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Abstract

Biased sampling occurs frequently in economics, epidemiology, and medical studies either by
design or due to data collecting mechanism. Failing to take into account the sampling bias usually
leads to incorrect inference. We propose a unified estimation procedure and a computationally fast
resampling method to make statistical inference for quantile regression with survival data under
general biased sampling schemes, including but not limited to the length-biased sampling, the
case-cohort design, and variants thereof. We establish the uniform consistency and weak
convergence of the proposed estimator as a process of the quantile level. We also investigate more
efficient estimation using the generalized method of moments and derive the asymptotic normality.
We further propose a new resampling method for inference, which differs from alternative
procedures in that it does not require to repeatedly solve estimating equations. It is proved that the
resampling method consistently estimates the asymptotic covariance matrix. The unified
framework proposed in this article provides researchers and practitioners a convenient tool for
analyzing data collected from various designs. Simulation studies and applications to real datasets
are presented for illustration. Supplementary materials for this article are available online.
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1. Introduction

Biased sampling occurs frequently, either naturally or by design, in many observational
studies. For example, the cross-sectional prevalent cohort sampling scheme is commonly
employed to study a rare disease. It is well known that the prevalent sampling scheme favors
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individuals who survive longer, because diseased individuals who died before the
recruitment would not be sampled. As a result, prevalent cases do not comprise a
representative sample of the target population. Problems of this sort can also be found in
cross-sectional studies in ecology (McFadden 1962; Muttlak and McDonald 1990; Chen
2010), industrial quality control (Cox 1969), and economics (Kiefer 1988; Helsen and
Schmittlein 1993; de Ufia Alvarez 2004). Another commonly encountered biased sampling
method is the case-cohort design (Prentice 1986; Chen 2001). The case-cohort design
provides an economical approach to conducting epidemiological studies that involve rare
diseases and/or expensive exposures, where covariate information is collected from all
failures but only from a representative subsample of censored observations. Various
extensions of the case-cohort design can be found in Borgan et al. (2000), Kulich and Lin
(2004), and Samuelsen et al. (2007).

Ignoring sampling bias may lead to substantial estimation bias and fallacious inference. This
issue has drawn considerable attentions recently; however, most existing literature focuses
on either the proportional/additive hazards or the accelerated failure time models. For the
Cox proportional hazards (PH) model, estimation procedures under length-biased sampling
have been studied in Luo and Tsai (2009), Qin and Shen (2010), and Huang and Qin (2012);
large sample properties for case-cohort sampling have been developed in Self and Prentice
(1988), Lin and Ying (1993), and Chen and Lo (1999); see also Lu and Tsiatis (2006), Shen
et al. (2009), and Kim et al. (2013) for corresponding treatments under the linear
transformation model, a generalization of the Cox model. For the accelerated failure time
(AFT) model, estimation procedures under various biased samplings have been discussed in
Shen et al. (2009), Kong and Cai (2009), Chen (2010), among others.

In this article, we propose a general approach for analyzing biased sampling data using
quantile regression. The most prominent feature of quantile regression is its ability to
accommodate heterogenous effects of the covariates, which can influence not only the
location but also the shape of the survival time distribution. It is known that the
heterogeneity in covariate effects cannot be easily incorporated in either the Cox PH model
or the AFT model. Furthermore, the conditional quantile of the survival time is easier to
interpret than the hazard function and is often of direct interest. Existing work on censored
quantile regression without biased sampling includes Ying et al. (1995), Portnoy (2003),
McKeague et al. (2001), Peng and Huang (2008), Wang and Wang (2009), and many others.
For a general introduction to quantile regression, we refer to Koenker (2005).

Recently, several authors have considered quantile regression under biased sampling. Chen
and Zhou (2012) and Wang and Wang (2014) investigated length-biased data. Both
procedures require estimating the censoring time distribution. Chen and Zhou (2012)
assumed a Cox PH model for the censoring distribution; however, their estimation procedure
can lead to biased estimation under a misspecified censoring time distribution. On the other
hand, Wang and Wang (2014) relied on a nonparametric kernel smoothing estimator of the
censoring distribution that can suffer from the curse of dimensionality in practice. For the
classical case-cohort sampling scheme, Zheng et al. (2013) developed an estimation
procedure for quantile regression. These existing formulations, however, can neither be
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applied to other biased sampling schemes nor yield efficient inference on the regression
parameters.

The main contribution of this article is twofold. First, our formulation offers the first unified
approach for estimating the conditional quantile of the survival time under a variety of
biased sampling schemes, including, in particular, length-biased sampling, case-cohort, and
stratified case-cohort designs. We prove that the proposed estimators are consistent and
asymptotically normal. We establish the theory of the regression coefficient estimate as a
process of the quantile index while the majority of the literature discusses inference for a
fixed (set of) quantiles. Resampling methods are also proposed to construct confidence
intervals and the consistency of the bootstrapping procedure is justified. Second, we show
that the efficiency of the proposed estimation procedure can be improved by incorporating
additional knowledge about the bias sampling mechanism. Using length-biased sampling as
an example, we demonstrate that an efficient estimate can be obtained by combining
estimating equations via the generalized method of moments (GMM; Hansen 1982).
Compared with Chen and Zhou (2012) and Wang and Wang (2014), the new approach
avoids estimating the nuisance censoring time distribution, which can be challenging in the
case of covariate-dependent censoring.

From the application perspective, the unified solution is expected to benefit a wide range of
applications with different types of biased samples. The codes for simulations and numerical
studies, composed in MATLAB, are available upon request.

The rest of the article is organized as follows. In Section 2.1, we motivate the procedure
using complete data without censoring. In Section 2.2, we present a unified framework for
the censored data under biased sampling; in Section 3 we discuss in detail length-biased and
right-censored data and demonstrate how to improve the estimation efficiency by GMM.
Theoretical properties are studied in Section 4. Sections 5 and 6 present the simulation
results and real datasets analysis, respectively. Section 7 concludes the article. All the
technical proofs are presented in the supplementary material.

2. Quantile Regression Under Biased Sampling

2.1 Complete Data Without Censoring

We first consider the ideal case where the survival time is observed for all subjects. Not only
does this serve to motivate the more technically involved censoring case in Section 2.2 but
also is of independent interest, see, for example, the applications in Robbins and Zhang
(1988), Sun and Woodroofe (1991), Gilbert (2000), and Efromovich (2004).

Let 7" and Z" denote the survival time and the p-dimensional vector of covariates of the
target population. For z € (0, 1), the conditional quantile function of 7" given Z* =z is
defined as Q(z|z) = inf{t: AT < t| Z* = z) = t}. We consider the following quantile
regression model

J Am Stat Assoc. Author manuscript; available in PMC 2018 August 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Xu et al.

