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Abstract

Model personalization requires the estimation of patient-specific tissue properties in the form of 

model parameters from indirect and sparse measurement data. Moreover, a low-dimensional 

representation of the parameter space is needed, which often has a limited ability to reveal the 

underlying tissue heterogeneity. As a result, significant uncertainty can be associated with the 

estimated values of the model parameters which, if left unquantified, will lead to unknown 

variability in model outputs that will hinder their reliable clinical adoption. Probabilistic 

estimation of model parameters, however, remains an unresolved challenge. Direct Markov Chain 

Monte Carlo (MCMC) sampling of the posterior distribution function (pdf) of the parameters is 

infeasible because it involves repeated evaluations of the computationally expensive simulation 

model. To accelerate this inference, one popular approach is to construct a computationally 

efficient surrogate and sample from this approximation. However, by sampling from an 

approximation, efficiency is gained at the expense of sampling accuracy. In this paper, we address 

this issue by integrating surrogate modeling of the posterior pdf into accelerating the Metropolis-

Hastings (MH) sampling of the exact posterior pdf. It is achieved by two main components: 1) 

construction of a Gaussian process (GP) surrogate of the exact posterior pdf by actively selecting 

training points that allow for a good global approximation accuracy with a focus on the regions of 

high posterior probability; and 2) use of the GP surrogate to improve the proposal distribution in 

MH sampling, in order to improve the acceptance rate. The presented framework is evaluated in its 

estimation of the local tissue excitability of a cardiac electrophysiological model in both synthetic 

data experiments and real data experiments. In addition, the obtained posterior distributions of 

model parameters are interpreted in relation to the factors contributing to parameter uncertainty, 

including different low-dimensional representations of the parameter space, parameter non-

identifiability, and parameter correlations.
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1. Introduction

Rapid advancements in computational modeling and medical imaging technologies have 

enabled the development of high-fidelity patient-specific cardiac models across cell, tissue, 

and organ scales (Arevalo et al., 2016; Clayton et al., 2011). These personalized virtual 

models of the heart can be an important tool to aid both scientific understanding and clinical 

treatment of cardiac diseases on a patient-specific basis, with little to no risk to the patient. 

Recently, these multi-scale patient-specific cardiac models have been shown to facilitate the 

performance of several clinical tasks such as the stratification of the risk of lethal ventricular 

arrhythmia (Arevalo et al., 2016), the prediction of optimal ablation targets for left atrial 

flutter (Zahid et al., 2016), and the prediction of acute effects of pacing for cardiac 

resynchronization therapy (Sermesant et al., 2012).

Despite these advancements, the application of patient-specific modeling in clinical practice 

still faces a critical barrier with respect to the variability in the simulation output. This 

output variability arises from different sources of uncertainty inside the model when built 

from data. Primary sources of uncertainty include the anatomy of the model (e.g., shape of 

the heart), tissue properties (e.g., excitability and contractility of the heart muscle), and 

boundary conditions. Given the continued progress in high-resolution 3D imaging 

techniques, highly accurate patient-specific models of the heart are now possible (Arevalo et 

al., 2016; Sermesant et al., 2012). By contrast, the personalization of tissue properties faces 

several critical challenges that can contribute to the uncertainty in the obtained patient-

specific values. First, cardiac tissue properties typically cannot be directly measured; they 

must be estimated from sparse, noisy, and indirect data. This results in correlation and non-

identifiability of tissue properties in different regions of the heart. Second, it is impossible to 

estimate the tissue properties at the resolution level of the discrete cardiac mesh and a 

representation of the parameter space at a reduced dimension is necessary. The choice of 

different low-dimensional representations will contribute to different uncertainties in the 

resulting tissue properties of the patient-specific model. Hence, to rigorously understand and 

quantify the variability and reliability of the predictions made by a patient-specific model, it 

is important to properly quantify the uncertainty associated with the model parameters that 

represent the estimated tissue properties for each specific patient.

