
Estimation and Inference of Quantile Regression for Survival 
Data Under Biased Sampling

Gongjun Xua,b, Tony Sitc, Lan Wanga, and Chiung-Yu Huangd

aSchool of Statistics, University of Minnesota, Minneapolis, MN

bDepartment of Statistics, University of Michigan, Ann Arbor MI

cDepartment of Statistics, The Chinese University of Hong Kong, Hong Kong SAR

dDivision of Biostatistics-PLXINSERT, and Bioinformatics, Sidney Kimmel Comprehensive Cancer 
Center, Johns Hopkins University, Baltimore, MD

Abstract

Biased sampling occurs frequently in economics, epidemiology, and medical studies either by 

design or due to data collecting mechanism. Failing to take into account the sampling bias usually 

leads to incorrect inference. We propose a unified estimation procedure and a computationally fast 

resampling method to make statistical inference for quantile regression with survival data under 

general biased sampling schemes, including but not limited to the length-biased sampling, the 

case-cohort design, and variants thereof. We establish the uniform consistency and weak 

convergence of the proposed estimator as a process of the quantile level. We also investigate more 

efficient estimation using the generalized method of moments and derive the asymptotic normality. 

We further propose a new resampling method for inference, which differs from alternative 

procedures in that it does not require to repeatedly solve estimating equations. It is proved that the 

resampling method consistently estimates the asymptotic covariance matrix. The unified 

framework proposed in this article provides researchers and practitioners a convenient tool for 

analyzing data collected from various designs. Simulation studies and applications to real datasets 

are presented for illustration. Supplementary materials for this article are available online.
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1. Introduction

Biased sampling occurs frequently, either naturally or by design, in many observational 

studies. For example, the cross-sectional prevalent cohort sampling scheme is commonly 

employed to study a rare disease. It is well known that the prevalent sampling scheme favors 
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individuals who survive longer, because diseased individuals who died before the 

recruitment would not be sampled. As a result, prevalent cases do not comprise a 

representative sample of the target population. Problems of this sort can also be found in 

cross-sectional studies in ecology (McFadden 1962; Muttlak and McDonald 1990; Chen 

2010), industrial quality control (Cox 1969), and economics (Kiefer 1988; Helsen and 

Schmittlein 1993; de Uña Álvarez 2004). Another commonly encountered biased sampling 

method is the case-cohort design (Prentice 1986; Chen 2001). The case-cohort design 

provides an economical approach to conducting epidemiological studies that involve rare 

diseases and/or expensive exposures, where covariate information is collected from all 

failures but only from a representative subsample of censored observations. Various 

extensions of the case-cohort design can be found in Borgan et al. (2000), Kulich and Lin 

(2004), and Samuelsen et al. (2007).

Ignoring sampling bias may lead to substantial estimation bias and fallacious inference. This 

issue has drawn considerable attentions recently; however, most existing literature focuses 

on either the proportional/additive hazards or the accelerated failure time models. For the 

Cox proportional hazards (PH) model, estimation procedures under length-biased sampling 

have been studied in Luo and Tsai (2009), Qin and Shen (2010), and Huang and Qin (2012); 

large sample properties for case-cohort sampling have been developed in Self and Prentice 

(1988), Lin and Ying (1993), and Chen and Lo (1999); see also Lu and Tsiatis (2006), Shen 

et al. (2009), and Kim et al. (2013) for corresponding treatments under the linear 

transformation model, a generalization of the Cox model. For the accelerated failure time 

(AFT) model, estimation procedures under various biased samplings have been discussed in 

Shen et al. (2009), Kong and Cai (2009), Chen (2010), among others.

In this article, we propose a general approach for analyzing biased sampling data using 

quantile regression. The most prominent feature of quantile regression is its ability to 

accommodate heterogenous effects of the covariates, which can influence not only the 

location but also the shape of the survival time distribution. It is known that the 

heterogeneity in covariate effects cannot be easily incorporated in either the Cox PH model 

or the AFT model. Furthermore, the conditional quantile of the survival time is easier to 

interpret than the hazard function and is often of direct interest. Existing work on censored 

quantile regression without biased sampling includes Ying et al. (1995), Portnoy (2003), 

McKeague et al. (2001), Peng and Huang (2008), Wang and Wang (2009), and many others. 

For a general introduction to quantile regression, we refer to Koenker (2005).

Recently, several authors have considered quantile regression under biased sampling. Chen 

and Zhou (2012) and Wang and Wang (2014) investigated length-biased data. Both 

procedures require estimating the censoring time distribution. Chen and Zhou (2012) 

assumed a Cox PH model for the censoring distribution; however, their estimation procedure 

can lead to biased estimation under a misspecified censoring time distribution. On the other 

hand, Wang and Wang (2014) relied on a nonparametric kernel smoothing estimator of the 

censoring distribution that can suffer from the curse of dimensionality in practice. For the 

classical case-cohort sampling scheme, Zheng et al. (2013) developed an estimation 

procedure for quantile regression. These existing formulations, however, can neither be 
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applied to other biased sampling schemes nor yield efficient inference on the regression 

parameters.

The main contribution of this article is twofold. First, our formulation offers the first unified 

approach for estimating the conditional quantile of the survival time under a variety of 

biased sampling schemes, including, in particular, length-biased sampling, case-cohort, and 

stratified case-cohort designs. We prove that the proposed estimators are consistent and 

asymptotically normal. We establish the theory of the regression coefficient estimate as a 

process of the quantile index while the majority of the literature discusses inference for a 

fixed (set of) quantiles. Resampling methods are also proposed to construct confidence 

intervals and the consistency of the bootstrapping procedure is justified. Second, we show 

that the efficiency of the proposed estimation procedure can be improved by incorporating 

additional knowledge about the bias sampling mechanism. Using length-biased sampling as 

an example, we demonstrate that an efficient estimate can be obtained by combining 

estimating equations via the generalized method of moments (GMM; Hansen 1982). 

Compared with Chen and Zhou (2012) and Wang and Wang (2014), the new approach 

avoids estimating the nuisance censoring time distribution, which can be challenging in the 

case of covariate-dependent censoring.

From the application perspective, the unified solution is expected to benefit a wide range of 

applications with different types of biased samples. The codes for simulations and numerical 

studies, composed in MATLAB, are available upon request.

The rest of the article is organized as follows. In Section 2.1, we motivate the procedure 

using complete data without censoring. In Section 2.2, we present a unified framework for 

the censored data under biased sampling; in Section 3 we discuss in detail length-biased and 

right-censored data and demonstrate how to improve the estimation efficiency by GMM. 

Theoretical properties are studied in Section 4. Sections 5 and 6 present the simulation 

results and real datasets analysis, respectively. Section 7 concludes the article. All the 

technical proofs are presented in the supplementary material.

2. Quantile Regression Under Biased Sampling

2.1 Complete Data Without Censoring

We first consider the ideal case where the survival time is observed for all subjects. Not only 

does this serve to motivate the more technically involved censoring case in Section 2.2 but 

also is of independent interest, see, for example, the applications in Robbins and Zhang 

(1988), Sun and Woodroofe (1991), Gilbert (2000), and Efromovich (2004).

Let T* and Z* denote the survival time and the p-dimensional vector of covariates of the 

target population. For τ ∈ (0, 1), the conditional quantile function of T* given Z* = z is 

defined as Q(τ | z) = inf{t: P(T* ≤ t | Z* = z) ≥ τ }. We consider the following quantile 

regression model
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Q(τ ∣ z) = exp {z⊤β0(τ)}, for τ ∈ (0, 1), (1)

where β0(τ) is the vector of unknown quantile regression coefficients describing the effects 

of covariates Z* on the τ th quantile of log T*. Compared with the AFT model and the Cox 

model, the quantile regression model (1) is more flexible in the sense that the covariate 

effect is not restricted to be constant across different τ ‘s.