Page 4

O |2)= exp (z' By()}, forze(0,1), (1)

where By(z) is the vector of unknown quantile regression coefficients describing the effects
of covariates Z”* on the = th quantile of log 7". Compared with the AFT model and the Cox
model, the quantile regression model (1) is more flexible in the sense that the covariate
effect is not restricted to be constant across different z s.

Denote the conditional density, hazard, and cumulative hazard functions of 7" given Z" =z
by F(¢| z), A(t] z), and A(t| z), respectively. We use A", whenever applicable, to denote the
time from the initiation event, such as the onset of a disease, to sampling. Note that A™ is
often referred to as the truncation time. Let 7, A, and Z be the observed survival time,
truncation time, and covariate vector under a biased sampling scheme, and let 7 (¢| Z)
denote the conditional density of 7 given the covariate Z.

The observed data consist of niid replicates of (7, Z, A), denoted by (7}, Z; A), for i=1,
..., n. We consider a general biased sampling scheme (e.g., Kim et al. 2013) where the
density ratio 7 (¢| Z)/f(t| Z) is well-defined on the support of 7" and there exists a function
(9 such that

__wftl?)
fr L) = Twis)f(s | Zyds )

Here the weight function m(9) is known for a given study design; moreover, it describes the
sampling bias of an observation, that is, it specifies the relationship between the distribution
of the survival time 7~ in the target population and that of the observed survival time 7.

For random variables (7", Z™) of the target population, it is straightforward to show that the
stochastic process I(T* < 1) — [ (’)I(T* > ndA(t | Z*¥) is a martingale with respect to the o~

filtration #;containing information up to time # Hence, we have
E{d(T* <0~ KT 20dA(t | Z%) | 2"} =0, (3)

where the expectation is taken with respect to the conditional distribution of 7" given Z*. As
a result, in the absence of sampling bias, we can construct consistent estimation procedures
based on Andersen et al. (1993). Under biased sampling, however, replacing 7" with 7
yields biased estimation. As suggested by the following lemma, unbiased estimating
equations can be constructed by weighing the observations inversely proportional to the
sampling weight.

Lemma 1—Under the biased sampling scheme specified in (2), we have
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E {dI(T <) —vOI(T 2 )dA(t | Z)} =0, (4)

where I(:), the weight function, is

V(1) = % 5)

and, for ease of notation, the conditional expectation £z is taken with respect to biased
sampling distribution 77 (- | Z) given covariates Z.

Equation (4) serves as a basis for constructing unbiased estimating equations for a general
family of biased sampling schemes. In particular, setting v{§ = M/ T}), we have the
estimating equations

n
"_1/22 Z.[I(Tl. <nH- /(;tvi(s)l(Tl. > $)dA(s | Z)f =0.

i
i=1

-
. . Z; p(r)
Under the quantile regression model (1), we have Ae * pe |Z)= — log (1 -7 for z€ (0,
. 2w o
1). As in Peng and Huang (2008), replacing twith ¢ * in the foregoing estimating
equation yields

. Z] o) ANt zpes)
SBry=n""2 Y 2T <e ") - f vie Iz e aHs| =0, (6)
] 0

i=1

with H(s) = -log(1 - s) for0< s< 1.

If additional knowledge is available about the biased sampling mechanism, other choices of
the weight function based on (5) may be used to derive a more efficient estimator (Section
3). We consider the following example for an illustration.

Example 1 (Left truncation)—Left truncation occurs when individuals come under
observation only when they are event free before the truncation time A", thatis, 7" = A”.
Here A" is usually assumed to be conditionally independent of 7" given Z* (Kalbfleisch and
Prentice 2002, p. 14). Under left-truncation, we have
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e ar)
I 28 =TS Dps a0

Thus the weight function is given by um(?) = (t= A) and, by noting that (7)) = (T;=2 A) =
1 in the observed data, we have v{}) = [(t= A).

In the special case of length-biased sampling, where the truncation time A™ is uniformly
distributed, the residual lifetime 7;- A;and the truncation time A;have an exchangeable
joint distribution (Vardi 1989). By exploiting this special structure, we can show that

Ey(dI(T; < 1)} = E; {1t 2 ADI(T; > (1| Z,)}
=E 12T, = AYI(T,; 2 ndA( | Z))} .

It follows that, for any = € [0, 1], setting v{§) = el(t= A) + (1 - m)(t= T;— A) in (6)
yields unbiased estimating equations. Further discussion of this example under right
censoring is given in Section 3.1.

2.2 Proposed Method for Censored Data Under Biased Sampling

We now consider the more challenging case where the survival time is subject to right
censoring. Similar to Section 2.1, we denote by 7" the survival time in the target population
and by C" the censoring time, where 7" and C" are assumed to be conditionally independent
given the covariates Z” and the possible truncation time A". For left-truncated and right
censored data, one can conceptually define C" to be the sum of the underlying truncation
time A" and the independent censoring time that terminates the observation of the residual
lifetime beyond A* (see Section 3.1 for more details). Let 7 = min(7", C)and A" = (7" <
C"). The conditional density function of (7°,A%), given the corresponding covariates Z*, is
denoted as 7 o* (£, 8| Z") for t= 0 and § € {0, 1}.

Under a biased sampling scheme, let 7and Cbe the corresponding survival and censoring
times, respectively. Note that (7, C) has a different distribution from that of (7%, C") due to
the sampling bias.

We define 7= min(7;, €) and A = [ T< C). We assume that the conditional “mixed” joint
density of (7,4) given Z (and possible truncation time A), f7a(, | Z), satisfies

W(t.8)f , (6612)

, (8)
e 0.1y WG, d)ff*’A*(s,d | Z)ds

fp .512)=

where u(s, 6) is the bias function for sampling. This generalizes the setup in Section 2.1 to
incorporate right censoring. Many common forms of biased sampling settings fall under the
proposed framework, which includes left-truncation, case-cohort sampling, stratified case-
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cohort sampling, and others; see Examples 2-4 below. Formulation (8) resembles the setting
of Kim et al. (2013), which, however, did not consider the length-biased sampling studied in
Wang (1991), Asgharian et al. (2002), Shen et al. (2009), and many others. We consider the

length-biased sampling, an important special case under our framework, in Section 3. More

importantly, based on the proposed framework, we will further study efficient estimation of

the model parameters.

As a generalization of (3), (7", A", Z) in the target population satisfies
E(dA*IT* <6 = IT™ > ndAa¢ | 2%) | 2%} = 0,

where the expectation is taken with respect to (7°,A") given Z” and, as defined in Section
2.1, A(t| Z") denotes the cumulative hazard function of 7" given Z* (Andersen et al. 1993).
We aim at constructing the weight function v{#) such that the above equation still holds with
(7".A") replaced by (7; A). Let Y ()= KT;=dand N{) =DATi< D, i=1, .. n

Lemma 2—Under the biased sampling scheme in (8), we have

E {dN(D)} = EZ{v()Y(dA(t | )},
where I(:), the weight function, is given by

. JT.A1Z .
W(t’l)_fT*’A*( | Z) f \61.2)

o = ~ , (9
w(T', A) fiA(T,A|Z) ><f,f*’A*(t,IIZ) ©

v(t) =

and £z is the expectation with respect to biased sampling distribution 77, conditional on Z.