1.1. Related work

Existing works on estimating parameters for patient-specific cardiac models can generally 

be divided into deterministic and probabilistic approaches. In the past few decades, 

significant progress has been made in deterministic approaches to parameter estimation. In 

particular, various methods of derivative-free optimization were presented to handle the 

analytically-intractable objective function consisting of complex cardiac models, such as the 

use of the subplex method (Wong et al., 2015), Bound Optimization BY Quadratic 
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Approximation (BOBYQA) (Wong et al., 2012), and New Unconstrained Optimization 

Algorithm (NEWUOA) (Sermesant et al., 2012). Recently, effective methods were 

developed to obtain a low-dimensional representation of the parameter space with adaptive 

spatial resolution (Chinchapatnam et al., 2009, 2008; Dhamala et al., 2017a). However, 

because these methods focus on obtaining a single value of the model parameters that best 

fits the available data (under given optimization criteria), they do not provide an uncertainty 

measure associated with the estimated patient-specific parameter values.

By contrast, limited progress has been made in probabilistic approaches to estimating the 

patient-specific parameters of a cardiac model, where the uncertainty in these parameters 

can be described by their posterior probability density function (pdf) given the measurement 

data. This posterior pdf of model parameters, in theory, could be estimated using standard 

Markov Chain Monte Carlo (MCMC) methods that involve repeated non-intrusive 

evaluations of the posterior pdf. Unfortunately, in this case, the posterior pdf consists of an 

analytically-intractable simulation model, each evaluation of which evokes a 

computationally expensive simulation that could take hours or even days to complete. As a 

result, it is infeasible to use standard MCMC methods to obtain a posterior pdf of the 

parameters for expensive simulation models (Efendiev et al., 2006; Gilks et al., 1995; 

Konukoglu et al., 2011).

To overcome the primary challenge of having to repeatedly evaluate an expensive simulation 

model when sampling the posterior pdf of the model parameters, recent research reported 

the building of an efficient surrogate of the simulation model using methods such as kriging 

(Schiavazzi et al., 2016) and polynomial chaos (Konukoglu et al., 2011). In recent literature, 

this efficient surrogate model was then used to replace the expensive simulation model for a 

substantially faster MCMC sampling of the posterior pdf (Konukoglu et al., 2011; 

Schiavazzi et al., 2016). However, by sampling an approximated rather than the exact 

posterior pdf, the efficiency is gained at the expense of sampling accuracy that relies heavily 

on the quality of the surrogate model.

In parallel, outside the application domain of cardiac modeling, simplified simulation 

models have been used to accelerate sampling of the posterior pdf for model parameters 

without compromising the sampling accuracy. In Efendiev et al. (2006), where the 

permeability field of a geo-statistical subsurface model is being estimated, a coarse-scale 

simulation model was used to modify the Gaussian proposal distribution in the standard 

Metropolis-Hastings (MH) sampling method. Similarly, in Christen and Fox (2005) that 

estimates the resistance values in an electrical network, a first-order Taylor expansion of the 

simulation model was used to modify the Gaussian proposal distribution in the standard MH 

method. These works utilized the simplified simulation models to improve the proposal 

distribution of MCMC sampling and thereby improve its convergence, while guaranteeing 

that the final samples are still drawn from the exact posterior pdf. However, because the use 

of coarse scale or linearized models has limited accuracy, the extent to which the sampling 

can be accelerated may be limited.

Moreover, all of the above approaches focus on approximating or simplifying the simulation 

model. Therefore, the approximation accuracy is targeted on important regions of the 
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simulation model and, as a result, may be limited in important regions of the posterior pdf, 

such as those of high posterior probability. To overcome these issues, one potential solution 

is to directly build a surrogate model of the posterior pdf, and then use this surrogate to 

accelerate MCMC sampling. This idea was presented in a recent work (Lê et al., 2016) that 

first constructed a surrogate of the negative log posterior pdf via a Gaussian process (GP), 

and then utilized the gradient of this GP surrogate to more efficiently explore the sampling 

space within the Hamiltonian Monte Carlo (HMC) method. To construct the GP surrogate 

model, the exact posterior pdf was evaluated at uniformly distributed samples, followed by 

HMC exploration of the parameter space. However, by using the gradient of the GP 

surrogate, the sampling efficiency becomes dependent on the accuracy of the approximated 

local derivatives. To construct a GP surrogate that is also accurate in approximating the local 

derivatives could necessitate a large number of samples.