Denote the conditional density, hazard, and cumulative hazard functions of T* given Z* = z 
by f (t | z), λ(t | z), and Λ(t | z), respectively. We use A*, whenever applicable, to denote the 

time from the initiation event, such as the onset of a disease, to sampling. Note that A* is 

often referred to as the truncation time. Let T, A, and Z be the observed survival time, 

truncation time, and covariate vector under a biased sampling scheme, and let fT (t | Z) 

denote the conditional density of T given the covariate Z.

The observed data consist of n iid replicates of (T, Z, A), denoted by (Ti, Zi, Ai), for i = 1, 

…, n. We consider a general biased sampling scheme (e.g., Kim et al. 2013) where the 

density ratio fT (t | Z)/f (t | Z) is well-defined on the support of T* and there exists a function 

w(t) such that

f T(t ∣ Z) = w(t) f (t ∣ Z)
∫ w(s) f (s ∣ Z)ds . (2)

Here the weight function w(t) is known for a given study design; moreover, it describes the 

sampling bias of an observation, that is, it specifies the relationship between the distribution 

of the survival time T* in the target population and that of the observed survival time T.

For random variables (T*, Z*) of the target population, it is straightforward to show that the 

stochastic process I(T∗ ≤ t) − ∫ 0
t I(T∗ ≥ t)dΛ(t ∣ Z∗) is a martingale with respect to the σ-

filtration ℱt containing information up to time t. Hence, we have

E{dI(T∗ ≤ t) − I(T∗ ≥ t)dΛ(t ∣ Z∗) ∣ Z∗} = 0, (3)

where the expectation is taken with respect to the conditional distribution of T* given Z*. As 

a result, in the absence of sampling bias, we can construct consistent estimation procedures 

based on Andersen et al. (1993). Under biased sampling, however, replacing T* with T 
yields biased estimation. As suggested by the following lemma, unbiased estimating 

equations can be constructed by weighing the observations inversely proportional to the 

sampling weight.

Lemma 1—Under the biased sampling scheme specified in (2), we have
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EZ{dI(T ≤ t) − v(t)I(T ≥ t)dΛ(t ∣ Z)} = 0, (4)

where v(·), the weight function, is

v(t) = w(t)
w(T) , (5)

and, for ease of notation, the conditional expectation EZ is taken with respect to biased 

sampling distribution fT (· | Z) given covariates Z.

Equation (4) serves as a basis for constructing unbiased estimating equations for a general 

family of biased sampling schemes. In particular, setting vi(t) = w(t)/w(Ti), we have the 

estimating equations

n−1/2 ∑
i = 1

n
Zi I(Ti ≤ t) − ∫0

t
vi(s)I(Ti ≥ s)dΛ(s ∣ Zi) = 0.

Under the quantile regression model (1), we have Λ(e
Zi

⊤β(τ)
∣ Zi) = − log (1 − τ) for τ ∈ (0, 

1). As in Peng and Huang (2008), replacing t with e
Zi

⊤β(τ)
 in the foregoing estimating 

equation yields

Sn(β, τ) = n−1/2 ∑
i = 1

n
Zi I(T i ≤ e

Zi
⊤β(τ)

) − ∫
0

τ
vi(e

Zi
⊤β(s)

)I(T i ≥ e
Zi

⊤β(s)
)dH(s) = 0, (6)

with H(s) = −log(1 − s) for 0 ≤ s < 1.

If additional knowledge is available about the biased sampling mechanism, other choices of 

the weight function based on (5) may be used to derive a more efficient estimator (Section 

3). We consider the following example for an illustration.

Example 1 (Left truncation)—Left truncation occurs when individuals come under 

observation only when they are event free before the truncation time A*, that is, T* ≥ A*. 

Here A* is usually assumed to be conditionally independent of T* given Z* (Kalbfleisch and 

Prentice 2002, p. 14). Under left-truncation, we have
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f T(t ∣ Z, A) = I(t ≥ A) f (t ∣ Z)
∫ I(s ≥ A) f (s ∣ Z)ds . (7)

Thus the weight function is given by w(t) = I(t ≥ A) and, by noting that w(Ti) = I(Ti ≥ Ai) = 

1 in the observed data, we have vi(t) = I(t ≥ Ai).

In the special case of length-biased sampling, where the truncation time A* is uniformly 

distributed, the residual lifetime Ti − Ai and the truncation time Ai have an exchangeable 

joint distribution (Vardi 1989). By exploiting this special structure, we can show that

EZ{dI(Ti ≤ t)} = EZ{I(t ≥ Ai)I(Ti ≥ t)dΛ(t ∣ Zi)}
= EZ{I(t ≥ Ti − Ai)I(Ti ≥ t)dΛ(t ∣ Zi)} .

It follows that, for any π ∈ [0, 1], setting vi(t) = πI(t ≥ Ai) + (1 − π)I(t ≥ Ti − Ai) in (6) 

yields unbiased estimating equations. Further discussion of this example under right 

censoring is given in Section 3.1.

2.2 Proposed Method for Censored Data Under Biased Sampling

We now consider the more challenging case where the survival time is subject to right 

censoring. Similar to Section 2.1, we denote by T* the survival time in the target population 

and by C* the censoring time, where T* and C* are assumed to be conditionally independent 

given the covariates Z* and the possible truncation time A*. For left-truncated and right 

censored data, one can conceptually define C* to be the sum of the underlying truncation 

time A* and the independent censoring time that terminates the observation of the residual 

lifetime beyond A* (see Section 3.1 for more details). Let T̃* = min(T*, C*) and Δ* = I(T* ≤ 

C*). The conditional density function of (T̃*,Δ*), given the corresponding covariates Z*, is 

denoted as fT̃*,Δ* (t, δ | Z*) for t ≥ 0 and δ ∈ {0, 1}.

Under a biased sampling scheme, let T and C be the corresponding survival and censoring 

times, respectively. Note that (T, C) has a different distribution from that of (T*, C*) due to 

the sampling bias.

We define T̃ = min(T, C) and Δ = I(T ≤ C). We assume that the conditional “mixed” joint 

density of (T̃,Δ) given Z (and possible truncation time A), fT̃,Δ(t, δ | Z), satisfies

f
T∼, Δ(t, δ ∣ Z) =

w(t, δ) f
T∼∗, Δ∗(t, δ ∣ Z)

∑d ∈ {0, 1}∫ w(s, d) f
T∼∗, Δ∗(s, d ∣ Z)ds , (8)

where w(s, δ) is the bias function for sampling. This generalizes the setup in Section 2.1 to 

incorporate right censoring. Many common forms of biased sampling settings fall under the 

proposed framework, which includes left-truncation, case-cohort sampling, stratified case-
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cohort sampling, and others; see Examples 2–4 below. Formulation (8) resembles the setting 

of Kim et al. (2013), which, however, did not consider the length-biased sampling studied in 

Wang (1991), Asgharian et al. (2002), Shen et al. (2009), and many others. We consider the 

length-biased sampling, an important special case under our framework, in Section 3. More 

importantly, based on the proposed framework, we will further study efficient estimation of 

the model parameters.