In the absence of censoring, that is, C= 00, we have (7,A) = (7, 1) and therefore 1(-) reduces
to the form in Lemma 1. When v{8) = w(¢, 1)/w( T;, A) for i=1, ..., n, we can write

1y & z] g0 Z] By
Ej|n~ Z Z AN (e ! ) — A € v(OY (NdA@ | Z) | = 0.

i=1
A change of variable gives

n
n—l/Z.Z Zi o,

i=1

T T T
ARG Z B\ Z] Bos)
E, Ne ! Or)/ofv,(e i OS)Yi(e i 0 4 s)
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This leads to the following unbiased estimating equations

n ) LAY N AY )
S, B0 =n""? Y 2N iy A vie S)Yl.(e’ NaH@s) =0, (10)

i=1

The weight function (9) provides a systematic way to construct the estimating equations for
many biased sampling schemes. We consider some examples below for illustration.

Example 2 (Left truncation and right censoring)—Consider the left truncation
setting in Example 1. Conditional on the truncation time A, we have

AS0f0, 0312)

2ie {0,1}/1(A SS)ff*,A*(S’d | Z)ds

~ (,812)=
fT’A(t | Z)

Following (9), this implies v{§) = [A;< ). Thus, (10) can be reexpressed as

.
n z] ps)
s,B0=n""7% 2, e

i=1

Yi(

z[po e A0
Nl.(e )— [) 1 Ai <e

dH(s){ =0.

Further discussion on this example is provided in Section 3 on efficient estimation.

Example 3 (Case-cohort design)—Under the case-cohort design (Prentice 1986),
complete information on covariates is collected only for uncensored observations. For
censored observations, suppose that the probability of selecting a censored individual into
the sub-cohort is p, p € (0, 1). Under this biased sampling, the distribution of ( 7,A) satisfies

{6+0 —5)p}f%*’A*(t,5 | Z)

Zie o1y /td+d- d)p}ff*, A*(s,d | Z)ds

fT,A(t’é |Z) =

Following (9), v{d = 1{A;+ (1 -A)p}, and this gives

T T
_ n Z. B T Z. f(s)
S (1) =n ”ZZIZI. Ne )—[) myi(e 7 aHs) | = o.
1=

Note that the estimating equation has the form in Zheng et al. (2013).

Example 4 (Stratified case-cohort design)—The stratified case-cohort design was
proposed to improve the efficiency of the traditional case-cohort design (Borgan et al. 2000;
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Kulich and Lin 2004), where the probability of selecting a censored observation into the
subcohort, p(X), is allowed to depend on X, a vector of covariates that may or may not
overlap with Z. As in Example 3, we have

6+A-9pX)}f ., &7
T ,A

{0,1} {d+(1 - d)[’(X)}f?* A*(S’d | Z)ds®

ff,A(t’é | Z) = Y,

which implies that (10) can be constructed with v{#) = 1{A;+ (1 - A)p(X)}.

2.3 Computation of f(x)

The proposed estimating equations under different biased sampling schemes share the same
generic form as in (10).

Motivated by Peng and Huang (2008), we adopt a grid-based algorithm. The estimator of
B(7), denoted by ,B(r), is defined as a right-continuous piecewise-constant function that
jumps only ona grid () ={0 = 7y < 7y < -~ < 71 = 7, < 1}, Where z, is some constant
subject to certain identifiability constraint due to censoring; see condition C4 in the
supplementary materials. Note that when = =0, from the model assumption (1), we have 0 =
Q01 2) = exp{z" By(0)}. Therefore, we choose A(0) such that exp{z™ A(0)} = 0. Let || (5l
= SUP1<ksL(n) | Tk~ 7. The estimate ,é(rk) is obtained by sequentially solving the
following estimating equation:

T T4 Ts
—12 % Z ) kol Z/pa)  Z/ B
n 1/2-2 ZN (e ! k)_ Z e i ])Yi(e i j)X(H(rJ.

H(r.);=0.
i=1 j=0 !

+17

Following Peng and Huang (2008), the above equation can be transformed into an L3
optimization problem that can be solved using the Barrodale—Roberts algorithm (Barroda
and Roberts 1974). Alternatively, the corresponding optimization subroutine can be
implemented easily in MATLAB via the function f m nsear ch. One practical concern is the
choice of the grid size in the sequential procedure. Theoretically, as shown in the proof of
Theorem 1, a grid with size of order o{/71/2) ensures weak convergence. In the simulation
study, we adopt an equally spaced grid with size 0.01 and find it works satisfactorily for a
variety of settings. Alternatively, we may adopt the estimation procedure based on
estimating integral equations proposed in Huang (2010).

3. Efficiency Improvement With GMM

In this section, we show that the efficiency of the unified estimation procedure described in
Section 2 can be further improved by applying the GMM method (Hansen 1982). To our
best knowledge, this is the first attempt in the literature to study the efficient estimation for
quantile regression under biased sampling. In Section 3.1, we consider the case where
external information about the sampling mechanism is available. We use length-biased
sampling as an example to illustrate how the external knowledge about the distribution of the

J Am Stat Assoc. Author manuscript; available in PMC 2018 August 03.
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underlying truncation time can be incorporated in the estimation of regression parameters. In
Section 3.2, we focus on general biased sampling scheme and demonstrate that significant
efficiency gain can be achieved by properly introducing a class of weight functions in the
estimating procedure.

3.1 Efficiency Improvement Using Additional Sampling Information

When additional knowledge about the biased sampling mechanism is available, it is possible
to incorporate the additional information to improve the estimation efficiency through the
generalized method of moments. Here, we focus on the length-biased sampling example and
demonstrate how an optimal weight function can be determined.

We write Vas the residual lifetime measured from the truncation time A to failure. Suppose
Vis censored by C, where Cis independent of (A, V) conditional on Z, then the observed
survival and censoring times, 7and C, can be expressed as

T=A+VandC=A+C.

Conditional on Z, the density of 7, f7(¢| Z), can be related to the conditional density of 7%, f
(¢] Z), under the stationarity assumption (Lancaster 1990, chap. 3)

1
1 2) = i1 2,

where ((Z) = [ tf(t| Z)dtis a normalizing term. In addition, the joint distribution of A and
Vis (Vardi 1989)

fA’V(a,vlZ)=ﬁf(a+v|l)l(a>0,v>0).

