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Automated single-molecule imaging in living cells
Masato Yasui1, Michio Hiroshima1,2, Jun Kozuka1, Yasushi Sako2 & Masahiro Ueda1,3

An automated single-molecule imaging system developed for live-cell analyses based on

artificial intelligence-assisted microscopy is presented. All significant procedures, i.e.,

searching for cells suitable for observation, detecting in-focus positions, and performing

image acquisition and single-molecule tracking, are fully automated, and numerous highly

accurate, efficient, and reproducible single-molecule imaging experiments in living cells can

be performed. Here, the apparatus is applied for single-molecule imaging and analysis of

epidermal growth factor receptors (EGFRs) in 1600 cells in a 96-well plate within 1 day.

Changes in the lateral mobility of EGFRs on the plasma membrane in response to various

ligands and drug concentrations are clearly detected in individual cells, and several dynamic

and pharmacological parameters are determined, including the diffusion coefficient, oligomer

size, and half-maximal effective concentration (EC50). Automated single-molecule imaging

for systematic cell signaling analyses is feasible and can be applied to single-molecule

screening, thus extensively contributing to biological and pharmacological research.
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S ingle-molecule imaging of biomolecules in living cells allows
for the investigation of cell signaling and other molecular
mechanisms1–3. These techniques have enabled direct

monitoring of the behaviors of biomolecules in living cells and
the quantitative detection of the locations, movements, turnovers,
and complex formations of biomolecules with single-molecule
sensitivity; thus, these techniques represent powerful tools that
can be used to elucidate the molecular mechanisms underlying
intracellular signaling processes. Systematic and comprehensive
measurements of numerous molecular species with single-
molecule sensitivity provide detailed information regarding ele-
mentary biological processes and new insights into system
dynamics4, thereby deepening and extending current biological
and medical knowledge. However, the techniques used to date in
large-scale experiments to investigate various types of molecular/
cellular/drug species under constant and well-controlled experi-
mental conditions have not reached the single-molecule level in
living cells. Significant expertise is needed for focusing at nan-
ometer precision, searching for cells suitable for observation, and
statistically analyzing individual molecules, and the lack of such
skills prevents time-efficient and nonbiased mass data acquisition
and analysis. Therefore, we developed a fully automated in-cell
single-molecule imaging system (AiSIS) based on an artificial
intelligence-assisted total internal reflection fluorescence micro-
scope (TIRFM), which has the potential to pave the way for the
widespread use of single-molecule imaging technology in the
biological and medical sciences. The apparatus dramatically
reduces the time required for imaging and analysis by ~10-fold
for researchers familiar with single-molecule measurements. For
researchers who are not familiar with the method, AiSIS might
eliminate the need to learn the method and reduce the time
requirements by a factor of more than 100. Moreover, the newly
developed elementary techniques equipped in AiSIS can be
applied to general high-magnification microscopy to automate
conventional routines, thereby dramatically improving the cur-
rent situation of imaging and analysis in life science studies,
which currently requires considerable time and effort.

Results
Automated large-scale single-molecule imaging. Figure 1a
presents an illustration of AiSIS. TIRF optics and a robotized
manipulator were constructed in an incubation chamber used for
cell culture (IMACS, Hamamatsu) to maintain cellular physio-
logical conditions under constant temperatures and water vapor
and CO2 concentrations (also see Supplementary Figure 1a). We
used multi-well plates (typically 96 wells) to sequentially observe
multiple samples under different experimental conditions. Sup-
plementary Movie 1 demonstrates the procedure for the auto-
matic measurement. Figure 1b and Supplementary Movie 2 show
single-molecule images of GFP-labeled epidermal growth factor
receptors5 (EGFR-GFPs) expressed in the plasma membrane of
CHO-K1 cells. Observations of five cells before and after stimu-
lation with 60 nM EGF or mock solutions in 60 different wells (a
total of 600 cells) were performed within 8 h and 30 min (510
min) (see below for details). We confirmed that 591 of the 600
cells were successfully recorded for further statistical analysis. The
remaining nine cells were excluded because the single-molecule
tracking software failed to continuously track any fluorescent
spots for more than 1 s.

The key techniques used to achieve automation in addition to
the TIRF optics for single-molecule imaging6 included
immersion-oil feeding, autofocusing, and auto-cell searching
(Fig. 1c–e), and they rendered the system applicable to many
types of microscopy in addition to TIRFM. The automatic oil
reflux system maintains the oil volume at the objective constant,

thus enabling long-term observations over one day (Fig. 1c). An
objective lens adaptor with two outlets for discarding oil was
effective in preventing the oil in the space between the objective
and the bottom glass plate from moving a long distance (see the
Methods section). The oil reflux system is widely applicable to
other optics (e.g., confocal, differential interference contrast
(DIC), etc.) with a high-magnification (e.g., ×100) and large N.A.
(e.g., 1.49) lens. The focusing system, which can automatically set
the objective to the in-focus position (see the Methods section for
the algorithm), consists of a newly developed optical system and
image processing algorithm that includes deep learning7

(Supplementary Movie 3). The detailed algorithm is explained
in the Methods section. In brief, the algorithm refers to an image
of the iris, which is located at the optically conjugate plane to the
upper surface of the cover slip, taken using a surface reflection
interference contrast (SRIC) filter (Fig. 1d and Supplementary
Figure 1b). A shift in the glass surface blurs the image of the iris
when the image is out of focus. The in- and out-of-focus images
of the iris (400 images) were prepared as training data for deep
learning and used to train the neural network. During coarse
shifting of the objective position, the trained neural network
judged the iris images to determine whether the iris was in focus
or not. After this coarse focusing, the sharpness of the iris image
was evaluated to obtain the precise focus position. The two-step
focusing procedure has the advantages of both deep learning-
based prompt determination and precise image processing-based
determination of the in-focus position. The in-focus position was
visually assessed and varied within a standard deviation of 181
nm, which was sufficient for single-molecule imaging (Fig. 1d).
We succeeded in perfectly autofocusing the glass surface in 100
trials (Supplementary Figure 1c).