1.2. Contributions

In this paper, we present a novel GP-accelerated Metropolis-Hastings sampling framework 

to overcome the current challenges associated with the probabilistic estimation of patient-

specific model parameters. In this framework, a GP surrogate is built to approximate the 

posterior pdf of the model parameters, which is then used to accelerate the MH sampling of 

the exact posterior pdf. The key contributions of this work include the following:

i. We present a strategy of active GP construction that, rather than randomly 

exploring the parameter space, actively selects training points to approximate the 

posterior pdf with higher accuracy in regions of high posterior density.

ii. We present a mechanism that utilizes the efficient GP surrogate to modify and 

improve the proposal distribution of the MH sampling. Specifically, the GP 

surrogate is utilized to initially test the acceptance for each proposed candidate, 

and only those that are initially accepted will be evaluated by the exact posterior 

pdf for final acceptance, eliminating the need to evoke the expensive simulation 

model at highly unlikely candidates. This improves the acceptance rate of MH 

sampling without compromising its accuracy.

iii. We apply the presented framework to the probabilistic estimation of local tissue 

excitability in a 3D cardiac electrophysiological (EP) model. Using input data 

from simulated 120-lead electrocardiographic (ECG) data and validation on 

synthetic infarct settings, we validate the accuracy and establish its 

computational cost against direct MH sampling of the exact posterior pdf. 

Further, we compare its performance with that of directly sampling the surrogate 

posterior pdf as done in existing works (Schiavazzi et al., 2016). Our approach is 

also noteworthy in that limited work has been reported on estimating tissue 

properties using non-invasive ECG data.

iv. We further evaluate the presented method in estimating tissue excitability in a 

variety of experimental settings with different input data and validation data. 

This includes using: 1) input data from a subset of epicardial action potentials 

generated from an EP model blinded to the presented estimation framework, with 

validation data of myocardial scar from in-vivo magnetic resonance images 
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(MRI); and 2) input data from in-vivo 120-lead ECG data from post-infarction 

patients, with validation data from in-vivo voltage mapping.

v. We evaluate the presented estimation framework on two previously reported low-

dimensional representations of the parameter space. We analyze the estimated 

posterior pdf and demonstrate how the uncertainty of the obtained solution is 

associated with the underlying dimensionality reduction method of choice. This 

highlights the importance of quantifying the uncertainty in estimated parameter 

values in patient-specific modeling.

vi. We provide additional analyses of the estimated posterior pdf in relation to other 

factors that may contribute to the uncertainty of the estimation solution, 

including tissue heterogeneity, parameter coupling, and model over-

parameterization.

This study extends our previous work in Dhamala et al. (2017b) in the following primary 

respects:

i. A theoretical examination on the convergence property of the presented GP-

accelerated MH method.

ii. An evaluation and generalization of the presented method on two types of low-

dimensional representations of the parameter space, and a comparative analysis 

of the resulting posterior pdfs to understand how uncertainty of the patient-

specific solutions varies with the low-dimensional representation of choice.

iii. An evaluation of the presented framework in the presence of highly 

heterogeneous tissue properties, using measurement data generated from an EP 

model blinded to the presented framework and validation data of myocardial scar 

obtained from in-vivo magnetic resonance images.

iv. A comprehensive analysis of different factors that contribute to the uncertainty in 

the obtained patient-specific model parameters.

2. Cardiac electrophysiological system

2.1. Whole-heart electrophysiology model

In the past few decades, numerous computational models of cardiac electrophysiology have 

been developed with varying levels of detail and complexity (Clayton et al., 2011). Among 

these, phenomenological models have found widespread application in patient-specific 

parameter estimation (Giffard-Roisin et al., 2017; Moreau-Villéger et al., 2006; Relan et al., 

2011b, 2009; Sermesant et al., 2012) because they are computationally efficient with a small 

number of model parameters, while being able to reproduce key macroscopic dynamical 

properties of cardiac excitation. Therefore, in this study, we utilize the two-variable Aliev-
Panfilov (AP) model (Aliev and Panfilov, 1996) to demonstrate our ability to 

probabilistically personalize model parameters. In this model:
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∂u
∂t = ∇ D∇u − cu u − a u − 1 − uz,
∂z
∂t = ε u, z −z − cu u − a − 1 ,

(1)

u is the normalized transmembrane action potential, z is the recovery current, and ε = e0 + 

(μ1z)/(u + μ2) controls the coupling between u and z. Parameter D is the diffusion tensor, c 
controls the repolarization, and a controls the excitability of the cell.