Denote the conditional density and survival functions of Cas g{t| Z) and S{t| Z):= AC> t
| Z). Recall that 7;= min(7;C), Aj= KT;i< C), N{) = NKTi< hand Y{ = KT;j= 5. As
shown in Example 2, conditional on the truncation time A, we can take the weight function
following (9) as

ff* A*(Ti’ Ai | Zl) f]“-’ A(t’l | Z[)

V(1) = = 1A, <. (11)

= X
ff’A(Ti’ Ai | Z,‘) ff*’A*(t’ 1 | Zi)

Here, we defer the derivation of (11) to the supplementary material. It follows that
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1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Xu et al.

Page 11
E {dN (1) — I(A; <Y, (OA(1 | Z)} = 0. (12)

We can also construct other weight functions under the stationarity assumption. In particular,
as shown in Huang and Qin (2012),

E {dN () = AI(T ;= A, < DY (DA | Z)} =0.  (13)

We can, therefore, define a family of subject-specific weight functions by combining the
results in (12) and (13):

vit;m) = 2l(A, <D+ —mAIT ;- A, <1), (1)

where € [0, 1]. It follows directly from (12) and (13) that

E, n‘mél z, Ni(eZiTﬂo(ﬂ) _ /O i) O(T)}vi(t; DY (OdA( | Z) | =0, (15)
and a change of variable gives
Eyn " Zéjl z, Ni(eZiTﬂO(T))— /0 Tvl.(eZiTﬁO(s);n)Yi(eZiTﬂO(s))dH(s) =o0.
This motivates the following estimating equations:
S, (.7 7) = ”'”22 Z, Ni(eZiTﬂ(T)) - A Tv,-(eZiTﬂ(s);n)Yi(eZ"Tﬁ(s))dH(s) =0. (16)

The unbiasedness of the above estimating equation holds under covariate-dependent
censoring. Moreover, the proposed method does not need a consistent estimate of the
conditional censoring distribution function S{42). This relaxation substantially reduces the
computational complexity, especially when the number of covariates is not small; see the
simulation studies in Section 5.

Efficiency improvement using GMM—We now apply the GMM method (Hansen
1982) to improve the estimation results. Our goal is to determine a best combination of (12)
and (13) in the sense that the resulting standard error of the estimatorﬁ is minimized. Let
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S, (B, v.m=0)
n(p, o) = [ )

S,B.7m=1)

where S{(B, =, == 0) and S/B, t; = = 1) are simply (16) with v{t; == 0) = (T;— A;< b
and v{(t m=1) = [A;< 1, respectively. The GMM estimator of 8 minimizes

B0 W0 o).

m

where Wis a 2p x 2p positive definite working covariance matrix, depending on the true
parameter By(:), which is usually evaluated at some preliminary consistent estimator ,Bim(-).
A simple way to get the initial estimate ,éim(-) is to solve (16) with = =0.5.

The asymptotically efficient estimator Bus(7) is obtained when WABint, 2 = var[7(Bint, )1,
that is,

ﬁeff(r) = arg mﬁin n(B,7) " var {n(ﬁim, I (X}

We can estimate var{ 7{Bin., D} by the sample covariance matrix 7(Bint, D) 7(Bint, )’. This
data-driven approach provides a way to construct the optimal linear combination of
estimating equations in n(,ﬁint, 7). In Section 5, we demonstrate via simulations the
improvement in efficiency by using this GMM approach.

3.2 Efficiency Improvement Using Additional Weight Functions

In this section, we show how the efficiency of the estimates can be improved for a general
biased sampling scheme. It follows from Lemma 2 that

E {w@dN®)} = EZ {y@Ov()Y(D)A( | 2)},

where y(2) is a weight function that may depend on Z. As a result, estimating Equation (10)
can be generalized as

T

~ 1z T
w(T N (e

T T
p@ T Z. fGs) Z. f(s) Z. f(s)
)—f wie ' q)vl.(e’ c)in(e’ s)dH(s) =0. (17)
0

n
n—1/2 2 Zi

i=1

Thus, we can construct a family of weighted estimating equations by considering different
choices of y. The possibly data-dependent weight function y plays a similar role as the
weight function in the rank-based estimating equations in the AFT model (Tsiatis 1990;
Ying 1993; Jin et al. 2003).
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Intuitively, one would consider the optimal choice of - that minimizes the asymptotic
variance of the estimates. However, direct estimation of the optimal y for the quantile
regression under biased sampling is very challenging. This is mainly due to two reasons.
First, the optimal y involves the derivative of the unknown density function of the failure
time. Although estimation of the derivative in the absence of biased sampling has been
studied under the AFT model (e.g., Lin and Chen 2013), a special case of the model (1), the
heterogeneity effects of the covariates under the quantile regression make the problem much
more complicated and challenging. Kernel smoothing techniques may be applied, but their
performance can be poor when there are more than a few covariates and/or there is a large
number of quantiles that need to be estimated. Second, the optimal y-also depends on the
sampling weight function v. This makes y a study-specific function for different biased
sampling schemes and further complicates the derivation of the optimal . Even for the
special case of the AFT model, the optimal weight has not yet been established in the
literature.

To this end, we propose a computationally efficient and robust method to improve the
estimation efficiency. Equation (17) provides different estimating equations for Sand, as
before, we can apply the GMM method to improve the estimation from (10).

In particular, consider K weight functions and denote y{(2)= {y1(9, ..., wx ()} T. Let n(B,
) be the estimating equations for the given sets of weights, that is,

T T

e ~ 7] p0) ©zZlpe) 2] e Z] o)
npoy=n""?Y ;@ wT )N ') - A wle ' e Y e T A (),

i=1

(18)
where ® is the Kronecker product. The GMM estimator of B(z) minimizes
0B WB, o nBo).

where Wis a positive definite working covariance matrix, depending on some initial
estimator ,BAim(-). A simple way to get,ﬁint(-) is to use the estimator from the unweighted
estimating equation. Then the asymptotically efficient estimator of £(z), denoted by ﬁeff( z),
is obtained as

ﬁeff(r) = arg nlﬁil’l ﬂ(ﬂs T)T var {r](ﬁims T)}_lﬂ(ﬂ’ T) . (19)
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We again adopt a grid-based algorithm to solve ﬁeﬁ(r). Specifically, consider the efficient
estimator ,éeff(r) atafixed = Inthe grid (5 ={0=p< 7y <~ < 7y = 7, < 1} used to
solve the unweighted estimating equation, there is z;,*€ ', () such that z;*< =< z,*4;. For
0=1< 1 << 1% wWe define

L ~  zlpay K z]Be) 2] Be) 2By
nBor)=n""2 D 2@ wT N ' )= Dwte T Nyxve ' e )
i=1 ji=0
{H(Tj+1_H(Tj)}]-
(20)

To estimate ﬁeﬁ(r), we choose ,éeff(O) such that exp{z " ﬁeﬁ(O)} = 0 and then sequentially
estimate (70, 1 < k< L*, by minimizing

7 B2 WP By

Finally, we have efficient estimator for ﬁeﬁ(t) as ﬁeﬁ(rL*).

