dyke [19] and

rated as severe in case of delayed sternal closure, re-exploration, pericardial tamponade, post-

operative chest tube drainage of more than 1000 mL/12 hours and if transfusion of more

than 5–10 units of packed red blood cells (RBC) or FFP was necessary within the first postop-

erative day.

Data collection

Data were stored on a departmental research platform (Labkey, Seattle, WA, USA). Fibrinogen

was measured using the Clauss method (Clauss fibrinogen, C-FIB) and using fibrin-based

thrombo-elastometry (FIBTEM-MCF assay, ROTEM1, TEM International GmbH, Munich,

Germany). Whole blood was serially sampled in citrated plastic containers (Monovette, Sar-

stedt AG, Nümbrecht, Germany) at defined time points as follows: baseline level (pre-CPB

value) before anesthesia induction; AodX, five minutes after aortic declamping; Protamine, five

minutes after protamine administration; and T1, T2, T3, T4, T6, T8, T12, T18, and T24 at 1, 2,

3, 4, 6, 8, 12, 18, and 24 hours after protamine administration, respectively. All samples were

immediately sent to the laboratory, pre-heated to 37˚C, and analyzed within 15 minutes.

C-FIB was determined using the Multifibren U reagent (Dade Behring, Liederbach, Germany)
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on a BCS-XP coagulometer (Siemens Healthcare, Marburg, Germany). For FIBTEM, tissue

factor was used as the activator, and cytochalasin D was added for platelet inhibition. To mini-

mize user-dependent variability, all coagulation and viscoelastic testing was performed by the

hemostasis laboratory.

Study endpoints

The primary endpoint was the post-CPB recovery time of the Clauss fibrinogen concentration

(i.e., from 5 minutes after protamine administration to the time point when the Clauss fibrino-

gen levels surpassed a threshold of�1.5 g/L). The secondary endpoints included the associa-

tion of hypofibrinogenemia with hemodilution and hypothermia, the post-CPB fibrinogen

nadir, the time to recovery to the pre-CPB value, and recovery patterns of FIBTEM-MCF.

Statistical analysis

Demographic and procedure-related variables were analyzed with contingency table analysis

or nonparametric ANOVA as appropriate (Sigma Plot for Windows, version 12.2; Systat Soft-

ware Inc., Germany). A proportional decrease in C-FIB and hemoglobin after CPB was quanti-

fied as the ratio of the respective concentration measured at Protamine to the ratio measured

at baseline. Due to the non-normal distributions of the ratios and the log differences, this anal-

ysis was based on a Wilcoxon signed rank test, and comparisons were made using the Mann-

Whitney test. Statistical analysis of the post-CPB course of C-FIB was performed in R, version

3.3.0. [20] C-FIB data pertaining to surgery type were fitted for separate linear mixed-effects

models, with time as a fixed-effect covariate and a random effect for each patient. The random

effects for a particular patient were the deviations in the intercept and slope of that patient’s

C-FIB time trend. The two random effects were considered non-correlated, which was con-

firmed by model comparison using the likelihood ratio test. The linear regression model was

fitted to un-transformed and log-transformed data, reporting Wald-type confidence interval.

Additionally, the influence of the baseline C-FIB level, the estimated preoperative weight-

based plasma volume and the fluid administered during CPB on C-FIB at Protamine were

assessed using linear regression models. Since the primary endpoint of this study was purely

descriptive, a sample size calculation was not performed. P values <0.05 were considered

significant.

Data are presented as numbers (percentages), means ± standard deviations, medians (25th;

75th percentiles) or minimum and maximum (min/max) values.

Results

Overall, 87 patients were assessed for eligibility. Forty-eight patients were excluded preopera-

tively and 13 intraoperatively. Twenty-six patients fulfilled the inclusion criteria and were ana-

lyzed (Fig 1).

Demographic and preoperative data are listed in Table 1. The procedural data and basic

outcomes are summarized in subsequent sections of this table. Due to the use of MiECC for

perfusion, CABG patients were exposed to the smallest CPB priming volume, the lowest

amount of Ringer’s infusion, and no HES during CPB. Overall, 10 of the 26 patients (38%) ful-

filled the preoperative criteria for an increased bleeding risk according to the definition of

Ranucci [18]

The transfusion incidence with allogeneic red blood cell concentrates (RBC) was 3/26. One

patient received RBC during CPB, and another two patients were transfused during their

intensive care unit (ICU) stay. None of the patients received FFP, platelets, fibrinogen, or any

other factor concentrate (exclusion criteria). During their ICU stay, the cumulative

Fibrinogen recovery after cardiac surgery
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mediastinal drainage loss after 6 and 12 hours amounted to medians of 180 and 300 mL,

respectively. Thus all patients, including those assumed pre-operatively to be at an increased

risk of bleeding, [18] were in postoperative bleeding categories 0 (insignificant) or 1 (mild).