As a generalization of (3), (T̃*, Δ*, Z*) in the target population satisfies

E{dΔ∗I(T∼∗ ≤ t) − I(T∼∗ ≥ t)dΛ(t ∣ Z∗) ∣ Z∗} = 0,

where the expectation is taken with respect to (T*,Δ*) given Z* and, as defined in Section 

2.1, Λ(t | Z*) denotes the cumulative hazard function of T* given Z* (Andersen et al. 1993). 

We aim at constructing the weight function vi(t) such that the above equation still holds with 

(T*,Δ*) replaced by (T, Δ). Let Yi(t) = I(T̃
i ≥ t) and Ni(t) = ΔiI(T̃

i ≤ t), i = 1, …, n.

Lemma 2—Under the biased sampling scheme in (8), we have

EZ{dN(t)} = EZ{v(t)Y(t)dΛ(t ∣ Z)},

where v(·), the weight function, is given by

v(t) = w(t, 1)
w(T∼, Δ)

=
f

T∼∗, Δ∗(T∼, Δ ∣ Z)

f
T∼, Δ(T∼, Δ ∣ Z)

×
f

T∼, Δ(t, 1, Z)
f

T∼∗, Δ∗(t, 1 ∣ Z) , (9)

and EZ is the expectation with respect to biased sampling distribution fT̃,Δ conditional on Z.

In the absence of censoring, that is, C = ∞, we have (T̃,Δ) ≡ (T, 1) and therefore v(·) reduces 

to the form in Lemma 1. When vi(t) = w(t, 1)/w(T̃
i, Δi) for i = 1, …, n, we can write

EZ n−1/2 ∑
i = 1

n
Zi Ni(e

Zi
⊤β0(τ)

) − ∫0
e
Zi

⊤β0(τ)
vi(t)Yi(t)dΛ(t ∣ Zi) = 0.

A change of variable gives

EZ n−1/2 ∑
i = 1

n
Zi Ni(e

Zi
⊤β0(τ)

)∫0
τ
vi(e

Zi
⊤β0(s)

)Yi(e
Zi

⊤β0(s)
)dH(s) = 0.
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This leads to the following unbiased estimating equations

Sn(β, τ) = n−1/2 ∑
i = 1

n
Zi Ni(e

Zi
⊤β(τ)

) − ∫
0

τ
vi(e

Zi
⊤β(s)

)Y i(e
Zi

⊤β(s)
)dH(s) = 0. (10)

The weight function (9) provides a systematic way to construct the estimating equations for 

many biased sampling schemes. We consider some examples below for illustration.

Example 2 (Left truncation and right censoring)—Consider the left truncation 

setting in Example 1. Conditional on the truncation time A, we have

f
T∼, Δ

(t, δ ∣ Z) =
I(A ≤ t) f

T∼∗, Δ∗(t, δ ∣ Z)

∑d ∈ {0, 1}∫ I(A ≤ s) f
T∼∗, Δ∗(s, d ∣ Z)ds .

Following (9), this implies vi(t) = I(Ai ≤ t). Thus, (10) can be reexpressed as

Sn(β, τ) = n−1/2 ∑
i = 1

n
Zi Ni(e

Zi
⊤β(τ)

) − ∫0
τ
I Ai ≤ e

Zi
⊤β(s)

Yi(e
Zi

⊤β(s)
)dH(s) = 0.

Further discussion on this example is provided in Section 3 on efficient estimation.

Example 3 (Case-cohort design)—Under the case-cohort design (Prentice 1986), 

complete information on covariates is collected only for uncensored observations. For 

censored observations, suppose that the probability of selecting a censored individual into 

the sub-cohort is p, p ∈ (0, 1). Under this biased sampling, the distribution of (T̃,Δ) satisfies

f
T∼, Δ

(t, δ ∣ Z) =
{δ + (1 − δ)p} f

T∼∗, Δ∗(t, δ ∣ Z)

∑d ∈ {0, 1}∫ {d + (1 − d)p} f
T∼∗, Δ∗(s, d ∣ Z)ds .

Following (9), vi(t) = 1/{Δi + (1 −Δi)p}, and this gives

Sn(β, τ) = n−1/2 ∑
i = 1

n
Zi Ni(e

Zi
⊤β(τ)

) − ∫0
τ 1

Δi + (1 − Δi)pYi(e
Zi

⊤β(s)
)dH(s) = 0.

Note that the estimating equation has the form in Zheng et al. (2013).

Example 4 (Stratified case-cohort design)—The stratified case-cohort design was 

proposed to improve the efficiency of the traditional case-cohort design (Borgan et al. 2000; 
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Kulich and Lin 2004), where the probability of selecting a censored observation into the 

subcohort, p(X), is allowed to depend on X, a vector of covariates that may or may not 

overlap with Z. As in Example 3, we have

f
T∼, Δ

(t, δ ∣ Z) =
{δ + (1 − δ)p(X)} f

T∼∗, Δ∗(t, δ ∣ Z)

∑d = {0, 1}{d + (1 − d)p(X)} f
T∼∗, Δ∗(s, d ∣ Z)ds ,

which implies that (10) can be constructed with vi(t) = 1/{Δi + (1 − Δi)p(Xi)}.

2.3 Computation of β̂(τ)

The proposed estimating equations under different biased sampling schemes share the same 

generic form as in (10).

Motivated by Peng and Huang (2008), we adopt a grid-based algorithm. The estimator of 

β(τ), denoted by β̂(τ), is defined as a right-continuous piecewise-constant function that 

jumps only on a grid L(n) = {0 = τ0 < τ1 < ··· < τL(n) = τu < 1}, where τu is some constant 

subject to certain identifiability constraint due to censoring; see condition C4 in the 

supplementary materials. Note that when τ = 0, from the model assumption (1), we have 0 = 

Q(0 | z) = exp{z⊤β0(0)}. Therefore, we choose β̂(0) such that exp{z⊤ β̂(0)} = 0. Let || L(n)|| 

= sup1≤k≤L(n) |τk − τk
−1|. The estimate β̂(τk) is obtained by sequentially solving the 

following estimating equation:

n−1/2 ∑
i = 1

n
Zi Ni(e

Zi
⊤β(τk)

) − ∑
j = 0

k − 1
vi(e

Zi
⊤β(τ j))Yi(e

Zi
⊤β(τ j)) × (H(τ j + 1) − H(τ j)) = 0.

Following Peng and Huang (2008), the above equation can be transformed into an L1 

optimization problem that can be solved using the Barrodale–Roberts algorithm (Barroda 

and Roberts 1974). Alternatively, the corresponding optimization subroutine can be 

implemented easily in MATLAB via the function fminsearch. One practical concern is the 

choice of the grid size in the sequential procedure. Theoretically, as shown in the proof of 

Theorem 1, a grid with size of order o(n−1/2) ensures weak convergence. In the simulation 

study, we adopt an equally spaced grid with size 0.01 and find it works satisfactorily for a 

variety of settings. Alternatively, we may adopt the estimation procedure based on 

estimating integral equations proposed in Huang (2010).

3. Efficiency Improvement With GMM

In this section, we show that the efficiency of the unified estimation procedure described in 

Section 2 can be further improved by applying the GMM method (Hansen 1982). To our 

best knowledge, this is the first attempt in the literature to study the efficient estimation for 

quantile regression under biased sampling. In Section 3.1, we consider the case where 

external information about the sampling mechanism is available. We use length-biased 

sampling as an example to illustrate how the external knowledge about the distribution of the 
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underlying truncation time can be incorporated in the estimation of regression parameters. In 

Section 3.2, we focus on general biased sampling scheme and demonstrate that significant 

efficiency gain can be achieved by properly introducing a class of weight functions in the 

estimating procedure.