Remark 1—The proposed approach uses a combination of Kweight functions {y1(9, ...,
w ()} to approximate the optimal weight function . In practice, we may take simple
polynomial functions of #for y’s. As Kincreases, the method is expected to provide a better
approximation for y” while introducing additional estimation variation and higher
computational cost. In Section 5, we illustrate through simulations the efficiency
improvement.

Remark 2—For the length biased sampling, under the stationarity assumption, we can also
construct estimating equations using an unconditional approach, which takes the expectation
with respect to Vand A.

We consider an unconditional version of the weight function v;. Note that setting the weight
function fBSC(s | Z))ds in estimating Equation (17) yields

J Am Stat Assoc. Author manuscript; available in PMC 2018 August 03.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Xu et al. Page 15

-
Z: B(7)
N.(elﬂOT)
gl
A Z

/eXP(ZiTﬁO(r)) .
Jo'S (s 1 Z)ds

——————vOY,(0dAG | Z)
0 / 05,51 Zds

Az
i

T
= =E,|—
wzZ) Z| T
Jo'S (s 12)ds

This leads to the estimating equation

ZA.
i1

lf"s Z.)d
/O c(sl i)s

N l.(e

1=

z] p) l
)—11 =0,

1

which is the estimation procedure proposed in Wang and Wang (2014). Similarly, for z=1,
it follows from

1

E, lm{dlvi(t) —vADY (DdA( | Zl.)}] =0

and
-
R GG RN
Ey A S(-ATZ) AN Zy) = WZ)
At
Ts(T,-4A.12)
that
z B z] b
Y m—————(Nfe y—17}=0.
SN TS T -A 12y

We can combine the above unconditional estimating equation with that proposed in the
previous section by applying the GMM method. However, a consistent estimator for the
censoring distribution S{: | Z) is required for this unconditional estimation procedure. This
introduces additional complexity of the estimation procedure. Hence, we do not further
pursue the unconditional approach in this article.
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4. Large-Sample Properties and Statistical Inference

4.1 Asymptotic Properties

We first establish the uniform consistency and weak convergence of the estimator ﬁ(r) given
in (10) of Section 2.2 for the general biased sampling scheme. Applying empirical processes
techniques, we investigate the large-sample behavior of,é(r) as a process of . The results
are summarized in Theorem 1.

Theoreml—Assume that Conditions C1-C5 (stated in the online supplemental material)
hold. If lim; o |7 ()l = O, for any z;€ (0, z,), then sup e[z, ||,BA(r)—,BO(r)|| — 0in
probability. In addition, if lim,,co 72 || 15|l = 0, then M/2{B(z) - Bo(zJ} converges
weakly to a Gaussian process for € [1p 7).

The covariance structure of the aforementioned Gaussian process and the proof of Theorem
1 are given in the online supplemental materials. Next, we state in Theorem 2 the large-
sample property of the proposed efficient estimator described in Section 3.2.

Theorem 2—Consider the GMM efficient estimator given in (19) at z € [z z,]. Under
Conditions C1-C6, nllz{ﬁeff( 7) — Bo(zJ} converges weakly to a multivariate normal
distribution.

Remark 3—Although a sequential procedure (Sections 2.3 and 3.2) is used to estimate the
quantile regression coefficients, similarly to Peng and Huang (2008), the numerical
instability of B(z)at small z has little impact on the estimation at larger z ‘s; see, for
example, Lai and Ying (1988) for a study of tail instability.

4.2 A New Resampling Procedure for Inference

In this section, we propose a new resampling approach that provides a consistent estimator
of the asymptotic covariance matrix (Theorem 3). The resampling method avoids the
difficulty of estimating the unknown density functions of both the survival time and the
censoring times in the asymptotic covariance matrix. It has the flavor of the perturbation
approach of Jin et al. (2003) and Peng and Huang (2008), but enjoys the novel feature that it
does not require to repeatedly solve estimating equations. In particular, it is considerably
faster than a more straightforward resampling method (described in online supplementary
materials) that directly extends the perturbation idea and needs to calculate the estimation
path 4°(-) many times.

To describe the new resampling procedure, we first introduce some notation. For b € R”,
define

J Am Stat Assoc. Author manuscript; available in PMC 2018 August 03.



1duosnue Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Xu et al. Page 17

.
T n z'b
1
m) = E{ZNEE Py, m) =+ Y AZNGe ',
i<
T T
Ay = E{zve? Pyye? Py,
zv  z'b

Zote ' HYe .

.
B = £28%15 @ P11z exp @b,

T T
Jb) = — E(2® 2L P f?(ez b1 7y exp @by} .

The new method is motivated by the theoretical property of the estimating equation. From
Equation (S5) in the online supplemental materials, we can write

1! 2im(B @) = m{ By} = (=5, By ) + o0, (D).

where ¢(g)(z)is defined in (S6) in the online supplement. Theorem 1 shows that
N B — B,(v)} converges weakly to a Gaussian process with covariance matrix B{ﬂo(r)}‘1

T [B{Bo(z)} 11T, where £*(z) denotes the limiting covariance matrix of 2[m{B(zJ} -
m{Bo(z)}]. To evaluate the limiting distribution of Jnlp) - B,(»], one can estimate

B{Bo(z)} and the distribution of 7/2[m{B(z)} — m{Bo(z)}] as follows.

i Estimation of B{By(t)}. Motivated by Zeng and Lin (2008), we use a
perturbation method to estimate B{By(zJ}, which is the slope of m,(-) with
respect to B(z). Specifically, M independent multivariate standard normal
variables {y} =1 .. asare generated to serve as the perturbations on the estimated
B(7). These perturbed values H2m,{B(z) + m Y2y} will then be regressed on ¥;
The resulting slope matrix é{ﬁ(r)}, whose jth row is the jh least square slope
estimate, is a consistent estimator of B{5y(7)}.

ii.  Estimation of the distribution of "2[m{B(7)} - m{Bo()}]. We derive the
following approximation result for ¢{—S,(By, ©)} (see (S4) in the online
supplementary materials)
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n2m{B@)} = m{By}] = — (S,(By7) = S, By 7 _ D)
k k
= Y T 0+ 3By, - pB~ Bz, _ DHHH () = Hz, _ DS (BT, 1)
£=2h=¢
_Sn(ﬂo’fh_z)} +0p(1)

2= S,Bp D} +0,(1).