[19] After only 24 hours, the CABG/MiECC patients had accumulated a slightly higher drain-

age loss than the other groups (p = 0.02 vs. cCPB). This was because one patient in the CABG

Fig 1. Patient flow diagram. CABG = coronary artery bypass grafting; AVR = aortic valve replacement; AAR = ascending aorta replacement;

HCA = hypothermic circulatory arrest. n indicates number of patients.

https://doi.org/10.1371/journal.pone.0201647.g001
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Table 1. Patient demographics, procedural data and outcomes.

Procedural data

CPB duration (min) 80 (62;115) 69 (57;92) 73 (61;101) 130 (111;141) 0.008

Cross clamp time (min) 52 (38;75) 42 (34;60) 49 (37;67) 82 (62;105) 0.04

HCA duration (min) - - - - - - - - - 12 (10;15) - - -

Lowest temperature (˚C) 33 (31;34) 33 (33;34)† 34 (33;34) †† 27 (24;28) †† <0.001

CPB prime (ml) - - - 600 1500 1500 <0.001

Tranexamic acid (g) 2.2 (1.9;2.4) 2.2 (1.7;2.8) 1.9 (1.7;2.2) 2.2 (2.0;4.3) 0.11

Heparin dose (kIU) 39 (35;45) 35 (30;48) 40 (34;45) 42 (39;48) 0.06

On CPB, infused volume

RBC (U) 0/2 0/0 0/0 0/2 0.03

Lactated Ringer’s (ml) 1957 (1513;2412) 1402 (1215;1950) 2019 (1696;2497) 2423 (2051;2846) 0.004

HES 130/0.4 (ml) 0/500 0/0 0/500 0/500 <0.001

Pre-, post-CPB volume

RBC (U) 0/0 0/0 0/0 0/0 1.00

FFP (U) 0/0 0/0 0/0 0/0 1.00

Platelets (U) 0/0 0/0 0/0 0/0 1.00

ARBC (ml) 216 (0;347) 0 (0;0) 310 (219;430) 348 (252;538) <0.001

Lactated Ringer’s (ml) 2074 (1275;3047) 2700 (1821;3071) 2075 (1795;2746) 1688 (1123;2320) 0.25

HES 130/0.4 (ml) 0/0 0/0 0/0 0/0 1.00

ICU, infused volume

RBC (U) 0/4 0/2 0/2 0/0 0.48

FFP (U) 0/0 0/0 0/0 0/0 1.00

Platelets (U) 0/0 0/0 0/0 0/0 1.00

Lactated Ringer’s (ml) 3489 (2145;5978) 3497 (2402;5979) 4262 (2047;6684) 3173 (1660;4006) 0.47

HES 130/0.4 (ml) 0/0 0/0 0/0 0/0 1.00

Drainage, 6 h (ml) 180 (150;275) 262 (150;312) 150 (120;362) 165 (142;187) 0.31

Drainage, 12 h (ml) 300 (230;470) 412 (295;512) 250 (210;575) 260 (200;330) 0.14

Drainage, 24 h (ml) 525 (397;735) 712 (537;762) 510 (387;812) 355 (250;465) 0.02

ICU LOS (days) 0.9 (0.9;1.0) 0.9 (0.8;1.0) 1.0 (0.9;1.1) 0.9 (0.9;0.9) 0.06

In-house mortality, n (%) 0 (0) 0 (0) 0 (0) 0 (0) 1.00

All Patients

(n = 26)

CABG

(n = 10)

AVR

(n = 10)

AAR

(n = 06)