3.1 Efficiency Improvement Using Additional Sampling Information

When additional knowledge about the biased sampling mechanism is available, it is possible 

to incorporate the additional information to improve the estimation efficiency through the 

generalized method of moments. Here, we focus on the length-biased sampling example and 

demonstrate how an optimal weight function can be determined.

We write V as the residual lifetime measured from the truncation time A to failure. Suppose 

V is censored by C̃, where C̃ is independent of (A, V) conditional on Z, then the observed 

survival and censoring times, T and C, can be expressed as

T = A + V and C = A + C
∼ .

Conditional on Z, the density of T, fT (t | Z), can be related to the conditional density of T*, f 
(t | Z), under the stationarity assumption (Lancaster 1990, chap. 3)

f T(t ∣ Z) = 1
μ(Z) t f (t ∣ Z),

where μ(Z) = ∫ tf (t | Z)dt is a normalizing term. In addition, the joint distribution of A and 

V is (Vardi 1989)

f A, V(a, v ∣ Z) = 1
μ(Z) f (a + v ∣ Z)I(a > 0, v > 0) .

Denote the conditional density and survival functions of C̃ as gc(t | Z) and Sc(t | Z):= P(C̃ > t 
| Z). Recall that T̃

i = min(Ti,Ci), Δi = I(Ti ≤ Ci), Ni(t) = ΔiI(T̃
i ≤ t) and Yi(t) = I(T̃

i ≥ t). As 

shown in Example 2, conditional on the truncation time A, we can take the weight function 

following (9) as

vi(t) =
f

T∼∗, Δ∗(T∼i, Δi ∣ Zi)

f
T∼, Δ(T∼i, Δi ∣ Zi)

×
f

T∼, Δ(t, 1 ∣ Zi)
f

T∼∗, Δ∗(t, 1 ∣ Zi)
= I(Ai ≤ t) . (11)

Here, we defer the derivation of (11) to the supplementary material. It follows that
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EZ{dNi(t) − I(Ai ≤ t)Y i(t)Λ(t ∣ Zi)} = 0. (12)

We can also construct other weight functions under the stationarity assumption. In particular, 

as shown in Huang and Qin (2012),

EZ{dNi(t) − ΔiI(T∼i − Ai ≤ t)Y i(t)Λ(t ∣ Zi)} = 0. (13)

We can, therefore, define a family of subject-specific weight functions by combining the 

results in (12) and (13):

vi(t; π) = πI(Ai ≤ t) + (1 − π)ΔiI(T∼i − Ai ≤ t), (14)

where π ∈ [0, 1]. It follows directly from (12) and (13) that

EZ n−1/2 ∑
i = 1

n
Zi Ni(e

Zi
⊤β0(τ)

) − ∫
0

exp{Zi
⊤β0(τ)}

vi(t; π)Y i(t)dΛ(t ∣ Zi) = 0, (15)

and a change of variable gives

EZ n−1/2 ∑
i = 1

n
Zi Ni(e

Zi
⊤β0(τ)

) − ∫0
τ
vi(e

Zi
⊤β0(s)

; π)Yi(e
Zi

⊤β0(s)
)dH(s) = 0.

This motivates the following estimating equations:

Sn(β, τ; π) = n−1/2 ∑
i = 1

n
Zi Ni(e

Zi
⊤β(τ)

) − ∫
0

τ
vi(e

Zi
⊤β(s)

; π)Y i(e
Zi

⊤β(s)
)dH(s) = 0. (16)

The unbiasedness of the above estimating equation holds under covariate-dependent 

censoring. Moreover, the proposed method does not need a consistent estimate of the 

conditional censoring distribution function Sc(t|Z). This relaxation substantially reduces the 

computational complexity, especially when the number of covariates is not small; see the 

simulation studies in Section 5.

Efficiency improvement using GMM—We now apply the GMM method (Hansen 

1982) to improve the estimation results. Our goal is to determine a best combination of (12) 

and (13) in the sense that the resulting standard error of the estimator β̂ is minimized. Let
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η(β, τ) =
Sn(β, τ; π = 0)

Sn(β, τ; π = 1) ,

where Sn(β, τ; π = 0) and Sn(β, τ; π = 1) are simply (16) with vi(t; π = 0) = I(T̃
i − Ai ≤ t) 

and vi(t; π = 1) = I(Ai ≤ t), respectively. The GMM estimator of β minimizes

η(β, τ)⊤W(βint, τ)−1η(β, τ),

where W is a 2p × 2p positive definite working covariance matrix, depending on the true 

parameter β0(·), which is usually evaluated at some preliminary consistent estimator β̂int(·). 

A simple way to get the initial estimate βînt(·) is to solve (16) with π = 0.5.

The asymptotically efficient estimator βêff(τ) is obtained when W(β̂int, τ) = var[η(βînt, τ)], 

that is,

βeff(τ) = arg min
β

η(β, τ)⊤ var η(βint, τ)}−1η(β, τ) .

We can estimate var{η(β̂int, τ)} by the sample covariance matrix η(β̂int, τ)η(β̂int, τ)′. This 

data-driven approach provides a way to construct the optimal linear combination of 

estimating equations in η(β̂int, τ). In Section 5, we demonstrate via simulations the 

improvement in efficiency by using this GMM approach.

3.2 Efficiency Improvement Using Additional Weight Functions

In this section, we show how the efficiency of the estimates can be improved for a general 

biased sampling scheme. It follows from Lemma 2 that

EZ{ψ(t)dN(t)} = EZ{ψ(t)v(t)Y(t)dΛ(t ∣ Z)},

where ψ(t) is a weight function that may depend on Z. As a result, estimating Equation (10) 

can be generalized as

n−1/2 ∑
i = 1

n
Zi ψ(T∼i)Ni(e

Zi
⊤β(τ)

) − ∫
0

τ
ψ(e

Zi
⊤β(s)

)vi(e
Zi

⊤β(s)
) × Y i(e

Zi
⊤β(s)

)dH(s) = 0. (17)

Thus, we can construct a family of weighted estimating equations by considering different 

choices of ψ. The possibly data-dependent weight function ψ plays a similar role as the 

weight function in the rank-based estimating equations in the AFT model (Tsiatis 1990; 

Ying 1993; Jin et al. 2003).
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Intuitively, one would consider the optimal choice of ψ that minimizes the asymptotic 

variance of the estimates. However, direct estimation of the optimal ψ for the quantile 

regression under biased sampling is very challenging. This is mainly due to two reasons. 

First, the optimal ψ involves the derivative of the unknown density function of the failure 

time. Although estimation of the derivative in the absence of biased sampling has been 

studied under the AFT model (e.g., Lin and Chen 2013), a special case of the model (1), the 

heterogeneity effects of the covariates under the quantile regression make the problem much 

more complicated and challenging. Kernel smoothing techniques may be applied, but their 

performance can be poor when there are more than a few covariates and/or there is a large 

number of quantiles that need to be estimated. Second, the optimal ψ also depends on the 

sampling weight function v. This makes ψ a study-specific function for different biased 

sampling schemes and further complicates the derivation of the optimal ψ. Even for the 

special case of the AFT model, the optimal weight has not yet been established in the 

literature.

To this end, we propose a computationally efficient and robust method to improve the 

estimation efficiency. Equation (17) provides different estimating equations for β and, as 

before, we can apply the GMM method to improve the estimation from (10).