(21)

The approximation holds uniformly in z. As a result, we can use the distribution
of ¢,{-Si{Bo, D} to estimate that of 72[m{B (1)} — n{Bo(D)}]. The expression
(21) of ¢, {-S(By, ©)} involves the unknown matrices B and J. As in Step (i), we
can get estimates for B(By(zp)) and I(Bo(zs)), =1, ..., k by applying the
perturbation method for m,(-) and m(-), respectively. With the estimates of B
and J, we use the perturbed estimating functions §,7(,3 7) to construct an
estimator of the distribution of ¢,{—S,(8y, 7)}. Specifically, we show in the proof
of Theorem 3 that ¢,,{—§,,(/§, 7)} has the same limiting distribution as ¢,{—S{(fo,
7)}. Then we generate M, (some large number) replicates of .§,,(,[§ 7) and use the
corresponding empirical distribution of ¢,,{—§,,(,[§, 7)} to estimate that of

¢ =SB, T}

Combining (i) and (ii), we can use the distribution of B{A(} ! ¢,{-S/B, D} as an
estimator of that of \/n{ ﬁ(f) - By(®}. We present the following result that validates inference

based on such resampling procedure.

Theorem 3—Assume Conditions C1-C5 are satisfied. Conditional on the observed data, B
{B (9} L ¢,{-S{B, )} converges weakly to the same limiting process of H2{A(z) -

Po()} for € [ty 7)), where = (0, 7,).

Remark 4—Unlike existing resampling approaches, such as Jin et al. (2003) and Peng and
Huang (2008), our new method does not require to repeatedly solve the estimating
equations, which is quite time consuming in the sequential optimization of the estimating
equations; thus our method is computationally fast. The consistency of the proposed
resampling method is established in Theorem 3 and we can use the resampling percentiles to
construct confidence intervals for £. It is worth mentioning that in general, the weak
convergence of the resampling estimates may not directly imply the convergence the
bootstrapped moments, such as the covariance matrix, and additional regularity conditions
may be needed to establish such convergence (see, e.g., Kato 2011; Cheng 2015).
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Remark 5—At the beginning with small z values, the estimates for B and J' matrices may

not be stable due to the small sample size. In this case, for small z values, we may apply the
perturbed resampling method (described in online supplementary materials) while for larger
values, we adopt the introduced new estimation procedure.

5. Simulation Studies

Length-biased Sampling—In the first set of simulations, we consider length-biased
sampling. We generate the survival time from the following log-linear model

log T¥ = Z By +ZoPy+ (L +7Z) e,

where e follows a normal distribution and ; controls the level of heteroscedasticity. In
particular, if is 0, the above model reduces to the classical accelerated failure time model.
The corresponding conditional quantile function is

Qlog(T*)(T | Z) = ﬁ(o)(f) + Zlﬁ(l)(f) + ZZﬁ(z)(T)’

where Z = (21, 22)", Bo)(?) = A7), fay(D) =+ yQAD) =1+ yXA7), Bz)(2) = f2 = -1,
and Q(z) denotes the zth quantile of . We generate Z; from a Bernoulli distribution with
AZ; =1) =0.5 and 2 from a uniform distribution, Unif(-0.5, 0.5). The initiation time A is
generated from the Unif(0, u4) distribution, where u4 >0 is a constant that exceeds the
upper bound of 7" such that A7" € (t£68) | A< T) =0for t>usand asmall § >0. We
only retain the pairs with 7° > A, which results in the length-biased sample 7;= A, + V;for i
=1, ..., n Due to the conditionally independent censoring, only 7;=min(7;C) = A;+
min(V;,C) can be observed, for i=1, ..., n.

In our study, y is set as 1; e is generated from a normal distribution M0, 0.52); 4 is set to
be 50; and C;is generated from an exponential distribution with rate [1 - 0.94.2, >0)]A.
The value of A is chosen according to the prespecified censoring proportions, 20% and 40%.
We consider the weight function specified in (14) and summarize in Table 1 the results for
different values of 7’s (with s corresponding to the GMM estimator) when the censoring
rate is 20%.

We observe that the choice of z does not affect the biases of the estimators significantly.
However, the standard error associated with the GMM estimator is lower than that of their
counterparts evaluated at other values of 7, say at 7z = 0.00, 0.50, or 1.00. In other words,

the GMM procedure improves the efficiency of the proposed estimator. We observe that the
performance of the estimator with 7z = 0.5 is similar to that of the GMM estimator. In the
remaining numerical study, for computational simplicity with length-biased data, we adopt
= 0.5 and find it works well in various scenarios. Note that 7z = 0.5 has an interpretation of
striking a good balance between the two estimating equations (12) and (13), which are set
for adjusting biases due to left-truncation and right censoring, respectively. We also observe
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that the perturbation approach provides a satisfactory estimate of the standard error of the
proposed estimator.

In addition to bias, standard error, and mean squared error, Table 2 also summarizes the
estimated standard error (SEE) based on the perturbation approach illustrated in Section 4 as
well as the empirical coverage of the 95% Wald-type confidence intervals. For the
resampling scheme, M, is set to be 500 to estimate the asymptotic variance of the proposed
quantile estimator. We ran M= 2500 perturbed estimated values for evaluating B and J: For
the choice of perturbation number M, we have tried different values of Mranging from500
to 10,000, and we observed that the values of A/ do not significantly affect the numerical
results. On average, the proposed new method is four times faster than the traditional
resampling procedure for cases where the sample size is 400. For comparison, we also report
the estimate that ignores the biases that exist in the sample and carries out the method in
Peng and Huang (2008) without any modification. We denote this naive estimator as /§
(?)Nnaive @nd it is evident that this naive estimator has substantial bias.

The performance of the proposed method is comparable with that of Wang and Wang (2014)
when the number of covariates is small. However, due to the use of kernel smoothing for
estimating the censoring probability, Wang and Wang (2014) is not practical when the
censoring distribution depends on more than two covariates. In the following example, we
examine the performance of the new method in a setting where the censoring distribution
depends on four covariates. We generate random data from

log T* = Z By +Zoby+ ZaPy+ ZyBy+ (1 +7Z e,

where By = (1, -1, 0.5, -0.5)T, Z’s and Z;’s are generated from M1, 0.5) and M-1, 0.5),
respectively; Z; and 2, are generated in the same fashion as we discussed earlier. The
censoring times are assumed to follow a Cox proportional hazard models with covariates 2
(~1,...,4)and model parameters (0.5, 1.0, —0.5, 1.0) and the baseline cumulative hazard
function Ag(¢) = —15 to achieve the target censoring rate. We consider sample sizes 500 and
1000, and 500 iterations for each case. The estimated standard errors and coverage
probabilities are obtained based on 500 perturbed resamplings. It is noteworthy that a larger
sample size is needed to ensure more accurate coverage probabilities when the number of
covariates is larger. Table 3 confirms that the proposed procedure yields unbiased estimates
of Band consistent estimates of the corresponding variances.