P

Value�

Demographics

Male sex (n, %) 20 (77) 8 (80) 8 (80) 4 (66) 0.80

Age, y 67 ± 11 67 ± 11 70 ± 12 61 ± 6 0.12

BMI (kg/m2) 27 (24;29) 28 (24;31) 27 (24;29) 28 (25;31) 0.68

CAS > 70% 2 (8) 1 (10) 1 (10) 0 (0) 0.81

COPD (n, %) 5 (19) 3 (30) 0 (0) 2 (33) 0.15

Diabetes (n, %) 2 (8) 2 (20) 0 (0) 0 (0) 0.23

Preoperative laboratory

Hemoglobin (g/L) 137 (129;147) 135 (129;147) 142 (131;149) 131 (115;140) 0.39

Platelets (G/L) 190 (175;232) 187 (182;225) 174 (148;225) 224 (195;265) 0.14

Fibrinogen (g/L) 2.8 (2.5;3.1) 3.0 (2.5;3.6) 2.9 (3.1;2.1) 2.7 (2.4;2.9) 0.47

(Continued)
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group experienced transient hemodynamic instability and was treated with transfusion of 2

units of RBC postoperatively. No differences between groups were found regarding transfused

blood products, incidence of new infections, thrombotic events, or in-house mortality.

Primary endpoint

The perioperative nadir of the C-FIB was observed five minutes after protamine administra-

tion (Protamine), at which time the C-FIB had decreased to 64.3 ± 7% of baseline (Fig 2).

Fibrinogen was significantly better preserved with MiECC (at Protamine: MiECC, 67.8 ± 7%

vs. cCPB, 62.1 ± 5%; p = 0.027).

C-FIB significantly increased throughout the subsequent 24 hours (Fig 3). Patients under-

going surgery on MiECC had significantly higher endogenous plasma fibrinogen levels during

the first four hours after heparin reversal than patients perfused with cCPB (p = 0.022). The

post-CPB recovery of the C-FIB over time was fitted with linear regression models. The mean

Clauss fibrinogen (all patients) increased after Protamine at a nearly constant rate of 0.083 g/L

per hour (95% CI, 0.076 to 0.091; R2 = 0.988, p<0.0001), corresponding to an hourly recovery

of 5% of the fibrinogen level present at Protamine. Surgery-specific rate estimates of the Clauss

fibrinogen increase were 0.078 g/L per hour for CABG (0.061 to 0.095), 0.081 g/L per hour for

AVR (0.070 to 0.094), and 0.095 g/L per hour for AAR (0.076 to 0.115); no between-group dif-

ferences were observed (p = 0.371).

The post-CPB recovery times of the C-FIB levels (i.e., from Protamine to the time point at

which the levels surpassed the thresholds of�1.5 g/L or�2.0 g/L) were determined from the

individual datasets. Post-CPB, 5/26 patients (19%) had fibrinogen levels <1.5 g/L, and 18/26

(69%) patients had levels<2.0 g/L. All patients had levels above 1.5 g/L within 4 hours and

above 2.0 g/L within 13 hours after heparin reversal.

Secondary endpoints

Between the baseline measurement at induction of anesthesia and the Protamine time point,

the C-FIB course differed depending on the type of surgery and the type of CPB. The smallest

decrease to a median of 2.15 g/L (1.86;2.39) was observed for CABG at the time of heparin

reversal, whereas the C-FIB remained at 1.5 g/L or higher in all these patients. The AVR and

AAR showed lower nadirs of the median 1.71 g/L (1.51;1.98) and 1.46 g/L (1.40;1.51), respec-

tively (AVR vs. AAR: n.s.). Thus, at the end of CPB, the fibrinogen levels were significantly less

depressed for MiECC than for cCPB (p = 0.001). Recovery to the C-FIB baseline occurred

within a median time of 11.2 hours (9.2;16.5) from heparin reversal, with no significant differ-

ences between the types of surgery (p = 0.860) or CPB (p = 0.854). CPB-related hemodilution

from an asanguineous prime and fluid administered during CPB reduced the hemoglobin

Table 1. (Continued)

FIBTEM-MCF (mm) 19 (16;21) 20 (17;21) 18 (15;22) 19 (17;20) 0.78

CABG = coronary artery bypass grafting; AVR = aortic valve replacement; AAR = ascending aorta replacement; BMI = body mass index; CAS = carotid artery stenosis;

COPD = chronic obstructive pulmonary disease; FIBTEM-MCF fibrin-based thromboelastometry; CPB = cardiopulmonary bypass; HCA = hypothermic

cardiocirculatory arrest; RBC = red blood cells; FFP = fresh frozen plasma; ARBC = autologous red blood cells; HES = hydroxyethyl starch; ICU = intensive care unit;

ICU LOS = intensive care unit length of stay; KIU = kilo international units; U = unit (corresponds to 275 mL);
†nasopharyngeal temperature;
††core temperature. Data are numbers (percent), mean ± standard deviation, median (25th; 75th) or minimum and maximum (min/max) values.