The deep-learning methods also provide an auto-cell searching
algorithm without the need to manually design imaging filters for
cell selection (Fig. 1e and Supplementary Figure 2). In single-
molecule imaging analyses of fluorescently labeled molecules
expressed in living cells, the density of the fluorescent spots
should be 1–3 μm−2 in the field of view at a spatial resolution of
~250 nm. Because the expression level of fluorescent proteins
usually varies by a factor of 10 from cell to cell, only cells with
suitable spot densities are selected. To identify these cells, the
fluorescent spot images were acquired using serial X–Y scanning
(Supplementary Movie 4) and then regions similar to previously
learned images with suitable spot densities were selected (Fig. 1e,
upper right). Since out-of-focus images can also be trained, our
system can be applied to slightly blurred images, which are
frequently observed during scanning to select cells with an
adequate density of fluorescent spots. The required number of
training images for successful automatic cell searching was at least
40 (see the Methods section for details). In addition, we applied
deep-learning methods to the SRIC images of the cells to obtain
the actual cell regions (Fig. 1e, lower right), which should be
clearly distinguished from regions outside the cells in which
bright spots caused by fluorescent debris often occur. For
successful cell region detection, ~200 training images were
required for the learning procedure. The networks trained using
CHO or HeLa cells could be practically used for recognition of
HeLa or CHO, respectively (see the Methods for details),
indicating that additional training is not required for each cell
type if the cell images exhibit similar visual features. However, if
the CHO cells must be distinguished from HeLa cells, then the
neural network must learn another specific feature that obviously
differs between these cells.

Automatic detection of EGFR changes upon ligand stimula-
tion. We assessed the capacity and efficiency of the automated
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apparatus by performing a single-molecule analysis of the
mobility and signaling of EGFRs in CHO-K1 cells. The EGFR is a
transmembrane receptor tyrosine kinase that transmits extra-
cellular signals to the cytoplasm via the EGF-RAS-MAPK
cascade8,9. Overexpression of EGFRs is typically observed in
various cancer cells, and EGFR mutations lead to constitutive
signaling. Due to these characteristics, the EGFR is an attractive
target for cancer therapy10–12. Several previous studies have
performed single-molecule imaging of EGFRs and reported that
EGF can induce EGFR phosphorylation, which slows EGFR
mobility within a confined area on the membrane, a phenomenon
accompanied by EGFR clustering13–17. EGF clusters larger than a
dimer have been suggested to be significant for downstream
signaling17. Initially, we performed a simple assessment to dis-
tinguish between cells with and without EGF addition by
detecting mobility changes in the EGFR. CHO-K1 cells expressing
EGFR-GFP were observed sequentially at the basal membrane in
60 wells (Fig. 1b and Supplementary Movie 2). Figure 2a shows

the time evolution of the mean square displacement (MSD),
which is an index of mobility, obtained from 60 different wells.
No obvious changes were observed in the cells exposed to the
mock solution, whereas the cells exposed to EGF exhibited
changes in the MSD and the confinement length was shortened
after EGF stimulation. The statistical analysis performed by AiSIS
confirmed with reproducibility the difference in behavior between
the cells exposed to EGF and the mock solution.

Using vast amounts of single-molecule tracking data, we can
characterize the molecular properties of EGFRs with low
measurement errors by determining certain parameters, such as
the diffusion coefficient and oligomer size. As shown in Fig. 2a,
~236,035 EGFR-GFP spots from ~591 cells (60 wells) were
imaged and analyzed within 8 h and 30 min. Figure 2b shows the
average MSD of the EGFRs calculated from tracking data
obtained from wells containing EGF or mock solution. The
distributions of the diffusion coefficients were also calculated
using the same data (Fig. 2c and Supplementary Figure 3a). The
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diffusion coefficients averaged over all observed cells showed a
decrease upon EGFR activation from 0.11 ± 0.01 (148 cells) to
0.051 ± 0.008 μm2 s−1 (149 cells), which was expressed as the
average ± SE. The MSD curve in Fig. 2b shows a shortening of the
diffusion area of the EGFR upon activation, with the length
confined18 to 264 nm on average over all cells (see Eq. (7) in the
Methods section for analysis). The fluorescence intensity
distributions of individual spots reflect oligomerization of the
EGFR (Fig. 2d and Supplementary Figure 3b). The estimated
oligomer sizes per fluorescent spot were 1.5 ± 0.9 and 2.1 ± 1.7 on
average ± SD before and after EGF binding, respectively (Supple-
mentary Figure 3). The data quality was improved by increasing
the number of molecules analyzed as shown in Supplementary
Figure 5. Although several hundred cells can also be observed and
analyzed manually by human experimenters, a considerably
longer amount of time, i.e., occasionally a week or longer, is
required depending on the proficiency of the experimenters, and
the data could suffer from human errors and biases. In contrast,
AiSIS can easily perform large-scale imaging analyses. Figure 2e
shows a typical example of the EGFR mobility shift and

oligomerization with cell-to-cell heterogeneity (See also Supple-
mentary Figure 6) from 2100 cells at various EGF concentrations.
Such cellular heterogeneity could affect the reproducibility of the
data if only a small number of cells is analyzed.

Acquisition of kinetic and pharmacological parameters. Using
multi-well plates, multiple samples can be observed under dif-
ferent experimental conditions. Elucidating the effects of ligands,
such as agonists, antagonists, and inhibitors, on target molecules
has important implications in biology and pharmacology. We
performed an automatic analysis of 10 different EGF concentra-
tions. The MSD values at Δt= 66 ms (MSDΔt= 66 ms) were cal-
culated under each condition. We could fit the data to a biphasic
curve at a half-maximal effective concentration (EC50) of 6.6 nM
and a Hill coefficient of 1.0 (Fig. 3a). The EC50 and Hill coefficient
were consistent with those described in previous reports, con-
firming that the EGFR has several affinities in ligand kinetics19

and suggesting that the EC50 primarily reflects the lower-affinity
site. Furthermore, AiSIS can assess complex stimulations of
ligands and inhibitors at various concentrations. EGFR
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phosphorylation is known to be inhibited by tyrphostin AG1478,
which binds to the ATP binding site at the cytoplasmic region of
the EGFR. Thus, AG1478 suppresses the proliferation of endo-
metrial and ovarian cancer cells20. All combinations of the six
concentrations of EGF and AG1478 (a total of 36 conditions)
were automatically measured in one experiment using a 96-well
plate. The observed MSD values at Δt= 66 ms were mapped in a
two-dimensional space (Fig. 3b). AG1478 clearly suppressed the