Classical case-cohort sampling—We generate the survival time from the following
log-linear model

log T=Zlﬂ1 +Zzﬂ2+€,

where & follows a normal distribution M0, 0.52), Z; follows a Bernoulli distribution with
success probability 0.5 and 2, follows a uniform distribution Unif (-1, 1). The true
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parameter values are (1.0, —1.0). The censoring time Cjis generated from an exponential
distribution with rate [1 - 0.9/2 >0)]A, where A is chosen to achieve a roughly 80%
censoring rate. Such a high level of censoring rate corresponds to cases more natural to
apply case-cohort designs (e.g., rare-disease studies). Cohort sizes of 100 and 200 are drawn
by simple random sampling with one-third of these samples being observed failures. For the
resampling scheme, Bis set to be 500 to estimate the asymptotic variance of the proposed
estimator. Same as the procedure in length-biased simulations, an equally spaced grid with
& 1(n = 0.01 is selected. These settings are comparable with those discussed in Zheng et al.
(2013) in the sense that the estimates are all but unbiased with mean squared errors very
close to 0.

We illustrate through simulations the improvement in efficiency by using additional weight
functions as introduced in Section 3.2. Our numerical study shows that the weight functions,
() = (v1(D, v2(9, v3(9) = (1, ¢ 1/, generally give stable and improved estimates. Note
that the first weight function y~ gives the original estimating Equation (10), y» assigns
more weights on survival times around the tail regions, and 3 puts more weight on shorter
survival times. Table 4 summarizes the simulation results. We observe that the GMM-type
estimator ﬁ(r)eﬁ improves the efficiency of the estimators significantly, particularly when
the subcohort size is smaller. Moreover, the corresponding SEE’s computed via the proposed
resampling method are with good empirical coverage probabilities.

Stratified case-cohort sampling—We generate the survival and censoring times
similarly as in the classical case-cohort sampling example except that the probability of
subjects being selected varies according to their covariates Z’s. Selection probabilities for
cases (py) and censored samples () are specified as follows: p1(2) =1 - {1 + exp(2.5
+0.252)} Land pp(2) = 1 - {-1.5 + 0.5 exp(22)} . Under this setup, about one third of
the samples selected are cases while the mean overall censoring rate is maintained at a level
of 75%. We also examined the performance of the efficient estimator under the stratified
case-cohort sampling. The results are summarized in Table 5. Biases are negligible in all
cases and the ECPs are close to their nominal values. For the efficient estimator, reductions
in standard errors of ﬁ(r) are also observed.

6. Real Data Analysis

6.1 Analysis of the CSHA Dataset

We first apply the procedure discussed in Section 2.2 to the Canadian Study of Health and
Aging (CSHA) study, which is a multi-center study of the epidemiology of dementia in
Canada. It followed 10,263 senior Canadians over a period from 1991 to 2001 and collected
a wide range of information on their changing health status over time. Among these over
10,000 elderly who were 65 years or older, 1132 people were identified as having dementia.
Excluding subjects with missing dates of disease onset, we analyze 818 senior individuals
that can be classified into three groups, namely, (i) probable Alzheimer’s disease (393
patients), (ii) possible Alzheimer’s disease (252 patients), and (iii) vascular dementia (252
patients). A total of 180 study subjects among 818 are censored, resulting in a censoring rate
about 22%.
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Following Wang and Wang (2014), we apply the proposed method to the following model:

QT( log Ti | Zi) = ﬂ(o)(f) + ﬂ(l)(r)zli + ﬁ(Z)(T)Z2i’
i=1,...,818,

where z;;and 2 ;are dummy variables indicating if the ith subject is classified into probably
Alzheimer’s disease or possible Alzheimer’s disease, respectively. The vascular dementia
group is used as the reference group.

Table 6 summarizes the estimates of the proposed method with 7 = 0.5. Again, we obtain
very similar point estimates for different values of . A total of 500 perturbation resampling
procedures are carried out to estimate the standard errors of the estimators, which are
presented in parentheses in the table. Figure 1 demonstrates the estimated quantiles of the
three dementia subtypes, where the vertical lines correspond to the 95% pointwise
confidence intervals of the estimated quantiles of the patients in the baseline group (vascular
dementia). Ning et al. (2011) found no significant difference in survival times among the
three types of dementia when considering the mean survival time with the AFT model. In
our analysis, however, we observe that seniors with possible Alzheimer’s disease tend to
have longer survival time than those who suffered from vascular dementia. Such an
observation is evident in Figure 1 where the estimated quantiles corresponding to possible
Alzheimer’s disease are not fully covered by the confidence intervals constructed with
respect to the baseline vascular dementia patients. Our results agree with the findings
presented in Wang and Wang (2014).

6.2 Application to Case-Cohort Designs—Welsh Nickel Refiners Study

We now analyze a dataset collected in the South Welsh nickel refiners study (Appendix VIII
of Breslow and Day 1987). The data consist of 679 subjects employed in a nickel refinery.
The goal of the study is to investigate the association between the development of nasal
sinuses and the exposure to nickel. The follow-up through 1981 uncovered 56 deaths from
cancer of the nasal sinus; hence the censoring rate is higher than 90%. Breslow and Day
(1987), followed by Lin and Ying (1993), analyzed the mortality data on the nasal sinus
cancer using the Cox model with (modified) case-cohort design. Previous studies found that
AFE (age at first employment), YFE (year at first employment), and EXP (exposure level) are
significant factors. Lin and Ying (1993) considered the following regression covariates:

| og( AFE- 10), log of the age of the first employment minus 10 years, ( YFE- 1915) / 10,

( YFE- 1915) 2/ 100, two transformed versions of number of years working in the refinery
since 1915 and | og( EXP+1) , the log exposure level; some of the subjects had zero exposure
and hence EXP+1 is considered so that its logged value is nonnegative and well-defined.

The identifiability of the quantile estimates is only valid up to the 15th quantile because the
Kaplan—Meier estimate, based on the full cohort, does not drop further after it reaches 0.85.
We will compare the results obtained from a (i) full cohort, (ii) a subcohort collected under
the traditional setting, and (iii) a subcohort collected under stratified case-cohort procedure
as described in Section 2.2. In particular, we use p; = 1 — {1 + exp(-1 + LOGAFE)} 1 and p,
=1- {1 + exp(-3 + LOGAFE)} 1 for selecting cases and censored subjects into the sample.
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This leads to, on average a sample size of 310. The spaced grid was selected to be of size
0.001 for these numerical studies. 500 resamplings were carried for evaluation of the
standard errors of the proposed estimates. We also applied the methodology introduced in
Section 3.2 to obtain a more efficient set of estimates. Similar to our simulation setting, the
weight function of () = (w1(9), v2(9, v3(9) = (1, ¢ 1/) was applied. It can be observed
that, based on the results presented in Table 7, both the original and the improved estimates
obtained from subcohorts due to classical/stratified case-cohort samplings are similar to their
counterparts based on the full cohort data. The standard errors of these estimates are also
similar.