�indicates comparison of CABG/AVR/AAR with contingency table analysis or Kruskal-Wallis one-way ANOVA on Ranks where appropriate.

https://doi.org/10.1371/journal.pone.0201647.t001
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concentration (Hb) in all patients to 76 ± 6% of the baseline at Protamine, with no difference

between MiECC and cCPB (p = 0.542). During the same period, the C-FIB de-creased to

64 ± 7% of the baseline (p<0.001 vs. Hb).

The C-FIB nadir at Protamine was mainly determined by the fibrinogen levels prior to CPB

and to a lesser degree by the preoperative weight-based patient plasma volume. An asangui-

neous fluid load during CPB had a weak negative effect (Table 2).

FIBTEM-MCF patterns prior to, during and after CPB were generally correlated with those

of Clauss fibrinogen. Post-CPB, 4/26 patients (15%) had a FIBTEM-MCF <10 mm. At heparin

Fig 2. Fibrinogen concentration at the sampling points and changes in relation to time point Protamine. Clauss fibrinogen concentration in all

patients during the observation period (upper graph), and relative post-CPB change as percent difference from levels at time point Protamine (lower

graph). In the upper graph the light grey shaded area indicates the period of surgery. Time on CPB is shaded dark grey. The red horizontal line indicates

Clauss fibrinogen at 1.5 g/L. Note that true time intervals increase between sequence points T1 and T24.

https://doi.org/10.1371/journal.pone.0201647.g002
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reversal, the median FIBTEM-MCF was 14 mm (9;21). Overall, FIBTEM-MCF had a larger

variance but was significantly correlated with Clauss fibrinogen (r = 0.810; p<0.001). Among

the three types of surgery, FIBTEM-MCF in CABG remained significantly higher in the post-

CPB period than in AVR (difference of means, 2.9 mm) and AAR (difference of means,

2.0 mm) (each p<0.001 vs. CABG; AVR vs. AAR, difference of means, 0.9 mm, p = 0.115).

Consequently, MiECC was consistently associated with a higher FIBTEM-MCF than cCPB

(difference of means, 2.6 mm, p< 0.001). FIBTEM-MCF at heparin reversal was significantly

Fig 3. Clauss fibrinogen increase after weaning from CPB, according to surgery type. Clauss fibrinogen measurements over time, starting at the

time point Protomine. The comprehensive plots show all patients, with the three types of surgery represented by different symbols. Predictions based on

the fixed effects of the three respective linear mixed-effects models are superimposed.

https://doi.org/10.1371/journal.pone.0201647.g003

Table 2. Patient- and CPB-related factors influencing clauss fibrinogen levels and FIBTEM-MCF at Protamine.

R 95% CI p-value

Clauss fibrinogen Fibrinogen at <Pre-CPB> 0.76 0.56 to 0.96 < 0.0001

Estimated plasma volume 0.28 0.01 to 0.56 0.045

Fluid administered on CPB -0.09 -0.18 to 0.00 0.04

FIBTEM-MCF FIBTEM-MCF at <Pre-CPB> 0.91 0.64 to 1.18 < 0.0001

Estimated plasma volume 0.21 -0.23 to 0.65 0.33

Fluid administered on CPB -0.15 -0.27 to -0.03 0.015

Linear regression models, log-transformed data. Estimated coefficients (R), 95% Wald-type confidence intervals (CI), and p-values from a t distribution.

https://doi.org/10.1371/journal.pone.0201647.t002
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correlated with baseline FIBTEM-MCF and was negatively associated with asanguineous fluid

load during CPB (Table 2).

The sample size did not have sufficient power to discriminate the effects of CPB duration or

the lowest temperature on post-CPB C-FIB and FIBTEM-MCF. Clauss fibrinogen and FIB-

TEM-MCF after Protamine were not correlated with postoperative chest drain output.