EGF-dependent decrease in the MSD value in a manner that
resembled the effect of receptor phosphorylation, thus indicating
an antagonistic effect on the receptor mobility. By fitting the data
using Eq. (15), which considers the noncompetitive inhibition
scheme of the EGFR, the dissociation and inhibitory constants
were calculated as EC50 (KD)= 4.7 nM and IC50 (Ki)= 2.3 μM for
EGF and AG1478, respectively (Fig. 3c), which are consistent
with previously reported values20,21.
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Analysis of signal transduction by EGFR in living cells. Our
apparatus also allows for the simultaneous observations of two
types of molecules labeled with different colors. Upon EGF sti-
mulation, Grb2 binds phosphorylated EGFR and activates the
signaling pathway22,23. To observe signal transduction, we
simultaneously observed EGFR-GFP and Grb2 tagged with
HaloTag and stained with tetramethylrhodamine (Grb2-TMR)
(Fig. 4a and Supplementary Movie 5). Heat maps based on the
MSD at Δt= 500 ms and the fluorescence intensities of the
individual EGFR-GFP molecules showed multiple states along
with transitions to slower and brighter subpopulations upon EGF
stimulation (Fig. 4b). The multiple states of EGFR and Grb2 were
characterized based on the diffusion coefficients using previously
reported methods24–26. The minimum state numbers were
determined using the Akaike information criterion (AIC) (see the
Methods section for details). Both EGFR and Grb2 were likely to
adopt three motional states regardless of EGF stimulation (Sup-
plementary Figure 7), which were named immobile, slow-mobile,
and fast-mobile states based on the obtained diffusion coeffi-
cients. As shown in Fig. 4b, the MSD at a long duration (500 ms)
clearly differed between the fast-mobile state and the two slower
states, but the measurement was not sufficient to resolve the slow-
mobile and immobile states due to the substantially broad dis-
tribution of the displacement. EGF caused obvious changes in the
diffusion coefficients and fractions of the EGFR mobility states,
and the immobile and slow-mobile fractions increased while the
fast-mobile fraction decreased (Fig. 4c, d and Supplementary
Figure 8a).

Furthermore, measurements at multiple time points provided
the time course of the state transitions and the fluorescence

intensity distribution. After EGF addition at 33 s, the slow-mobile
fraction of the EGFR reached a maximum and the fast-mobile
fraction decreased. At 89 s, the immobile state reached its peak
(Fig. 5a and Supplementary Figure 8b). The fluorescence
intensity, which reflects receptor clustering, reached a maximum
between the slow-mobile and immobile peaks (Fig. 5b). Com-
pared with the motional states, the fluorescence intensity returned
to its initial level within 5 min Cluster size analyses at each time
point revealed that after the EGF stimulation, dimers and clusters
larger than dimers27 exhibited transient increases while mono-
mers exhibited transient decreases (Fig. 5c, see the Methods
section for cluster size analysis). The membrane residence time of
Grb2 was defined as the average duration of trajectories. The
temporal changes in the larger clusters were similar to those in
the residence time of Grb2 on the plasma membrane, suggesting
that large EGFR clusters extended the EGFR-Grb2 interaction
upon EGF stimulation (Fig. 5d). The MSD of Grb2 at Δt= 66 ms
also exhibited transient decreases that tended to form large
clusters (Supplementary Figure 8c). Overall, upon EGF stimula-
tion, the EGFR gradually underwent a transition from the fast-
mobile state to the slow and immobile states within a 270 nm
diameter area, which simultaneously formed dimers and large
oligomers that may function as signaling hubs for Grb2. Then, the
oligomers were decomposed into smaller oligomers (Fig. 5e).

Discussion
The automated single-molecule imaging system AiSIS success-
fully acquired clear single-molecule images in all observation
fields and avoided the substantial problem of differences in the
refractive index between water and cells observed with
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and fluorescence intensities, respectively. Arrows indicate the peaks of subpopulations corresponding to the EGFR states. The number of observed cells
before and after EGF addition was 148 and 146, respectively. c, d Averaged diffusion coefficients (c) and fractions (d) of three EGFR (left) and Grb2 (right)
motional states before (white) and after the addition of EGF (red). Asterisks indicate significant differences (*P < 0.05, **P < 0.01). The number of cells
before and after the addition of EGF was 4 and 22 in the EGFR observation and 44 and 20 in the Grb2 observation, respectively. Error bars: SE
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conventional focus-keeping systems. Because the autofocusing
method utilizes the bright field image of the iris rather than the
cells, the algorithm can be applied to all cell types or fluorescent
dyes (see the Methods section for details). Auto-cell searching
with the deep learning-based technique has two advantages. First,
compared with other methods in which the filtering parameters
are manually determined by trial and error for each cell line, our
method is user friendly, even for users who are not experts in
image processing and filtering. Users only need to indicate the
area in the image they aim to observe by painting the area using
typical computer drawing software, and the input is then used as
the training data for subsequent machine learning. Second,
compared with manual operation, the photobleaching of fluor-
escent probes can be minimized using the automated technique
because the observed cells are determined from a single snapshot
of the fluorescent image taken within 33 ms. These automated
technologies for focusing and cell searching are applicable not
only to single-molecule microscopy but also to normal optical
microscopy at high magnification.

The high statistical precision achieved with sufficiently large
amounts of data is required for accurate quantification. In the
cases of MSDs, diffusion coefficients, and fluorescence intensity,
the data distribution profiles were improved by increasing the
number of molecules analyzed (Supplementary Figure 5). The
statistical precision was also influenced by cellular heterogeneity,
which caused parameter variation (Fig. 2e). Such heterogeneity
might lead to an incorrect conclusion when analyzing only a
small number of cells. Therefore, large-scale measurements pro-
vide more accurate statistical information and facilitate the con-
struction of an appropriate model capable of accurately
describing the observed phenomenon.

Compared with conventional measurement methods, AiSIS
can perform large-scale single-molecule imaging and analysis
more rapidly and easily. When investigating the complicated
effects of agonistic and antagonistic drugs, multidimensional
measurements should be performed as shown in Fig. 3b and c;

however, numerous samples and conditions are required. Com-
pared with manual operations, the automated AiSIS is well suited
to perform these heavy workloads in terms of its precision,
reproducibility, and computation time. Furthermore, AiSIS
acquires spatiotemporal information from a large number of
individual molecules (Fig. 5), thus enabling insights into the
dynamic link between molecular behavior and cell signaling.