Figure 2 is included for the purpose of presenting an overall performance of the proposed
method on this nickel refinery dataset. It displays the average point estimates and the
corresponding pointwise standard errors of the four covariates for the 5th, the 10th, and the
15th quantiles. It is noteworthy that the covariate | og( AFE- 10) is significant for all the
quantiles. This is consistent with the findings discussed in Lin and Ying (1993) and Kim et
al. (2013). Another covariate that was found to be statistically significant in the two
aforementioned literature, | og( EXP+1) , is also significant in our study.

7. Conclusion and Discussions

Biased sampling arises frequently in many observational studies. Conventional approaches
without accounting for the sampling bias can lead to substantial estimation bias and
fallacious inference. In this article, we introduce a general quantile regression approach to
deal with data collected from various biased sampling schemes. While our method can
handle some specific types of biased sampling schemes that have been studied in the
literature, it also covers more general case-cohort designs including stratified case-cohort
and case-cohort sampling on a length-biased dataset, length-biased sampling that is
proportional to the follow-up time (see Kim et al. 2013), all of which have not yet been
previously investigated. Moreover, the one-size-fit-all formulation provides practitioners
with a convenient tool for quantile regression modeling on their datasets collected under
various sampling schemes. Because construction of the estimating equations does not
require an estimate of the censoring time distribution, the proposed method can handle more
complex problems with higher dimensional covariates than the existing methods.

Another major contribution of our work concerns with the efficiency improvement for the
quantile regression. When there is additional sampling information, we show that the GMM
approach can be applied to obtain an efficient estimate for length-biased survival data under
cross-sectional sampling. In a more general setting, one can construct a set of weighted
estimating equations so as to seek additional information by combining them via GMM.
Numerical results show the proposed efficient estimates out perform the existing methods. It
is worth-while to point out that the proposed method is generic and can be easily extended to
other maodels where the theoretically optimal weight function is hard to obtain. In particular,
it would be interesting to explore the efficiency improvement in the quantile regression
without biased sampling.
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The choice of the weight function (2 is usually informed by study design and prior
knowledge about the disease incidence process, as seen in many research works on case—
control studies and prevalent cohort studies (see, e.g., Shen et al. 2009; Kong and Cai 2009;
Luo and Tsai 2009; Chen 2010; Qin and Shen 2010; Huang and Qin 2012; Kimet al. 2013;
Zheng et al. 2013). When the knowledge about biased sampling scheme is not available, a
data-driven weight function may be developed by applying a similar technique considered
by Qin et al. (2002); however, the method requires a multiple-sampling setting, where a
unbiased sample must be obtained to ensure identifiability of the model parameters.
Therefore, in the one-sampling setting of the current article, neither identifiability nor
estimation of () is available due to the lack of unbiased sample.

There are several other directions that are worth pursuing. One issue of the proposed
method, as discussed in Peng and Huang (2008), is identifiability of upper quantiles due to
the abundance of censored observations toward the tail. This feature is particularly
prominent for biased-sampling cases due to potentially high censoring rates as we have seen
in case-cohort designs for instance. It is of interest to incorporate the method of Portnoy
(2014) in the current setup and investigate the benefits of jackknife under various biased-
sampling settings.
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Figure 1.
Estimated quantiles of population survival times for the three categories of dementia for the

Canadian Study of Health and Aging (CSHA) dataset. The vertical lines correspond to the
pointwise 95% confidence interval constructed for the baseline group population quantile
survival time.
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Estimated quantiles of population survival times for the South Wales nickel refinery dataset.

The black, blue, and orange solid lines correspond to the point estimates based on the

samples obtained from the full cohort, classical case-cohort sampling scheme, and stratified
case-cohort sampling scheme, respectively. Their associated pointwise 95% confidence

intervals are presented by (dotted) lines of the same colors.
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 where β0 = (1, −1, 0.5, −0.5)⊤, Z3’s and Z4’s are generated from N(1, 0.5) and N(−1, 0.5), respectively; Z1 and Z2 are generated in the same fashion as we discussed earlier. The censoring times are assumed to follow a Cox proportional hazard models with covariates Zℓ (ℓ = 1, . . . , 4) and model parameters (0.5, 1.0, −0.5, 1.0) and the baseline cumulative hazard function Λ0(c) = −15 to achieve the target censoring rate. We consider sample sizes 500 and 1000, and 500 iterations for each case. The estimated standard errors and coverage probabilities are obtained based on 500 perturbed resamplings. It is noteworthy that a larger sample size is needed to ensure more accurate coverage probabilities when the number of covariates is larger. Table 3 confirms that the proposed procedure yields unbiased estimates of β and consistent estimates of the corresponding variances.Classical case-cohort sampling—We generate the survival time from the following log-linear model
 where ε follows a normal distribution N(0, 0.52), Z1 follows a Bernoulli distribution with success probability 0.5 and Z2 follows a uniform distribution Unif (−1, 1). The true parameter values are (1.0, −1.0). The censoring time Ci is generated from an exponential distribution with rate [1 − 0.9I(Z2
> 0)]λ, where λ is chosen to achieve a roughly 80% censoring rate. Such a high level of censoring rate corresponds to cases more natural to apply case-cohort designs (e.g., rare-disease studies). Cohort sizes of 100 and 200 are drawn by simple random sampling with one-third of these samples being observed failures. For the resampling scheme, B is set to be 500 to estimate the asymptotic variance of the proposed estimator. Same as the procedure in length-biased simulations, an equally spaced grid with 
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L(n) = 0.01 is selected. These settings are comparable with those discussed in Zheng et al. (2013) in the sense that the estimates are all but unbiased with mean squared errors very close to 0.We illustrate through simulations the improvement in efficiency by using additional weight functions as introduced in Section 3.2. Our numerical study shows that the weight functions, ψ(t) = (ψ1(t),ψ2(t),ψ3(t)) = (1, t, 1/t), generally give stable and improved estimates. Note that the first weight function ψ1 gives the original estimating Equation (10), ψ2 assigns more weights on survival times around the tail regions, and ψ3 puts more weight on shorter survival times. Table 4 summarizes the simulation results. We observe that the GMM-type estimator β̂(τ)eff improves the efficiency of the estimators significantly, particularly when the subcohort size is smaller. Moreover, the corresponding SEE’s computed via the proposed resampling method are with good empirical coverage probabilities.Stratified case-cohort sampling—We generate the survival and censoring times similarly as in the classical case-cohort sampling example except that the probability of subjects being selected varies according to their covariates Z’s. Selection probabilities for cases (p1) and censored samples (p2) are specified as follows: p1(Z) = 1 − {1 + exp(2.5 + 0.25Z2)}−1 and p2(Z) = 1 − {−1.5 + 0.5 exp(2Z2)}−1. Under this setup, about one third of the samples selected are cases while the mean overall censoring rate is maintained at a level of 75%. We also examined the performance of the efficient estimator under the stratified case-cohort sampling. The results are summarized in Table 5. Biases are negligible in all cases and the ECPs are close to their nominal values. For the efficient estimator, reductions in standard errors of β̂(τ) are also observed.
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