Discussion

The main finding of this prospective study in adults undergoing elective on-pump cardiac sur-

gery for either isolated coronary artery bypass grafting, isolated aortic valve replacement, or

ascending aorta replacement with hypothermic circulatory arrest (HCA) is that endogenous

plasma fibrinogen increases from its nadir at the time of heparin reversal at a fast and nearly

constant rate of approximately 0.08 g/L per hour during the subsequent 24 hours. All patients

had fibrinogen levels at or above 1.5 g/L within 4 hours and at or above 2.0 g/L within 13

hours of heparin reversal. Thus, the results confirm our initial hypothesis that hypofibrinogen-

emia resolves spontaneously within a few hours after CPB and heparin reversal.

Previous studies in cardiovascular surgery have reported that fibrinogen levels initially fall

to nearly 50% after CPB [4,14,21–24] and recover to baseline or above after the first postopera-

tive day, independent of whether an exogenous fibrinogen concentrate has been administered.

[16,17,25] The typical decrease in plasma fibrinogen has been mainly attributed to hemodilu-

tion [22,26] as a consequence of using asanguineous fluid to prime the CPB circuit and for vol-

ume resuscitation. [27] Our results confirm the role of CPB-induced hemodilution as a major

contributor to immediate post-CPB hypofibrinogenemia. Consequently, during the initial

four hours after heparin reversal, we observed better preservation of plasma fibrinogen with

MiECC than cCPB due to less hemodilution from the prime.

Fibrinogen substitution is recommended for bleeding patients. [11] However, predicting

individual patients’ risks of significant or even severe non-surgical bleeding for the first few

hours following CPB has proven difficult both pre-operatively and at CPB weaning. [16,18]

This difficulty occurs because clinical bleeding assessments remain at least partially subjective

and arbitrary and do not produce unequivocal results even with substantial efforts towards

standardization. [16,25] Additionally, the universal definition of perioperative bleeding relies

on longitudinal assessment of cumulative chest drainage, which is necessarily retrospective,

and on treatment interventions, which are not guided by universal protocols. [19] These diffi-

culties may explain why early laboratory-guided administration of fibrinogen concentrate in

randomized controlled studies of cardiovascular patients at presumed high risk of bleeding has

not been proven effective in terms of a clinically relevant reduction of blood loss, transfusion,

or adverse outcomes to date. [16,25] Our data demonstrate that, if fibrinogen substitution is

either laboratory-guided or point-of-care (POC)-guided, the time point of measurement is,

due to the fast recovery rate, essential. There is a marked difference in the results depending

on whether measurements are performed just after CPB or at ICU admission. The exact time

point of measurement is not delineated in all studies.

Numerous studies have been performed in vitro, in animals, and in humans with the aim of

preventing or treating coagulopathies associated with the dilution or loss of endogenous

fibrinogen by exogenous supplementation of fibrinogen concentrate. These studies have gen-

erally succeeded in increasing the plasma fibrinogen levels for a short time but have not consis-

tently reduced postoperative blood loss or allogeneic transfusion. [10,16,28–35] In a

randomized trial that targeted a plasma fibrinogen level of 2.5 g/L in high-risk cardiac surgery

patients, administration of fibrinogen concentrate in bleeding patients did not result in a sig-

nificant reduction in intraoperative blood loss compared to a placebo.[25] Similarly to our
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findings, the nadir of plasma fibrinogen occurred at the end of CPB, with a spontaneous recov-

ery towards ICU admission and at 24 hours thereafter even in the group without exogenous

fibrinogen substitution. The mean plasma fibrinogen was 1.7 g/L at the end of CPB and 3.1 g/L

24 hours after placebo infusion, without an increased bleeding tendency compared to that of

the group receiving fibrinogen concentrate. [25] Similarly, Rahe-Meyer et al. described a

fibrinogen concentration of 1.9 g/L at skin closure in their saline placebo group, and recovery

to 3.2 g/L within 24 hours. No increased bleeding was seen in patients who did not receive the

fibrinogen concentrate compared to those in the control group. [16] Notably, nearly 75% of

patients in both of these RCTs would have been classified post hoc as having only insignificant

or mild bleeding according to the universal definition [19] based on the 12-hour chest drain-

age loss data (IQR), regardless of the treatment allocation. Similarly, our study sample also

included patients with a predicted high bleeding risk (38%), but 25/26 did not even bleed mod-

erately (class 0 or 1 only). [19] No FFP or platelet concentrate was required in our series, and

only two patients (8%) received two units of allogeneic RBC each during their ICU stay. The

C-FIB nadir level after protamine administration was not predictive of the subsequent chest

drain output, with a median of 300 mL in the first 12 postoperative hours. This finding sup-

ports the notion that hemodilution-induced nadirs of Clauss fibrinogen similar to those

observed in our study do not justify fibrinogen substitution per se.