One-factor-at-a-time sensitivity analysis of the AP model (1) shows that the model output u 
is most sensitive to parameter a (tissue excitability) (Dhamala et al., 2017a). Therefore, we 

consider the probabilistic estimation of parameter a in this paper. We bound the value of the 

parameter a in the range of [0, 0.5], where as described in Rogers and McCulloch (1994), a 

value around 0.15 exhibits normal excitation and an increasing value of a exhibits an 

increasingly diminished excitability until a value of 0.5 that stops the excitation. The values 

for the remainder of the model parameters in (1) are fixed to standard values as documented 

in the literature (Aliev and Panfilov, 1996): c = 8, e0 = 0.002, μ1 = 0.2, and μ2 = 0.3. In this 

paper, the AP model is solved on the discrete 3D myocardium using the meshfree method as 

described in Wang et al. (2010b).

The direct estimation of parameter a at the resolution of the cardiac mesh involves a high-

dimensional estimation that is infeasible due to both prohibitively high computation due to 

repeated model evaluations and the non-identifiability of the parameters given limited 

availability of measurement data. As in common practice (Giffard-Roisin et al., 2017; Lê et 

al., 2016; Relan et al., 2011b; Sermesant et al., 2012; Wong et al., 2015), we consider the 

estimation of tissue excitability at a reduced dimension. Any commonly used dimensionality 

reduction technique can be accommodated by the presented estimation framework. In this 

paper, we apply the presented framework to two types of low-dimensional representations of 

the parameter space: 1) a 10-dimensional representation with uniform resolution obtained by 

dividing the cardiac mesh into 10 segments that are a combination of the segments in the 

standard American Heart Association (AHA) 17-segment model (Cerqueira et al., 2002), 

and 2) a 7-15 dimensional representation with an adaptive resolution that is lower at 

homogeneous regions and higher at heterogeneous regions obtained using the recently 

reported method in Dhamala et al. (2017a). We will demonstrate that, as revealed by the 

presented framework, different uncertainties are associated with solutions obtained with 

different low-dimensional representations.

2.2. Measurement data

In this study, we demonstrate the presented framework using two types of data for 

personalizing the parameter a: body surface ECG and epicardial potentials.

ECG data are generated by spatio-temporal cardiac action potential following the quasi-

static approximation of the electromagnetic theory (Plonsey, 1969). This relationship can be 

modeled by solving a Poisson’s equation within the heart and Laplace’s equations external 
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to the heart on a discrete mesh of heart and torso (Wang et al., 2010b), resulting in a linear 

model:

Yb = HbU θ , (2)

where Yb represents ECG data, U represents volumetric action potential, Hb is the transfer 

matrix unique to patient-specific heart and torso geometry, and θ is the vector of parameter a 
at a reduced spatial dimension as described in Section 2.1.

In practice, epicardial potential data may be in the form of extracellular potential data 

acquired from catheter mapping (Relan et al., 2011a; Sermesant et al., 2012) or action 

potential data acquired from optical mapping (Relan et al., 2011b; Wang et al., 2010a). Here, 

we consider epicardial action potential data which constitutes a small subset of the model-

generated U:

Ye = HeU θ , (3)

where Ye represents epicardial action potential and He is a sparse matrix with a small set of 

1s indexing the location where epicardial action potential data are available. In the 

remainder of the paper, we use Y to denote either Ye or Yb for simplicity.

3. Probabilistic parameter estimation

A stochastic relationship between measurement data Y and model parameter θ can be 

expressed as:

Y = M θ + ε, (4)

where M consists of the whole-heart electrophysiological model and the measurement model 

as described in Section 2. ε is the noise term that accounts for measurement error and 

modeling error other than that arising from the value of the parameter θ. Using Bayes’ rule, 

the unnormalized posterior density of the model parameter θ has the form:

π θ Y ∝ π Y θ π θ . (5)

Assuming uncorrelated Gaussian noise ε 𝒩 0, σe
2I , the likelihood π(Y|θ) can be written as:

π Y θ ∝ exp − 1
2σe

2 Y − M θ 2 , (6)
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where ‖·‖ is the Frobenius norm. The prior distribution π(θ) quantifies a priori knowledge 

about the parameters. Here, a uniform distribution bounded within [0, 0.52] is used. So, π(θ) 

is constant on this interval and 0 off it.