In particular, consider K weight functions and denote ψ(t) = {ψ1(t), …, ψK (t)}⊤. Let η(β, 

τ) be the estimating equations for the given sets of weights, that is,

η(β, τ) = n−1/2 ∑
i = 1

n
Zi ⊗ ψ(T∼i)Ni(e

Zi
⊤β(τ)

) − ∫
0

τ
ψ(e

Zi
⊤β(s)

)vi(e
Zi

⊤β(s)
)Y i(e

Zi
⊤β(s)

)dH(s) ,

(18)

where ⊗ is the Kronecker product. The GMM estimator of β(τ) minimizes

η(β, τ)⊤W(βint, τ)−1η(β, τ),

where W is a positive definite working covariance matrix, depending on some initial 

estimator βînt(·). A simple way to get β̂int(·) is to use the estimator from the unweighted 

estimating equation. Then the asymptotically efficient estimator of β(τ), denoted by βêff(τ), 
is obtained as

βeff(τ) = arg min
β

η(β, τ)⊤ var {η(βint, τ)}−1η(β, τ) . (19)
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We again adopt a grid-based algorithm to solve βêff(τ). Specifically, consider the efficient 

estimator β̂eff(τ) at a fixed τ. In the grid L(n) = {0 = τ0 < τ1 < ··· < τL(n) = τu < 1} used to 

solve the unweighted estimating equation, there is τL*∈ L(n) such that τL*≤ τ < τL*+1. For 

0 = τ0 < τ1 < ··· < τL*, we define

η∗(β, τk) = n−1/2 ∑
i = 1

n
Zi ⊗ ψ(T∼i)Ni(e

Zi
⊤β(τk)

) − ∑
j = 0

k − 1
ψ(e

Zi
⊤β(τ j)) × vi(e

Zi
⊤β(τ j))Y i(e

Zi
⊤β(τ j))

{H(τ j + 1 − H(τ j)} .

(20)

To estimate βêff(τ), we choose β̂eff(0) such that exp{z⊤ β̂eff(0)} = 0 and then sequentially 

estimate βêff(τk), 1 ≤ k ≤ L*, by minimizing

η∗(β, τk)⊤W(βint, τ)−1η∗(β, τk) .

Finally, we have efficient estimator for βêff(τ) as β̂eff(τL*).

Remark 1—The proposed approach uses a combination of K weight functions {ψ1(t), …, 

ψK (t)} to approximate the optimal weight function ψ*. In practice, we may take simple 

polynomial functions of t for ψ’s. As K increases, the method is expected to provide a better 

approximation for ψ* while introducing additional estimation variation and higher 

computational cost. In Section 5, we illustrate through simulations the efficiency 

improvement.

Remark 2—For the length biased sampling, under the stationarity assumption, we can also 

construct estimating equations using an unconditional approach, which takes the expectation 

with respect to V and A.

We consider an unconditional version of the weight function vi. Note that setting the weight 

function ∫ 0
t Sc(s ∣ Zi)ds in estimating Equation (17) yields
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EZ
Ni(e

Zi
⊤β0(τ)

)

∫ 0
T∼iSc(s ∣ Zi)ds

= EZ ∫0

exp(Zi
⊤β0(τ)) 1

∫ 0
t Sc(s ∣ Zi)ds

vi(t)Yi(t)dΛ(t ∣ Zi)

= τ
μ(Zi)

= EZ
Δiτ

∫ 0
T∼iSc(s ∣ Zi)ds

.

This leads to the estimating equation

∑
i = 1

n ZiΔi

∫ 0
T∼iSc(s ∣ Zi)ds

Ni(e
Zi

⊤β(τ)
) − τ = 0,

which is the estimation procedure proposed in Wang and Wang (2014). Similarly, for π = 1, 

it follows from

EZ
1

tSc(t − Ai ∣ Zi)
{dNi(t) − vi(t)Yi(t)dΛ(t ∣ Zi)} = 0

and

EZ ∫0

exp(Zi
⊤β0(τ)) vi(t)Yi(t)

tSc(t − Ai ∣ Zi)
dΛ(t ∣ Zi) = τ

μ(Zi)

= EZ
Δiτ

T∼iSc(T∼i − Ai ∣ Zi)

that

∑
i = 1

n ZiΔi
T∼iSc(T∼i − Ai ∣ Zi)

{Ni(e
Zi

⊤β(τ)
) − τ} = 0.

We can combine the above unconditional estimating equation with that proposed in the 

previous section by applying the GMM method. However, a consistent estimator for the 

censoring distribution Sc(· | Z) is required for this unconditional estimation procedure. This 

introduces additional complexity of the estimation procedure. Hence, we do not further 

pursue the unconditional approach in this article.
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4. Large-Sample Properties and Statistical Inference

4.1 Asymptotic Properties

We first establish the uniform consistency and weak convergence of the estimator β̂(τ) given 

in (10) of Section 2.2 for the general biased sampling scheme. Applying empirical processes 

techniques, we investigate the large-sample behavior of β̂(τ) as a process of τ. The results 

are summarized in Theorem 1.

Theorem1—Assume that Conditions C1–C5 (stated in the online supplemental material) 

hold. If limn→∞ || L(n)|| = 0, for any τl ∈ (0, τu), then supτ∈[τℓ,τu] ||β̂(τ) − β0(τ)|| → 0 in 

probability. In addition, if limn→∞ n1/2 || L(n)|| = 0, then n1/2{β̂(τ) − β0(τ)} converges 

weakly to a Gaussian process for τ ∈ [τℓ, τu].

The covariance structure of the aforementioned Gaussian process and the proof of Theorem 

1 are given in the online supplemental materials. Next, we state in Theorem 2 the large-

sample property of the proposed efficient estimator described in Section 3.2.

Theorem 2—Consider the GMM efficient estimator given in (19) at τ ∈ [τℓ, τu]. Under 

Conditions C1–C6, n1/2{β̂eff(τ) − β0(τ)} converges weakly to a multivariate normal 

distribution.

Remark 3—Although a sequential procedure (Sections 2.3 and 3.2) is used to estimate the 

quantile regression coefficients, similarly to Peng and Huang (2008), the numerical 

instability of β(τ) at small τ has little impact on the estimation at larger τ ‘s; see, for 

example, Lai and Ying (1988) for a study of tail instability.

4.2 A New Resampling Procedure for Inference

In this section, we propose a new resampling approach that provides a consistent estimator 

of the asymptotic covariance matrix (Theorem 3). The resampling method avoids the 

difficulty of estimating the unknown density functions of both the survival time and the 

censoring times in the asymptotic covariance matrix. It has the flavor of the perturbation 

approach of Jin et al. (2003) and Peng and Huang (2008), but enjoys the novel feature that it 

does not require to repeatedly solve estimating equations. In particular, it is considerably 

faster than a more straightforward resampling method (described in online supplementary 

materials) that directly extends the perturbation idea and needs to calculate the estimation 

path β̂*(·) many times.

To describe the new resampling procedure, we first introduce some notation. For b ∈ ℝp, 

define
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m(b) = E ZN(eZ⊤b) , mn(b) = 1
n ∑

i = 1

n
ZiNi(e

Zi
⊤b

) ,

m∼(b) = E Zv(eZ⊤b)Y(eZ⊤b) ,

m∼n(b) = 1
n ∑

i = 1

n
Zivi(e

Zi
⊤b

)Yi(e
Zi

⊤b
) ,

B(b) = E Z ⊗ 2 f
T∼, Δ

(eZ⊤b, 1 ∣ Z) exp (Z⊤b)},

J(b) = − E{Z ⊗ 2v(eZ⊤b) f
T∼

(eZ⊤b ∣ Z) exp (Z⊤b)} .