The developed automation techniques introduced in the pre-
sent study can process large amounts of data and thus can be used
in drug screening, genome-wide screening, and other applica-
tions. Although we show the application of these techniques in
combination with TIRFM to phenomena in the plasma mem-
brane, our automatic single-molecule imaging analysis can be
used for analyses of the cell nucleus and organelles by introducing
other microscope techniques, such as oblique illumination, con-
focal, correlation, and super-resolution microscopy, because the
associated systems developed for oil supply, autofocusing, and cell
searching are general. Thus, we believe that computer-operated
bioimaging using automation and artificial intelligence technol-
ogies can lead to a paradigm shift in biological research.

Methods
Gene construction. The cDNA of human EGFR (pNeoSRαII) was provided by
Akihiko Yoshimura (Keio University, Tokyo, Japan) and cloned into the pEGFP-
C1 vector (Clontech, USA). The linker sequence was the same as that used by
Carter and Sorkin5. The Grb2-HaloTag was constructed by inserting the Grb2
fragment with BamHI and SalI sites into a Halo7-C2 vector, which was obtained by
changing the EGFP sequence in the pEGFP-C2 vector (Clontech, USA) to Halo7
derived from the FN19K HaloTag T7 SP6 Flexi Vector (Promega, USA).

Cell culture. CHO-K1 cells were provided by the RIKEN BioResource Center
(RIKEN BRC, Japan) and confirmed to be noncontaminated by mycoplasma. Cell
lines expressing EGFR-GFP or co-expressing EGFR-GFP and the Grb2-HaloTag
were established and used in the experiments. The cells were maintained in HAM
F12 medium with 10% fetal bovine serum (FBS) at 37 °C under 5% CO2 and
starved in modified Eagle’s medium (MEM) without FBS and phenol red for 1 day
prior to observation.
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Fig. 5 Time course of EGFR behavior after EGF stimulation. a Temporal changes in the fractions of the three EGFR states. Magenta, green, and blue circles
indicate the immobile, slow-mobile, and fast-mobile fractions, respectively. Arrows indicate the first peaks of the immobile and slow-mobile states. The SE
is shown in Supplementary Figure 8b. b Fluorescence intensity changes of EGFR-GFP. The arrow indicates the maximum intensity. c Cluster size changes
calculated based on the fluorescence intensity histogram at each time point. Black, blue, and red circles indicate monomers, dimers, and oligomers larger
than dimers, respectively. d Changes in the residence time of Grb2 on the plasma membrane. The dotted lines shown in a, b, and d indicate data obtained
before the EGF addition. Asterisks indicate significant differences compared to the data from before the EGF addition (*P < 0.05). The number of data
points is shown in Supplementary Table 1. Error bars: SE. e Scheme of the EGF-induced (cyan circle) behavioral transitions in EGFR (green cylinders), along
with the receptor-evoked cell signaling via Grb2 (magenta circle). Magenta, green, and blue lines indicate immobile, slow-mobile, and fast-mobile EGFR,
respectively
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Microscopy. For single-molecule imaging, the total internal reflection illumination
was configured using a high-magnification objective, i.e., PlanApo 60X NA 1.49
(Nikon, Japan), under an inverted microscope (Ti, Nikon, Japan). The Z position of
the objective was maintained at a constant position using the pre-equipped
objective positioning system Perfect Focus System (PFS, Nikon, Japan). Lasers at
wavelengths of 488 nm (Sapphire 488, Coherent, USA) and 561 nm (Sapphire 561,
Coherent, USA) were used for excitation of the fluorescent proteins and dyes. The
optical filter sets of dichroic mirror/emission filters were DM495/BA500-545
(Nikon, Japan) for the green dyes and DM495/BA500-545 (Nikon, Japan) for the
red dyes. The images were acquired at a frame rate of 33 ms using an EMCCD
camera (C9100-13, Hamamatsu, Japan). For simultaneous dual-color imaging, an
FF493/574 dichroic mirror (Semrock, USA) was installed in the microscope, and a
T565lpxr dichroic mirror (Chroma, USA) with emission filters of ET525/50m for
green fluorescence and ET605/70m (Chroma, USA) for red fluorescence was set in
a multi-image module (Nikon, Japan) connected to two EMCCD cameras. To
merge the green and red channels, scattered light images of 60 nm gold particles
were acquired in the two channels, and the particle positions were used as the
standards for the affine transformation (translation, rotation, and scaling of images
in one channel) to compensate for the aberration of the two images.

Live-cell imaging. Before each experiment, the culture medium was changed to an
imaging solution consisting of Dulbecco’s modified Eagle’s medium (DMEM)
containing 5 mM PIPES, 2% BSA, and 2 mM L-glutamine. The cells were cultured
and observed in 60 wells of a 96-well plate, excluding the peripheral wells to avoid
interference between the microscope stage and the objective lens adaptor of the oil
feeding system (Supplementary Figure 9). A seal was affixed onto the well plate
(Rapid Slit Seal, Bio Chromato, Japan) to prevent evaporation of the solution. The
observation was performed sequentially along the arrow shown in Supplementary
Figure 10a. The solution was mixed with 60 nM EGF to stimulate the cells or used
alone as a mock solution. In both cases, the solution was automatically sucked from
the well plate using a nozzle connected to a robot arm and dispensed into the target
well of the cell culture plate. For the simultaneous imaging of EGFR-GFP and
Grb2-HaloTag7, the cells were incubated in 100 pM tetrametylrhodamine HaloTag
ligand (Promega, USA) for 15 min.