A direct MCMC sampling of the posterior pdf in Eq. (5) is infeasible because its slow 

convergence requires a significant number of evaluations of the expensive 

electrophysiological model (at an order of 105). Below we present an accelerated 

Metropolis-Hastings method that consists of two major ingredients. The first ingredient 

involves the rapid construction of a computationally-efficient surrogate of the expensive 

posterior pdf (8) via active GP construction. The second ingredient involves the use of the 

efficient GP surrogate to modify the proposal distribution in MH sampling in order to 

improve its acceptance and convergence rate. Fig. 1 shows a high-level work-flow of the 

presented framework. In the following sections, we describe each component in detail.

3.1. Active construction of the GP surrogate

A GP is a random process with an infinite number of random variables, any finite subset of 

which has a joint Gaussian distribution. It thus provides a distribution over functions 

f ⋅ 𝒢P μ ⋅ , κ ⋅ , ⋅  that is fully characterized by a mean function μ(·) and a covariance 

function κ(·, ·) (Rasmussen and Williams, 2006). Over the past few decades, GP has been 

successfully utilized in many non-linear Bayesian regression tasks. In a typical regression 

setting, given a set of training input-output pairs Θ = [θ1, θ2, …θn]T and G = [g1, g2, …gn]T, 

one is interested in making a prediction g* for any given θ*. In standard regression with GP, 

this is achieved by estimating an unobserved latent function that is responsible for 

generating g from θ:g = f θ + 𝒩 0, ς2 . A GP is used to define prior distribution over the 

latent function f ⋅ 𝒢P 0, κ ⋅ , ⋅ . Then, using the properties of Gaussian distribution, the 

predictive mean μ(θ*) and variance σ2(θ*) can be obtained as:

μ θ∗ = kT K + ς2I −1G,
σ2 θ∗ = κ θ∗, θ∗ − kT K + ς2I −1k,

(7)

where k = [κ(θ*, θ1), κ(θ*, θ2), ⋯ κ(θ*, θn)]T and K is the positive definite covariance 

matrix with Ki,j = κ(θi, θj).

Because of the analytic properties and the ability to provide probabilistic prediction 

estimates, recently GP has found widespread use in active learning (Brochu et al., 2010; 

Kapoor et al., 2007; Krause and Guestrin, 2007; Sun et al., 2015) that is concerned with 

gathering the most informative training data in cases in which collecting a large number of 

input-output pairs {Θ, G} is prohibitively expensive (Settles, 2010). In the context of this 

study, generating training pairs {Θ, G} for building the GP surrogate requires expensive 

evaluation of the exact posterior pdf at each input θ. Therefore, a method for actively 

selecting the training points from the parameter space is important. Below, we describe the 

method that actively selects the training points to obtain an approximation of the posterior 

pdf model that has higher accuracy in the regions of high posterior pdf.
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A GP fitted to the log-posterior pdf is typically better than a GP fitted to the posterior pdf 

because, in general, the former has longer length scales and lower dynamic range than the 

latter. Therefore, we fit a GP model for the log of the un-normalized posterior pdf obtained 

by replacing π(Y|θ) in Eq. (5) with Eq. (6) as given below:

g θ = − 1
2σe

2 Y − M θ 2 + log π θ . (8)

We first define a GP prior over the unknown function (8). Through the covariance function 

of a GP, assumptions about properties of the function being modeled such as its smoothness 

and periodicity can be specified. Here, we take an anisotropic Mátern 5/2 co-variance 

function (Rasmussen and Williams, 2006) that enforces an assumption of twice 

differentiable function:

κ θi, θ j = α2exp − 5d θi, θ j 1 + 5d θi, θ j + 5/3d2 θi, θ j , (9)

where d2(θi, θj) = (θi − θj)TΛ(θi − θj), Λ is a diagonal matrix with the square of the 

characteristics length scales along each dimension of θ as the diagonal elements, and α2 is 

the co-variance amplitude. Because no prior knowledge about the posterior pdf is available, 

here for simplicity we take a zero mean function, which is a commonly and effectively used 

mean function in GP modeling (Rasmussen and Williams, 2006). The active construction of 

GP consists of an iteration of two major steps: 1) find a point in the sample space that 

improves the approximation of Eq. (8), especially in the regions of high posterior pdf, and 2) 

update the GP at this point.