The new method is motivated by the theoretical property of the estimating equation. From 

Equation (S5) in the online supplemental materials, we can write

n1/2[m{β(τ)} − m{β0(τ)}] = ϕ{ − Sn(β0, τ)} + op(1) .

where ϕ(g)(τ) is defined in (S6) in the online supplement. Theorem 1 shows that 

n{β(τ) − β0(τ)} converges weakly to a Gaussian process with covariance matrix B{β0(τ)}−1 

Σ*[B{β0(τ)}−1]⊤, where Σ*(τ) denotes the limiting covariance matrix of n1/2[m{β̂(τ)} − 

m{β0(τ)}]. To evaluate the limiting distribution of n[β(τ) − β0(τ)], one can estimate 

B{β0(τ)} and the distribution of n1/2[m{β̂(τ)} − m{β0(τ)}] as follows.

i. Estimation of B{β0(τ)}. Motivated by Zeng and Lin (2008), we use a 

perturbation method to estimate B{β0(τ)}, which is the slope of mn(·) with 

respect to β(τ). Specifically, M independent multivariate standard normal 

variables {γi}i=1,...,M are generated to serve as the perturbations on the estimated 

β̂(τ). These perturbed values n1/2mn{β̂(τ) + n−1/2γi} will then be regressed on γi. 

The resulting slope matrix B̂{β̂(τ)}, whose jth row is the jth least square slope 

estimate, is a consistent estimator of B{β0(τ)}.

ii. Estimation of the distribution of n1/2[m{β̂(τ)} − m{β0(τ)}]. We derive the 

following approximation result for ϕ{−Sn(β0, τ)} (see (S4) in the online 

supplementary materials)
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n1/2[m{β(τ)} − m{β0(τ)}] = − {Sn(β0, τk) − Sn(β0, τk − 1)}

− ∑
ℓ = 2

k
∏

h = ℓ

k
[I + J{β0(τh − 1)B−1{β0(τh − 1)}}{H(τh) − H(τh − 1)}]{Sn(β0, τh − 1)

− Sn(β0, τh − 2)} + op(1)

≜ ϕn{ − Sn(β0, τ)} + op(1) .

(21)

The approximation holds uniformly in τ. As a result, we can use the distribution 

of ϕn{−Sn(β0, τ)} to estimate that of n1/2[m{β̂ (τ)} − m{β0(τ)}]. The expression 

(21) of ϕn{−Sn(β0, τ)} involves the unknown matrices B and J. As in Step (i), we 

can get estimates for B(β0(τh)) and J(β0(τh)), h = 1, . . . , k, by applying the 

perturbation method for mn(·) and m̃n(·), respectively. With the estimates of B 
and J, we use the perturbed estimating functions S̃

n(β̂, τ) to construct an 

estimator of the distribution of ϕn{−Sn(β0, τ)}. Specifically, we show in the proof 

of Theorem 3 that ϕn{−S̃
n(β̂, τ)} has the same limiting distribution as ϕn{−Sn(β0, 

τ)}. Then we generate Mb (some large number) replicates of S̃
n(β̂, τ) and use the 

corresponding empirical distribution of ϕn{−S̃
n(β̂, τ)} to estimate that of 

ϕn{−Sn(β0, τ)}.

Combining (i) and (ii), we can use the distribution of B̂{β̂(τ)}−1 ϕn{−S̃
n(β̂, τ)} as an 

estimator of that of n{β(τ) − β0(τ)}. We present the following result that validates inference 

based on such resampling procedure.

Theorem 3—Assume Conditions C1–C5 are satisfied. Conditional on the observed data, B̂ 

{β̂ (τ)}−1 ϕn{−S̃
n(β̂, τ)} converges weakly to the same limiting process of n1/2{β̂(τ) − 

β0(τ)} for τ ∈ [τℓ, τu], where τℓ ∈ (0, τu).

Remark 4—Unlike existing resampling approaches, such as Jin et al. (2003) and Peng and 

Huang (2008), our new method does not require to repeatedly solve the estimating 

equations, which is quite time consuming in the sequential optimization of the estimating 

equations; thus our method is computationally fast. The consistency of the proposed 

resampling method is established in Theorem 3 and we can use the resampling percentiles to 

construct confidence intervals for β0. It is worth mentioning that in general, the weak 

convergence of the resampling estimates may not directly imply the convergence the 

bootstrapped moments, such as the covariance matrix, and additional regularity conditions 

may be needed to establish such convergence (see, e.g., Kato 2011; Cheng 2015).
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Remark 5—At the beginning with small τ values, the estimates for B̂ and Ĵ matrices may 

not be stable due to the small sample size. In this case, for small τ values, we may apply the 

perturbed resampling method (described in online supplementary materials) while for larger 

values, we adopt the introduced new estimation procedure.

5. Simulation Studies

Length-biased Sampling—In the first set of simulations, we consider length-biased 

sampling. We generate the survival time from the following log-linear model

log T∗ = Z1β1 + Z2β2 + (1 + γZ1)ε,

where ε follows a normal distribution and γ controls the level of heteroscedasticity. In 

particular, if γ is 0, the above model reduces to the classical accelerated failure time model. 

The corresponding conditional quantile function is

Q
log(T∗)

(τ ∣ Z) = β(0)(τ) + Z1β(1)(τ) + Z2β(2)(τ),

where Z = (Z1, Z2)′, β(0)(τ) = Q(τ), β(1)(τ) = β1 + γQ(τ) = 1 + γQ(τ), β(2)(τ) = β2 = −1, 

and Q(τ) denotes the τth quantile of ε. We generate Z1 from a Bernoulli distribution with 

P(Z1 = 1) = 0.5 and Z2 from a uniform distribution, Unif(−0.5, 0.5). The initiation time A is 

generated from the Unif(0, uA) distribution, where uA > 0 is a constant that exceeds the 

upper bound of T* such that P(T* ∈ (t ± δ) | A < T*) = 0 for t > uA and a small δ > 0. We 

only retain the pairs with T* > A, which results in the length-biased sample Ti = Ai +Vi for i 
= 1, . . . , n. Due to the conditionally independent censoring, only T̃

i = min(Ti,Ci) = Ai + 

min(Vi,C̃
i) can be observed, for i = 1, . . . , n.

In our study, γ is set as 1; ε is generated from a normal distribution N(0, 0.52); uA is set to 

be 50; and C̃
i is generated from an exponential distribution with rate [1 − 0.9I(Z2 > 0)]λ. 

The value of λ is chosen according to the prespecified censoring proportions, 20% and 40%. 

We consider the weight function specified in (14) and summarize in Table 1 the results for 

different values of π’s (with πeff corresponding to the GMM estimator) when the censoring 

rate is 20%.

We observe that the choice of π does not affect the biases of the estimators significantly. 

However, the standard error associated with the GMM estimator is lower than that of their 

counterparts evaluated at other values of π, say at π = 0.00, 0.50, or 1.00. In other words, 

the GMM procedure improves the efficiency of the proposed estimator. We observe that the 

performance of the estimator with π = 0.5 is similar to that of the GMM estimator. In the 

remaining numerical study, for computational simplicity with length-biased data, we adopt π 
= 0.5 and find it works well in various scenarios. Note that π = 0.5 has an interpretation of 

striking a good balance between the two estimating equations (12) and (13), which are set 

for adjusting biases due to left-truncation and right censoring, respectively. We also observe 
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that the perturbation approach provides a satisfactory estimate of the standard error of the 

proposed estimator.