Oil feeding system. Well plate-based measurements are indispensable for large-
scale investigations. If the wells are observed from one side of the plate to the other
side of the plate using high-magnification microscopy, low levels of immersion oil
between the plate bottom and objective lens should be avoided. We developed a
novel system that continuously provides the appropriate volume of immersion oil
and enables high-magnification observations with long-distance scanning of a plate
in one day. The oil flow is driven by a peristaltic pump introduced into the
objective lens adaptor (Supplementary Figure 9) and fills the gap between the plate
bottom and the lens top. In the case of a low-viscosity medium (e.g., water), the
excess volume passively flows along the gradient surface of the adaptor to the
peripheral groove and then exits via the downward outlet, even without a sucking
mechanism. However, highly viscous immersion oil is not naturally drained from
the gap and overflows outside the adaptor rather than through the outlet. Thus, an
additional outlet linked to a sucking pump was added to the adaptor. The flow
control was effective in maintaining an adequate volume of immersion oil on the
lens and allowed for long-term well-based observations.

Workflow of AiSIS imaging. A flowchart of the automated procedure is shown in
Supplementary Figure 10b. First, the stage was moved to place the target well
immediately above the objective lens. Subsequently, autofocusing was performed,
and the observable cells were automatically searched up to the required number
(~10 cells). In the case of simultaneous EGFR-GFP and Grb2-TMR imaging, cell
searching was executed on the EGFR-GFP channel. Then, after readjusting the
focus, automatic recordings of single-molecule images of the selected cells were
sequentially performed. To investigate the effect of a drug on molecular behavior,
the selected cells were divided into two groups and imaged before or after drug
addition. Single-molecule tracking and statistical analysis of the acquired single-
molecule images were performed in parallel while observing and recording the
following cell.

Autofocusing algorithm. The autofocusing algorithm consisted of the following
two steps: coarse focusing using deep learning and high-precision focusing using
image processing. The deep learning-aided method was less precise but more
robust in terms of unexpected noise in the iris image, such as debris or bubbles,
which were often observed at positions distant from the coverslip. This method was
suitable for long Z scanning with a coarse step (750 μm range with a 2.5 μm step).
However, the image processing-mediated method was appropriate for fine scan-
ning around the in-focus position (3.5 μm range with a 32 nm step). For auto-
focusing, the advantages of these methods were appropriately combined and used
initially for coarse focusing and then for high-precision focusing.

A flowchart of the coarse focusing process is shown in Supplementary
Figure 11a. In advance, we prepared in- and out-of-focus images of the iris as
training data for deep learning, and these images were acquired with 0.1 µm steps
of the objective around the in-focus position. Both the in- and out-of-focus images

of the iris were used to train the neural network. The detailed procedure used for
machine learning is shown in Supplementary Figure 11b. For this learning,
adaptive moment estimation (Adam)28 was applied using Python's library, Chainer
(https://chainer.org, Preferred Networks). Two neural network parameters, the
convolution/deconvolution weight and the bias values of each layer, were
optimized by the learning method and saved in a binary file with other parameters,
such as the numbers/types of layers and activation functions (Supplementary
Figure 2). The file was loaded and run by a control software programmed using C+
+ and CUDA on an AiSIS operation PC equipped with GPU (NVIDIA Quadro
4000) during the experiment. For the experiments, the objective lens scanned a
predefined Z range of 750 µm at 2.5 µm steps and the obtained iris images were
evaluated using deep learning. The evaluation value was determined based on the
similarity of the obtained image to the pre-learning in-focus images and set
between 0 (not focused) and 1 (focused). In the case of the training data, images
obtained within 4 µm of the in-focus objective position were defined as 1 and the
other images were defined as 0. Coarse focusing continued until the evaluation
value was greater than 0.5. Supplementary Figure 11c shows various iris images and
corresponding evaluation values calculated by the trained neural network.

A flowchart of the high-precision focusing process is shown in Supplementary
Figure 12a. The objective position, which could be controlled by PFS, was first set
to the beginning of a predetermined PFS range of 2200 (a.u.), which corresponded
to approximately 3.5 μm. Then, the position was gradually and discretely changed
upward with a PFS step size of 20 (a.u.). The sharpness of the iris image was
successively calculated and used to evaluate the in-focus and out-of-focus images as
shown in Supplementary Figure 12b. To obtain the evaluation value, the SRIC
image of the lower half of the iris was captured (Step 1) and binarized using the
Otsu method29 (Step 2). A region of interest (ROI) of 21 × 21 pixels was shifted
(Step 3) from the top to where the proportion of the white area of the ROI was 50%
or less to detect the iris edge (Step 4). This process (Steps 3 and 4) was repeated in
the horizontal direction (Step 5), and a brightness histogram of all ROIs on the iris
edge in the SRIC image (Step 6) was obtained with 512 bins between the minimum
and maximum brightness. Two sharply separated peaks were typically observed
when the iris was in focus. The histogram was bisected based on a threshold
calculated using the Otsu method (Step 7), and after both regions were smoothed
over 20 bins, the brightness corresponding to the peaks Imax1 and Imax2 and the
valley Imin were determined (Steps 8 and 9). Based on these values, the sharpness E
was defined as

E ¼ N Imax1ð Þ ´N Imax2ð Þ=N Iminð Þ2 ð1Þ

where N(I) is the value of the histogram at intensity I. A value of E > 1 represents
high sharpness. After the objective scanned the entire PFS range, the objective
position with the highest E (PFS0) was determined by fitting the sharpness
distribution with a Gaussian function as shown in Fig. 1d (right). Finally, the
objective was moved to the position where an offset value was added to PFS0 to
compensate for the difference between PFS0 and the visually determined in-focus
position. The offset value was predetermined.

Cell searching and cell region detection using deep-learning. Supplementary
Figure 13a provides a schematic diagram of the learning procedure used for cell
searching. Single-molecule images of cells expressing various levels of EGFR-GFP
were captured in advance. To prepare the training data for machine learning, cell
regions with suitable fluorescent spot densities were manually painted, the pixel
intensity was set to 1, and the other region was set to 0 (Supplementary Fig-
ure 13b). The layer structure of a neural network composed of three convolutions
and three deconvolutions is shown in Supplementary Figure 2b. The layer para-
meters were optimized by learning using Adam and saved in a binary file. The
setting file was loaded onto the microscope control computer during the experi-
ment. If an acquired image was not correctly judged by the neural network, the
users can incorporate the image into the existing training data and re-execute the
learning process to improve the cell searching function. Similarly, by changing the
training data according to the researcher’s demand, AiSIS can choose cells that are
more suitable to the study’s purpose. Supplementary Figure 13c provides a flow-
chart of the cell searching procedure. The fluorescence images were acquired from
225 (15 × 15) fields of view using X–Y scanning, and the region with suitable
expression was determined by the trained neural network. After cell searching was
completed, image acquisition was performed according to the descending order of
the area sizes. The stage position was set at the centroid of the suitable region.
Supplementary Figure 13b shows the results obtained from the trained neural
network, and it indicates that cells with appropriate fluorescent spot densities were
recognized.