1. Find optimal training points in the parameter space to update the GP—Here, 

we assume that the optimal training points are those that will: 1) allow the GP to globally 

approximate the Eq. (8) well, and 2) identify the regions of high posterior probability. For 

the former, points are chosen where the predictive uncertainty σ(θ) of current GP is high (to 

facilitate exploration of uncertain space). For the latter, points are chosen where the 

predictive mean μ(θ) of the current GP is high (to exploit the current knowledge about the 

space of high posterior probability). This is done by finding the point that maximizes the 

upper confidence bound of the GP (Srinivas et al., 2012):

θn + 1 = arg max
θ

μ θ + β1/2σ θ . (10)

The parameter β = 2 log(π2n2/6η), η ∈ (0, 1) balances between exploitation and exploration 

of the parameter space (Brochu et al., 2010; Srinivas et al., 2012). Eq. (10) is optimized 

using a bound constrained derivative-free optimization method known as Bound 

Optimization BY Quadratic Approximation (BOBYQA) (Powell, 2009). The predictive 

mean and uncertainty in Eq. (10) are evaluated using Eq. (7).
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2. Updating the GP surrogate at selected training points—Once a new training 

point is obtained, Eq. (8) is evaluated at this point and the GP is updated at the newly 

obtained {θn+1, gn+1} pair. This GP captures the updated belief over Eq. (8) after having 

observed the new training point.

G
gn + 1

𝒩 0,
K + ς2I k

kT κ θn + 1, θn + 1
. (11)

where k = [κ(θn+1, θ1), κ(θn+1, θ2), ⋯ κ(θn+1,θn)]T, K is the covariance matrix, and ς = 

0.001 is a small noise term that is added for numerical stability. After every several updates 

of the GP, we optimize the hyperparameters (length scales Λ and covariance amplitude α) 

by maximizing the marginal likelihood log p(g1:n+1|θ1:n+1, α, Λ).

These two steps iterate until the training point selected by optimizing the upper confidence 

bound (10) changes little over a few iterations (≤ 0.005, 15 iterations). The hyperparameters 

length scales Λ and covariance amplitude α are once again optimized by maximizing the 

marginal likelihood log p(g1:n+1|θ1:n+1, α, Λ). Fig. 2 gives examples of the training points 

selected during the GP construction, which reveals that these points are spread in the sample 

space but are more concentrated in the regions of high posterior probability. We take the 

predictive mean function of the resulting GP as the surrogate of Eq. (8). In this way, we can 

obtain a GP-based surrogate of the exact posterior pdf π(θ|Y), denoted by π*(θ|Y) for the 

remainder of this paper, that is cheap to evaluate and is most accurate in regions of high 

posterior probability.

3.2. Gaussian process surrogate accelerated Metropolis-Hastings

MH is the most widely used MCMC method. It begins from an arbitrary sample θn and 

generates a Markov chain of samples that come from an invariant distribution. In specific, at 

each step in the MH algorithm, a candidate sample θc is proposed using a proposal 

distribution q(θc|θn). This candidate is accepted with a probability given by:

ρmh θn, θc = min 1,
q θn θc π θc Y
q θc θn π θn Y . (12)

if accepted, θn+1 = θc. If rejected, θn+1 = θn. This is repeated until the samples converge to 

the target distribution.

The success of the MH largely relies on the choice of the proposal distribution. If the 

proposal distribution is much narrower than the target distribution, the MH will spend too 

much time exploring the sampling space, resulting in bad mixing. Conversely, if the proposal 

distribution is much wider than the target distribution, the MH will make wide jumps in the 

sampling space, resulting in a large number of rejections. Ideally, a proposal distribution 

similar to the target distribution is desired for a higher acceptance rate with a good mixing. 