Ample evidence shows a statistical association between low plasma fibrinogen and

increased bleeding after cardiac surgery. [2–6] However, this association is neither always

causal nor always unidirectional. Additionally, fibrinogen concentrate substitution did not

ameliorate bleeding tendency. Surgical or thrombopenic bleeding may cause or aggravate

hypofibrinogenemia and vice versa, and mutual causation may vary during a difficult postop-

erative course. Therefore, recent guidelines for severe post-CPB bleeding recommend mainte-

nance of the C-FIB in a range from 1.5 to 2.0 g/L.,[11]

In cases of severe hemodilution, an even higher level of�2.0 g/L is suggested to promote

optimal clot formation. [36] Nevertheless, there is a lack of data and consensus in many areas,

such as the trigger and target fibrinogen levels for various patient groups and clinical scenarios

(e.g., in less-than-severe bleeding, in obstetrics or vascular surgery and for various laboratory

and viscoelastic POC tests).

Furthermore, uncertainty still exists concerning the optimal timing for both lab sampling

and treatment with fibrinogen concentrate and even concerning the adequate dose required to

prevent or stop post-CPB bleeding. [9] For instance, a Clauss fibrinogen target of 2.8 g/L has

been advocated for pre-emptive substitution. [6,9,16,18] Pre-emptive substitution of fibrino-

gen concentrate even prior to CPB was also ineffective regarding bleeding and transfusion

requirements. [14] Our results and those of others do not provide any evidence to recommend

pre-emptive targeting of high fibrinogen levels. [16,25] The early kinetics described in our

study also suggest that even the timing of fibrinogen sampling after CPB will influence deci-

sion making and dosing if pre-emptive thresholds are used in the absence of significant bleed-

ing. In agreement with our findings, other studies also estimate the recovery rate of fibrinogen

at 100 mgL-1h-1 between the end of CPB and 24 h thereafter in patients without administration

of exogenous concentrate, [16] and at 130 mgL-1h-1 in patients receiving FFP but not fibrino-

gen concentrate after CPB. [17] Plasma fibrinogen is known to return to normal or even to

reach supranormal levels within 24 hours independent of exogenous supplementations.

[17,37] Our data show an approximate linearity of spontaneous fibrinogen recovery during

these 24 hours.

Nevertheless, the study has some limitations. It is a small, single-center, descriptive series of

elective patients. The surgical and perfusion management followed institutional routines. The

use of specific perfusion circuits and priming fluids, antifibrinolytics, shed blood recovery, and
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surgical hemostasis techniques may have influenced the fibrinogen kinetics and thus limited

external validity. Additionally, only 38% of patients in our cohort were at high risk of bleeding

risk, and the bleeding rate was low. However, data from other groups studying complex car-

diovascular surgery with a high bleeding risk have indicated that patients without exogenous

fibrinogen replacement experience comparable post-CPB fibrinogen concentrations and

bleeding activity than those with substantial substitution of fibrinogen concentrate, and similar

recovery of fibrinogen levels that reach or surpass the pre-operative baseline on the first post-

operative day. [16,17,25]

In conclusion, this study provides new insights into the fibrinogen substitution practice of

cardiac surgery patients. Our exploratory findings suggest that in the absence of active bleed-

ing, low plasma fibrinogen concentration may be tolerated after CPB weaning since plasma

fibrinogen levels recover fast and spontaneously at a nearly constant rate. Thus, in our opinion,

exogenous fibrinogen substitution may be reserved for patients with active non-surgical bleed-

ing accompanied by laboratory evidence of hypofibrinogenemia. Especially in patients with

mild or insignificant post-CPB bleeding, a “wait-and-see” approach appears to be better justi-

fied than administration of exogenous fibrinogen based on a presumed bleeding risk and a sin-

gle-point laboratory measurement. Since our results have been obtained in a small and

narrowly defined patient cohort, our study remains descriptive and is not confirmatory. Our

findings should therefore be considered only as proof of concept at this time. Our conclusions

need further validation and confirmation, e.g., by ongoing and future randomized multicenter

trials.
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