Detection of the cell region was performed using the same deep-learning
method and SRIC images. The structures of the neural networks are shown in
Supplementary Figure 2c. Typical raw images were used as images for learning, and
the images obtained from the trained neural network are shown in Supplementary
Figure 13d. The cells that adhered to the surface could be correctly recognized.

Optimization of the number of layers. The appropriate number of layers in our
neural network (Supplementary Figure 14) should be determined by considering
the trade-off between the calculation time and the prediction precision. For
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evaluation, the prediction by the learned network was compared with the correct
answer provided by the researcher. The pixels in the researcher’s selected region
were assigned values of 1, whereas other pixels were assigned values of 0, and the
network outputs provided real number values between 1 and 0. If the values at the
(i, j) pixel (0 ≦ i, j < 512) in the researcher’s answer and the network output are
described as di,j and yi,j, respectively, then the error is defined as the average
residual square (ARS)

ARS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

5122
X511
i¼0

X511
j¼0

yi;j � di;j
� �2

vuut ð2Þ

If the network has not learned, then the ARS has a value >0.5. During learning, the
ARS value approaches 0 depending on the difficulty of the tasks. The product of the
calculation time and ARS was compared among different network types (Supple-
mentary Table 2, Supplementary Figure 14). The number of layers in the networks
with the lowest product value was 2, 3, and 3 for coarse autofocusing, cell
searching, and cell region detection, respectively. In the case of autofocusing, the
calculation time was on the order of milliseconds, even for three layers, which is
much shorter than the frame rate of 33 ms. Therefore, networks with three layers
were adopted.

We further assessed the types of activation (or transfer) functions, which
represent an additional factor in a neural network that affects precision, by
referring to the ARS. In the case of coarse autofocusing, the sigmoid function (f(x)
= 1/(1+ e−x)) exhibited a higher ARS than the rectified linear unit (ReLU)
function (f(x)= x (x > 0), 0 (x < 0)) for the final output layer. Therefore, compared
with the other layers for which the ReLU function was used, the sigmoid function
was adopted for the final output layer (Supplementary Figure 2a).

When designing the neural network, the procedure was as follows: first, we
started from the neural network with a minimum number of layers and weight;
second, we increased these values until the ARS was saturated, indicating that the
numbers were suitable; and finally, we tried different activation functions of the
final layer to design a neural network with the highest speed and the lowest ARS.

Amount of training data. A neural network should learn using an appropriate
number of training images to avoid underlearning or overlearning. Therefore, we
examined the extent of learning using cross validation. The judgment of new
images by the network was compared with that of the images used for training
using the ARS as shown in Eq. (2). The convergence of the distance between the
ARSs was assessed for different extents of training (Supplementary Figure 15).
When learning was executed with an appropriate number of data, the distance
became constant. Based on our results, the required number of training images was
400, 40, and 200 for coarse autofocusing, cell searching, and cell region detection,
respectively.

We estimated the time required for both manual creation of the training images
and learning using a neural network. In the case of coarse autofocusing, ~400
training images were required (Supplementary Figure 15a), and these images could
be prepared within 4 min using automatic repetitive scanning of the objective lens
around the in-focus position. During this process, 100 images were acquired per
scan in 50 s. The learning of the neural network was automatically completed
within 2 min Thus, at least 6 min is required for preparation of the training images
and their learning. In the cases of cell searching and cell region detection, 40 and
200 training images were necessary (Supplementary Figure 15b and c), and the raw
image acquisitions were completed within 30 min Subsequently, the suitable
regions for the single-molecule imaging and cell adhesion areas in the obtained
images were manually painted. The average time required for this process was
approximately 3 min per image, regardless of the individual researcher’s skill and
the image condition. The learning was completed within 10 and 16 min Thus, at
least 160 (=30+ 120+ 10) and 646 (=30+ 600+ 16) min preparation are
required for automatic cell searching and cell region detection, respectively. In fact,
we completed preparation of the training data and learning procedure within one
day. Using the neural network, image processing filters were automatically
generated based on the easily prepared training data. In contrast, conventional
image processing requires the selection and combination of appropriate methods
(e.g., density processing, edge extraction, and binarization) based on trial and error;
thus, predicting the time required for preparation is difficult. For a wide range of
biologists, the use of artificial intelligence could be more efficient and helpful than
conventional methods.

Cell type-dependent learning. We examined the influence of different cell types
on the learning associated with cell region detection using SRIC images (Supple-
mentary Figure 16). We prepared 150 images of CHO or HeLa cells that were
divided into 100 and 50 images for the training and test datasets, respectively. Each
cell region in the training images was manually painted (Supplementary Figure 16a
and b). The neural network shown in Supplementary Figure 2c was assessed for
learning from 100 images of CHO or HeLa cells and a combination of 50 images of
CHO cells and 50 images of HeLa cells (CHO+HeLa) (Supplementary Figure 16).
The ARS defined in Eq. (2) was obtained for predictions of the test dataset of CHO
or HeLa cells by different networks trained on the three datasets (CHO, HeLa, and
CHO+HeLa). Although Supplementary Figure 16c shows that the precision of the

prediction was the highest when the cell type of the training images was consistent
with that of the test images, the networks trained with mismatched cell types could
be practically used in the experiment as shown in Supplementary Figures 16d and
e. Because the imaging method was the same regardless of the cell type, the cell
images exhibited similar features, indicating that training data do not need to be
collected from each cell type.

Single-molecule tracking algorithm. We developed a software program26 to
perform single-molecule tracking. Although other single-molecule/particle tracking
software was available30,31, our program is convenient for incorporation into our
automated system and can be modified according to the experimental purpose. A
flowchart of our single-molecule/particle tracking software is shown in Supple-
mentary Figure 17a. First, the cross-correlation between the obtained image and
the following two-dimensional Gaussian distribution was calculated.