However, to obtain such a proposal distribution is notoriously difficult and a Gaussian 
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distribution is the most commonly used proposal distribution in practice. Meanwhile, some 

previous works have proposed the modification of this generic proposal distribution using 

various approximate target distributions (Christen and Fox, 2005; Efendiev et al., 2006). 

Below, we describe how a GP surrogate of the posterior pdf is utilized to modify the 

Gaussian proposal distribution in MH to accelerate sampling with good mixing and a higher 

acceptance rate.

Specifically, we present a two-step test of acceptance. In the first step, a candidate θc1 

proposed by a standard Gaussian proposal distribution q(θc1|θn) is tested for acceptance by 

the GP surrogate of the posterior pdf π*(θ|Y) with acceptance probability given by:

ρ1 θn, θc1 = min 1,
q θn θc1 π∗ θc1 Y
q θc1 θn π∗ θn Y

. (13)

The candidate for the second test of acceptance is determined by the outcome of the 

previous step, i.e, θc = θc1 if accepted and θc = θn if rejected. In other words, the candidates 

for the second step are effectively generated from the transition probability in the first step, 

which defines the effective proposal distribution:

q∗ θc θn = ρ1 θn, θc q θc θn + r θn δθn
θc , (14)

where r(θn) = 1 − ∫ ρ1(θn, θc)q(θc|θn)dθc is the probability that the chain remains at θn and 

δθn
⋅  denotes the Dirac mass at θn. Using this modified proposal distribution, the proposed 

candidate sample is accepted by the exact posterior pdf with a probability given by:

ρ2 θn, θc = min 1,
q∗ θn θc π θc Y
q∗ θc θn π θn Y

. (15)

Depending on whether the candidate was accepted or rejected in the first step, the 

acceptance rate in Eq. (15) can be calculated. When a candidate is accepted in the first step, 

i.e., θc = θc1, we obtain q*(θc|θn) = ρ1(θn, θc)q(θc|θn), which can be further simplified using 

Eq. (13) as follows:

Dhamala et al. Page 11

Med Image Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



q∗ θc θn = min q θc θn π∗ θn Y , q θn θc π∗ θc Y 1
π∗ θn Y

= min
q θc θn π∗ θn Y
q θn θc π∗ θc Y

, 1 q θn θc
π∗ θc Y
π∗ θn Y

= ρ1 θc, θn q θn θc
π∗ θc Y
π∗ θn Y

= q∗ θn θc
π∗ θc Y
π∗ θn Y

.

(16)

Substituting Eq. (16) into Eq. (15), the acceptance probability in the second step can be 

simplified to:

ρ2 θn, θc = min 1,
π θc Y π∗ θn Y
π θn Y π∗ θc Y

. (17)

When a candidate is rejected in the first step, then θc = θn and ρ2(θn, θc) = 1. In other words, 

samples that are rejected in the first step do not need to be evaluated by the exact posterior 

pdf. This improves the proposal distribution for the MH method and reduces the need for 

evaluating the expensive posterior pdf at candidates that are highly unlikely to be accepted.

Convergence of the GP-accelerated MH sampling—The convergence of the MH 

with modified proposal distribution follows the same line as that of the standard MH 

(Andrieu et al., 2003; Christen and Fox, 2005; Efendiev et al., 2006; Gilks et al., 1995). 

Given any initial sample, the Markov chain generated by the MH converges to an invariant 

distribution if the transition probability meets the following properties: 1) irreducibility, and 

2) aperiodicity. A sufficient, but not necessary, condition to ensure convergence to an 

invariant distribution is reversibility (detailed balance). The presented GP-accelerated MH 

satisfies these criteria as follows:

1) Reversibility: Similar to the standard MH, through the inclusion of the 

acceptance rate, the transition probability is designed to meet the criteria of 

detailed balance by construction. Specifically, the detailed balance condition is 

given by:

π θn Y T θc θn = π θc Y T θn θc . (18)

where T denotes the transition probability of the presented GP-accelerated MH 

method that is defined by:
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T θc θn = ρ2 θn, θc q∗ θc θn + 1 − ∫ ρ2 θn, θc q∗ θc θn dθc δθn
θc . (19)

Proof—When θc = θn, Eq. (18) is automatically satisfied. When θc ≠ θn, Eq. (18) can be 

simplified using Eq. (19) and Eq. (15) as:

π θn Y T θc θn = π θn Y ρ2 θn, θc q∗ θn θc

= min q∗ θc θn π θn Y , q∗ θn θc π θc Y

= π θc Y min 1,
q∗ θc θn π θn Y
q∗ θn θc π θc Y

q∗ θn θc

= π θc Y T θn θc .