In addition to bias, standard error, and mean squared error, Table 2 also summarizes the 

estimated standard error (SEE) based on the perturbation approach illustrated in Section 4 as 

well as the empirical coverage of the 95% Wald-type confidence intervals. For the 

resampling scheme, Mb is set to be 500 to estimate the asymptotic variance of the proposed 

quantile estimator. We ran M = 2500 perturbed estimated values for evaluating B̂ and Ĵ. For 

the choice of perturbation number M, we have tried different values of M ranging from500 

to 10,000, and we observed that the values of M do not significantly affect the numerical 

results. On average, the proposed new method is four times faster than the traditional 

resampling procedure for cases where the sample size is 400. For comparison, we also report 

the estimate that ignores the biases that exist in the sample and carries out the method in 

Peng and Huang (2008) without any modification. We denote this naive estimator as β̂ 

(τ)Naive and it is evident that this naive estimator has substantial bias.

The performance of the proposed method is comparable with that of Wang and Wang (2014) 

when the number of covariates is small. However, due to the use of kernel smoothing for 

estimating the censoring probability, Wang and Wang (2014) is not practical when the 

censoring distribution depends on more than two covariates. In the following example, we 

examine the performance of the new method in a setting where the censoring distribution 

depends on four covariates. We generate random data from

log T∗ = Z1β1 + Z2β2 + Z3β3 + Z4β4 + (1 + γZ1)ε,

where β0 = (1, −1, 0.5, −0.5)⊤, Z3’s and Z4’s are generated from N(1, 0.5) and N(−1, 0.5), 
respectively; Z1 and Z2 are generated in the same fashion as we discussed earlier. The 

censoring times are assumed to follow a Cox proportional hazard models with covariates Zℓ 
(ℓ = 1, . . . , 4) and model parameters (0.5, 1.0, −0.5, 1.0) and the baseline cumulative hazard 

function Λ0(c) = −15 to achieve the target censoring rate. We consider sample sizes 500 and 

1000, and 500 iterations for each case. The estimated standard errors and coverage 

probabilities are obtained based on 500 perturbed resamplings. It is noteworthy that a larger 

sample size is needed to ensure more accurate coverage probabilities when the number of 

covariates is larger. Table 3 confirms that the proposed procedure yields unbiased estimates 

of β and consistent estimates of the corresponding variances.

Classical case-cohort sampling—We generate the survival time from the following 

log-linear model

log T = Z1β1 + Z2β2 + ε,

where ε follows a normal distribution N(0, 0.52), Z1 follows a Bernoulli distribution with 

success probability 0.5 and Z2 follows a uniform distribution Unif (−1, 1). The true 
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parameter values are (1.0, −1.0). The censoring time Ci is generated from an exponential 

distribution with rate [1 − 0.9I(Z2 > 0)]λ, where λ is chosen to achieve a roughly 80% 

censoring rate. Such a high level of censoring rate corresponds to cases more natural to 

apply case-cohort designs (e.g., rare-disease studies). Cohort sizes of 100 and 200 are drawn 

by simple random sampling with one-third of these samples being observed failures. For the 

resampling scheme, B is set to be 500 to estimate the asymptotic variance of the proposed 

estimator. Same as the procedure in length-biased simulations, an equally spaced grid with 

L(n) = 0.01 is selected. These settings are comparable with those discussed in Zheng et al. 

(2013) in the sense that the estimates are all but unbiased with mean squared errors very 

close to 0.

We illustrate through simulations the improvement in efficiency by using additional weight 

functions as introduced in Section 3.2. Our numerical study shows that the weight functions, 

ψ(t) = (ψ1(t),ψ2(t),ψ3(t)) = (1, t, 1/t), generally give stable and improved estimates. Note 

that the first weight function ψ1 gives the original estimating Equation (10), ψ2 assigns 

more weights on survival times around the tail regions, and ψ3 puts more weight on shorter 

survival times. Table 4 summarizes the simulation results. We observe that the GMM-type 

estimator β̂(τ)eff improves the efficiency of the estimators significantly, particularly when 

the subcohort size is smaller. Moreover, the corresponding SEE’s computed via the proposed 

resampling method are with good empirical coverage probabilities.

Stratified case-cohort sampling—We generate the survival and censoring times 

similarly as in the classical case-cohort sampling example except that the probability of 

subjects being selected varies according to their covariates Z’s. Selection probabilities for 

cases (p1) and censored samples (p2) are specified as follows: p1(Z) = 1 − {1 + exp(2.5 

+ 0.25Z2)}−1 and p2(Z) = 1 − {−1.5 + 0.5 exp(2Z2)}−1. Under this setup, about one third of 

the samples selected are cases while the mean overall censoring rate is maintained at a level 

of 75%. We also examined the performance of the efficient estimator under the stratified 

case-cohort sampling. The results are summarized in Table 5. Biases are negligible in all 

cases and the ECPs are close to their nominal values. For the efficient estimator, reductions 

in standard errors of β̂(τ) are also observed.

6. Real Data Analysis

6.1 Analysis of the CSHA Dataset

We first apply the procedure discussed in Section 2.2 to the Canadian Study of Health and 

Aging (CSHA) study, which is a multi-center study of the epidemiology of dementia in 

Canada. It followed 10,263 senior Canadians over a period from 1991 to 2001 and collected 

a wide range of information on their changing health status over time. Among these over 

10,000 elderly who were 65 years or older, 1132 people were identified as having dementia. 

Excluding subjects with missing dates of disease onset, we analyze 818 senior individuals 

that can be classified into three groups, namely, (i) probable Alzheimer’s disease (393 

patients), (ii) possible Alzheimer’s disease (252 patients), and (iii) vascular dementia (252 

patients). A total of 180 study subjects among 818 are censored, resulting in a censoring rate 

about 22%.
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Following Wang and Wang (2014), we apply the proposed method to the following model:

Qτ( log Ti ∣ zi) = β(0)(τ) + β(1)(τ)z1i + β(2)(τ)z2i,
i = 1, …, 818,

where z1i and z2i are dummy variables indicating if the ith subject is classified into probably 

Alzheimer’s disease or possible Alzheimer’s disease, respectively. The vascular dementia 

group is used as the reference group.

Table 6 summarizes the estimates of the proposed method with π = 0.5. Again, we obtain 

very similar point estimates for different values of π. A total of 500 perturbation resampling 

procedures are carried out to estimate the standard errors of the estimators, which are 

presented in parentheses in the table. Figure 1 demonstrates the estimated quantiles of the 

three dementia subtypes, where the vertical lines correspond to the 95% pointwise 

confidence intervals of the estimated quantiles of the patients in the baseline group (vascular 

dementia). Ning et al. (2011) found no significant difference in survival times among the 

three types of dementia when considering the mean survival time with the AFT model. In 

our analysis, however, we observe that seniors with possible Alzheimer’s disease tend to 

have longer survival time than those who suffered from vascular dementia. Such an 

observation is evident in Figure 1 where the estimated quantiles corresponding to possible 

Alzheimer’s disease are not fully covered by the confidence intervals constructed with 

respect to the baseline vascular dementia patients. Our results agree with the findings 

presented in Wang and Wang (2014).

6.2 Application to Case-Cohort Designs—Welsh Nickel Refiners Study

We now analyze a dataset collected in the South Welsh nickel refiners study (Appendix VIII 

of Breslow and Day 1987). The data consist of 679 subjects employed in a nickel refinery. 