Ii;j ¼
1ffiffiffiffiffi
2π

p
σ
exp � i2 þ j2

2σ2

� �
ð3Þ

where (i, j) indicates the X–Y position in an ROI (Supplementary Figure 17a, right
upper panel) and σ indicates the Gaussian standard deviation. The variables i and j
were assigned values from −5 to 5 (pixel), and σ was set to 2 pixels that cover the
entire single-molecule spot. The cross-correlation at (i, j), yij is described as follows:

yi;j ¼
PR

I¼�R

PR
J¼�R II;J � Iave

� �
xiþI;jþJ � xave

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR

I¼�R

PR
J¼�R II;J � Iave

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR

I¼�R

PR
J¼�R xiþI;jþJ � xave

� �2
r :

Here,

Iave ¼ 1
2Rþ1ð Þ2

PR
I¼�R

PR
J¼�R

II;J ;

xave ¼ 1
2Rþ1ð Þ2

PR
I¼�R

PR
J¼�R

xiþI;jþJ ;

ð4Þ

where xi,j and yi,j are the pixel intensities at (i, j) in the obtained and cross-
correlated images, respectively, and R is the length of a side of the square ROI (5
pixels). Then, binarization of yi,j using a threshold value of 0.25 and labeling were
performed. This threshold should be adjusted depending on the signal-to-noise
ratio of the single-molecule image (see also Supplementary Figure 17b). We
carefully set this threshold by comparing the binarized image with the raw image
by visual inspection to avoid missing small fluorescence signals (threshold ~1) or
overcount noise (~0) (Supplementary Figure 17b). Once determined, the threshold
value could be applied to another sample/cell because the quality of the images
obtained by AiSIS was generally constant due to selection of the imaging field by
the trained neural network. Once the centroid of the labeled object was found,
fitting within the ROI was executed according to the following function:

I x; y; I0; xg ; yg ; σA; a; b; Iback
� �

¼ I0 exp � x�xgð Þ2þ y�ygð Þ2
2σ2A

� �

þa x � xg
� �

þ b y � yg
� �

þ Iback

ð5Þ

where x and y denote the pixel positions. The intensity distribution in the ROI is
expressed as a Gaussian function with a peak intensity of I0 at the centroid, (xg, yg)
and a variance of σA2 plus a background, which has an inclination described by a
and b above the offset intensity Iback. The fitted parameters are I0, xg, yg, σA2, a, b,
and Iback. To generate a single-molecule trajectory by connecting the spots, the
following algorithm is used. All possible connections between two spots at times t
and t− 1 with a center-to-center distance below 6 pixels are listed. Then, the
shortest connection between both spots is selected. Trajectories outside the cell
region or with inadequate spot sizes (σA < 1.5 or σA > 2.5) were removed.

Estimation of EGFR motional states. The diffusion coefficient D in Fig. 2 was
calculated from the step displacement of single-molecule dr during time T (=66
ms) according to the equation: D= dr2/4T. The histogram in Fig. 2c shows the
average and standard error of the diffusion coefficient distributions among the
cells.

The MSD was calculated from all trajectories in every cell using the following
equation:

MSD nδtð Þ ¼ xi nδt þmδtð Þ � xi mδtð Þ½ �2	
þ yi nδt þmδtð Þ � yi mδtð Þ½ �2
i;m:

ð6Þ

where n and m are frame numbers, xi and yi show the single-molecule position in
the i-th track, δt is the time interval between frames (33 ms), and [ ]i,m represents
the average over i tracks and m frames. The confined length was calculated by
fitting the MSD with the following formula32:

MSD tð Þ ¼ C2=3
� �

1� exp �12Dt=C2
� �� �

; ð7Þ
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where C and D are the confined length and diffusion coefficient, respectively. We
calculated these parameters by the maximum-likelihood method. The deviation
between MSD values at time t obtained from the observed cells and the fit seemed
to obey normal or log-normal distributions. Although the normal distribution,
which is typically used as an error distribution, well described these cell-to-cell
variations, the log-normal distribution was more likely to be applied as indicated by
the log likelihood (logL) as shown in Supplementary Figure 6a. When the MSD
curves was fitted using a maximum likelihood estimation assuming either error
distribution, the parameters obtained with the log-normal distribution showed a
slightly higher likelihood (Supplementary Table 3) and were almost the same as
those obtained with the normal distribution. Therefore, we compared the
likelihood of the two distributions. The normal distribution Lnorm and the log-
normal distribution Llog are described as follows:

Lnorm ¼ QNcell

i¼1

Q15
j¼1

1ffiffiffiffi
2π

p
σj
exp � di;j�MSD j=30ð Þð Þ2

2σ2j

� �
;

Llog ¼
QNcell

i¼1

Q15
j¼1

1ffiffiffiffi
2π

p
σ jdi;j

exp � logdi;j�logMSD j=30ð Þþσ2j =2ð Þ2
2σ2j

� �
:

ð8Þ

where di,j is the average of the measured MSD in the i-th cell at time j/30 (s); Ncell is
the number of cells; and σj2 represents the variance of the normal or log-normal
function for Lnorm and Llog, respectively. The log likelihoods are expressed as
follows:

logLnorm ¼ � 15Ncell log 2πð Þ
2

� PNcell

i¼1

P15
j¼1

logσ j þ
di;j�MSD j=30ð Þð Þ2

2σ2j


 �
;

logLlog ¼ � 15Ncell log 2πð Þ
2

� PNcell

i¼1

P15
j¼1

logσ jdi;j þ
logdi;j�logMSD j=30ð Þþσ2j =2ð Þ2

2σ2j


 �
:

ð9Þ

After the log likelihood values were maximized, the fitted parameters were D, L,
and σj (j= 1, 2, …, 15). The results are shown in Supplementary Table 3. Since
logLlog was larger than logLnorm, the parameters in logLlog were adopted.

The probability distribution of the displacement was obtained for each time
interval and obeyed the following equation:

P r; δtð Þ ¼ PN
n¼1

Cnr
2Dnδt

exp � r2
4Dnδt

� �
;

PN
n¼1

Cn ¼ 1;

ð10Þ

where N is the number of states; Cn and Dn are the fraction and the diffusion
constant of state n, respectively; and r is the displacement. The function of the log
likelihood is logP(r|θ), where θ is the parameters Cn and Dn for each state n in the
N-state model (N= 1 to 4) and obtained by the maximum-likelihood method. To
determine N, we introduced the AIC33, which was calculated using the following
equation:

AIC ¼ �2
XNmol

i¼1

logP rijθð Þ þ 2k: ð11Þ

where Nmol represents the amount of data (displacements during δt= 66 ms) in
one cell and k represents the number of parameters. The N-states model with the
smallest AIC was adopted according to previous studies24,25. Supplementary
Figure 7 shows that EGFR and Grb2 were highly likely to adopt 3 states. For each
cell, the AIC and parameters of Cn and Dn were acquired.

Cluster size estimation. We applied a model in which the intensity histogram of
the fluorescent spots was assumed to be dependent on the following probability
distribution as in previous single-molecule studies2,17

P xð Þ ¼ PN
n¼1

Cnffiffiffiffiffiffi
2πn

p
σ
exp � x�nμð Þ2

2nσ2

h i
;

PN
n¼1

Cn ¼ 1:

ð12Þ

where x, n, and Cn denote the brightness, cluster size, and fraction of the n-mer
cluster, respectively. N is the maximum number of clusters and was set to 10. In
this model, the intensity distribution of the n-mer cluster should be the Gaussian
function with a center of nμ and a variance of nσ2. The log likelihood is as follows:

log L ¼
XNcell

j¼1

XNmol

i¼1

logP di;j
� �

: ð13Þ

where di, j is the fluorescence intensity of the i-th molecule in the jth cell and Ncell

and Nmol are the number of observed cells and molecules in the first frame,
respectively. The fitted parameters of μ, σ, and Cn were obtained by maximizing the
log likelihood. Both μ and σ were set as global parameters for our data obtained
under different EGF concentrations because the fluorescence properties of GFP and
TMR were not affected. In Fig. 5c, changes in the fractions of monomers, dimers,
and larger clusters were observed at every 40 s interval after EGF stimulation.

EC50 of the dose–response curve. The obtained MSD curve plotted against the
EGF concentration was fitted using the following equation to calculate the EC50:

MSD ¼ MSDmax �
MSDmax �MSDmin

1þ EC50
L½ �

� �h ð14Þ

where MSDmax and MSDmin are the MSD values of the upper and lower bound-
aries, respectively, [L] is the ligand (EGF) concentration, and h is the Hill coeffi-
cient. To obtain the parameters, we calculated the log likelihood. The deviation
between the distribution of MSD values from individual cells and the fit was
assumed to depend on the normal or log-normal distribution. The log likelihoods
of these distributions are as follows:

log Lnorm ¼ � Ncell log 2πð Þ
2

� PNcell

i¼1
log σð L½ �iÞ þ

di�MSD L½ �ið Þð Þ2
2σð L½ �iÞ2

� �
;

log Llog ¼ � Ncell log 2πð Þ
2

� PNcell

i¼1
log σð L½ �iÞdi

� �	

þ log di�logMSD L½ �ið Þþσð L½ �i Þ2
2

� �2

2σð L½ �iÞ2

)
;

ð15Þ

where σ([L]) indicates the parameters in the normal or log-normal distribution for
a condition of [L] nM EGF stimulation. The fitted parameters were EC50, h, σ([L])
for [L]= 0.06, …, 60 nM. The obtained parameter values are shown in Supple-
mentary Table 4. Because logLlog was larger than logLnorm, we adopted the para-
meters of the log-normal distribution.

When noncompetitive inhibition by AG1478 occurred, the MSD against both
the ligand and inhibitor concentrations was assumed to obey the following
equation to yield the EC50 and IC50:

MSD ¼ MSDmax �
MSDmax �MSDmin

1þ EC50
L½ �

� �
1þ I½ �

IC50

� � ð16Þ

where [I] is the inhibitor (AG1478) concentration. Because the error in the data
was assumed to obey the normal or log-normal distribution, the parameter was
obtained by maximizing the following log likelihoods:

log Lnorm ¼ � Ncell log 2πð Þ
2

� PNcell

i¼1
log σð L½ �i; I½ �iÞ þ

di�MSD L½ �i ; I½ �ið Þð Þ2
2σð L½ �i ; I½ �iÞ2

� �
;

log Llog ¼ � Ncell log 2πð Þ
2

� PNcell

i¼1
log σð L½ �i; I½ �iÞdi

� �	
þ log di�logMSD L½ �i ; I½ �ið Þþσð L½ �i ; I½ �iÞ2=2ð Þ2

2σð L½ �i ; I½ �iÞ2

�
:

ð17Þ

where σ([L],[I]) shows the parameters in a normal or log-normal distribution for
cells stimulated by [L] nM EGF and [I] nM inhibitors. [L]i, [I]i, and di represent the
concentrations of the ligand and inhibitor and the average of the measured MSD
obtained from the i-th cell, respectively; and Ncell is the number of cells. The fitted
parameters were EC50, IC50, σ([L, I]) for [L]= 0.3, 0.6, …, 60 nM and [I]= 0.1, 1,
…, 10,000 nM. The obtained parameter values are shown in Supplementary
Table 5. Because logLlog was larger than logLnorm, we adopted the parameters of the
log-normal distribution.

Curve fitting. The maximum-likelihood estimation (MLE) method was used to fit
the obtained data to the model equations. The Limited-Memory Broyden Fletcher
Goldfarb Shanno algorithm34 was employed to calculate the diffusion displacement
by Eq. (10). A generalized reduced gradient nonlinear optimization method35 was
used to obtain the MSD by Eqs. (7) and (8), the intensity histogram by Eqs. (12)
and (13), the EC50/h by Eqs. (14) and (15), and the EC50/IC50 by Eqs. (16) and (17).
For the fittings, the commercially available software Microsoft Excel (Microsoft)
was used. The molecular lateral diffusion was analyzed using Eq. (10) with an in-
house-developed program written in Python (https://www.python.org). The least
squares method along with the Levenberg Marquardt method36 were used to fit the
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evaluation value distribution for the high-precision autofocusing by the Gaussian
function and the intensity profile of the fluorescent spots by Eq. (5).

Code availability. All codes are available upon request from the first authors or
corresponding authors.

Data availability. The data supporting the findings of this study are available from
the corresponding authors upon reasonable request.
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