The goal of the study is to investigate the association between the development of nasal 

sinuses and the exposure to nickel. The follow-up through 1981 uncovered 56 deaths from 

cancer of the nasal sinus; hence the censoring rate is higher than 90%. Breslow and Day 

(1987), followed by Lin and Ying (1993), analyzed the mortality data on the nasal sinus 

cancer using the Cox model with (modified) case-cohort design. Previous studies found that 

AFE (age at first employment), YFE (year at first employment), and EXP (exposure level) are 

significant factors. Lin and Ying (1993) considered the following regression covariates: 

log(AFE-10), log of the age of the first employment minus 10 years, (YFE-1915)/10, 

(YFE-1915)2 /100, two transformed versions of number of years working in the refinery 

since 1915 and log(EXP+1), the log exposure level; some of the subjects had zero exposure 

and hence EXP+1 is considered so that its logged value is nonnegative and well-defined.

The identifiability of the quantile estimates is only valid up to the 15th quantile because the 

Kaplan–Meier estimate, based on the full cohort, does not drop further after it reaches 0.85. 

We will compare the results obtained from a (i) full cohort, (ii) a subcohort collected under 

the traditional setting, and (iii) a subcohort collected under stratified case-cohort procedure 

as described in Section 2.2. In particular, we use p1 = 1 − {1 + exp(−1 + LOGAFE)}−1 and p2 

= 1 − {1 + exp(−3 + LOGAFE)}−1 for selecting cases and censored subjects into the sample. 
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This leads to, on average a sample size of 310. The spaced grid was selected to be of size 

0.001 for these numerical studies. 500 resamplings were carried for evaluation of the 

standard errors of the proposed estimates. We also applied the methodology introduced in 

Section 3.2 to obtain a more efficient set of estimates. Similar to our simulation setting, the 

weight function of ψ(t) = (ψ1(t),ψ2(t),ψ3(t)) = (1, t, 1/t) was applied. It can be observed 

that, based on the results presented in Table 7, both the original and the improved estimates 

obtained from subcohorts due to classical/stratified case-cohort samplings are similar to their 

counterparts based on the full cohort data. The standard errors of these estimates are also 

similar.

Figure 2 is included for the purpose of presenting an overall performance of the proposed 

method on this nickel refinery dataset. It displays the average point estimates and the 

corresponding pointwise standard errors of the four covariates for the 5th, the 10th, and the 

15th quantiles. It is noteworthy that the covariate log(AFE-10) is significant for all the 

quantiles. This is consistent with the findings discussed in Lin and Ying (1993) and Kim et 

al. (2013). Another covariate that was found to be statistically significant in the two 

aforementioned literature, log(EXP+1), is also significant in our study.

7. Conclusion and Discussions

Biased sampling arises frequently in many observational studies. Conventional approaches 

without accounting for the sampling bias can lead to substantial estimation bias and 

fallacious inference. In this article, we introduce a general quantile regression approach to 

deal with data collected from various biased sampling schemes. While our method can 

handle some specific types of biased sampling schemes that have been studied in the 

literature, it also covers more general case-cohort designs including stratified case-cohort 

and case-cohort sampling on a length-biased dataset, length-biased sampling that is 

proportional to the follow-up time (see Kim et al. 2013), all of which have not yet been 

previously investigated. Moreover, the one-size-fit-all formulation provides practitioners 

with a convenient tool for quantile regression modeling on their datasets collected under 

various sampling schemes. Because construction of the estimating equations does not 

require an estimate of the censoring time distribution, the proposed method can handle more 

complex problems with higher dimensional covariates than the existing methods.

Another major contribution of our work concerns with the efficiency improvement for the 

quantile regression. When there is additional sampling information, we show that the GMM 

approach can be applied to obtain an efficient estimate for length-biased survival data under 

cross-sectional sampling. In a more general setting, one can construct a set of weighted 

estimating equations so as to seek additional information by combining them via GMM. 

Numerical results show the proposed efficient estimates out perform the existing methods. It 

is worth-while to point out that the proposed method is generic and can be easily extended to 

other models where the theoretically optimal weight function is hard to obtain. In particular, 

it would be interesting to explore the efficiency improvement in the quantile regression 

without biased sampling.
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The choice of the weight function v(t) is usually informed by study design and prior 

knowledge about the disease incidence process, as seen in many research works on case–

control studies and prevalent cohort studies (see, e.g., Shen et al. 2009; Kong and Cai 2009; 

Luo and Tsai 2009; Chen 2010; Qin and Shen 2010; Huang and Qin 2012; Kimet al. 2013; 

Zheng et al. 2013). When the knowledge about biased sampling scheme is not available, a 

data-driven weight function may be developed by applying a similar technique considered 

by Qin et al. (2002); however, the method requires a multiple-sampling setting, where a 

unbiased sample must be obtained to ensure identifiability of the model parameters. 

Therefore, in the one-sampling setting of the current article, neither identifiability nor 

estimation of v(t) is available due to the lack of unbiased sample.

There are several other directions that are worth pursuing. One issue of the proposed 

method, as discussed in Peng and Huang (2008), is identifiability of upper quantiles due to 

the abundance of censored observations toward the tail. This feature is particularly 

prominent for biased-sampling cases due to potentially high censoring rates as we have seen 

in case-cohort designs for instance. It is of interest to incorporate the method of Portnoy 

(2014) in the current setup and investigate the benefits of jackknife under various biased-

sampling settings.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimated quantiles of population survival times for the three categories of dementia for the 

Canadian Study of Health and Aging (CSHA) dataset. The vertical lines correspond to the 

pointwise 95% confidence interval constructed for the baseline group population quantile 

survival time.
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Figure 2. 
Estimated quantiles of population survival times for the South Wales nickel refinery dataset. 

The black, blue, and orange solid lines correspond to the point estimates based on the 

samples obtained from the full cohort, classical case-cohort sampling scheme, and stratified 

case-cohort sampling scheme, respectively. Their associated pointwise 95% confidence 

intervals are presented by (dotted) lines of the same colors.
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L(n) = 0.01 is selected. These settings are comparable with those discussed in Zheng et al. (2013) in the sense that the estimates are all but unbiased with mean squared errors very close to 0.We illustrate through simulations the improvement in efficiency by using additional weight functions as introduced in Section 3.2. Our numerical study shows that the weight functions, ψ(t) = (ψ1(t),ψ2(t),ψ3(t)) = (1, t, 1/t), generally give stable and improved estimates. Note that the first weight function ψ1 gives the original estimating Equation (10), ψ2 assigns more weights on survival times around the tail regions, and ψ3 puts more weight on shorter survival times. Table 4 summarizes the simulation results. We observe that the GMM-type estimator β̂(τ)eff improves the efficiency of the estimators significantly, particularly when the subcohort size is smaller. Moreover, the corresponding SEE’s computed via the proposed resampling method are with good empirical coverage probabilities.Stratified case-cohort sampling—We generate the survival and censoring times similarly as in the classical case-cohort sampling example except that the probability of subjects being selected varies according to their covariates Z’s. Selection probabilities for cases (p1) and censored samples (p2) are specified as follows: p1(Z) = 1 − {1 + exp(2.5 + 0.25Z2)}−1 and p2(Z) = 1 − {−1.5 + 0.5 exp(2Z2)}−1. Under this setup, about one third of the samples selected are cases while the mean overall censoring rate is maintained at a level of 75%. We also examined the performance of the efficient estimator under the stratified case-cohort sampling. The results are summarized in Table 5. Biases are negligible in all cases and the ECPs are close to their nominal values. For the efficient estimator, reductions in standard errors of β̂(τ) are also observed.
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