(20)

□

2) Aperiodicity: Because the acceptance criteria in the presented method always 

allow for rejection of the samples as in the standard MH, the presented GP-

accelerated MH is also aperiodic.

3) Irreducibility: If π(θc|Y) > 0, ∀θc ∈ Ω implies π*(θc|Y) > 0, ∀θc ∈ Ω, where Ω 
is the support of the exact posterior pdf π(θc|Y), then the Markov chain 

generated by the presented method is π-irreducible.

Proof—To ensure the condition of irreducibility in the standard MH, the proposal 

distribution is chosen to satisfy q(θc|θn) > 0, ∀θc, θn ∈ Ω. As a result, the transition 

probability in the standard MH, Tmh(Ω|θn) > 0, ∀θn ∈ Ω. Using the condition that the GP 

surrogate of the posterior distribution π*(θc|Y) > 0, ∀θc ∈ Ω, we can obtain similar results 

for the transition probability in the first step (alternatively the effective proposal distribution) 

of the presented method, i.e., q*(θc|θn) > 0, ∀θc, θn ∈ Ω. Without the loss of generality, 

assuming that θc ≠ θn, we obtain q*(θc|θn) = ρ1(θn, θc)q(θc|θn) > 0, ∀θc, θn ∈ Ω from Eq. 

(14). This implies that ρ2(θn, θc)q*(θc|θn) > 0, ∀θc, θn ∈ Ω. Therefore, the effective 

transition probability Eq. (19) of the presented method T(θc|θn) > 0, ∀θc, θn ∈ Ω. Hence, 

under the given condition that π*(θc|Y) > 0, ∀θc ∈ Ω, the presented method is π-

irreducible. Here, the GP surrogate of the posterior distribution π*(θc|Y) is an exponential 

function. Therefore, π*(θc|Y) > 0, ∀θc ∈ ℝd □

In practice, while the theoretical convergence is guaranteed, an inaccurate surrogate model 

could lead to a biased sampling with a low acceptance rate in the presented method.
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4. Evaluation on synthetic data

In experiments with synthetic data, we first evaluate the accuracy and efficiency of the 

presented method (GP-accelerated MH) against: 1) the baseline of directly sampling the 

exact posterior pdf using the standard MH (direct MH), and 2) the previously reported 

approach of directly sampling the surrogate posterior pdf using the standard MH (MH on 

GP) (Schiavazzi et al., 2016). We then analyze and interpret the obtained posterior pdfs in 

relation to different factors contributing to parameter uncertainty, primarily under the setting 

of parameter estimation using two different low-dimensional representations of the spatial 

parameter space as described in Section 2.

In total, we consider 14 synthetic cases with seven different settings of infarcts, each of 

which is estimated on two different low-dimensional representations of the spatial parameter 

space. To represent healthy and infarcted tissues in each case, the parameter a of the AP 

model (1) is set to 0.15 and 0.50, respectively. Measurement data for parameter estimation is 

generated in two steps. First, action potentials on the cardiac mesh are simulated using the 

AP model (1). Then, 120-lead ECG are generated using the forward model (2) and corrupted 

with 20 dB Gaussian noise.

All MCMC sampling runs on four parallel MCMC chains of length 20,000 with a common 

Gaussian proposal distribution and four different initial points. The variance of the Gaussian 

proposal distribution is tuned by rapidly sampling the GP surrogate pdf until obtaining an 

acceptance rate of ∼ 0.22, which is documented to enable good mixing and faster 

convergence in higher dimensional problems (Andrieu et al., 2003; Gilks et al., 1995). The 

four initial points are obtained by conducting a rapid sampling of the GP surrogate pdf, 

constructing four clusters of the samples using a Gaussian mixture model, and using the 

mean of each as the starting points for each chain. After discarding initial burn-in samples 

and selecting alternate samples to avoid auto-correlation in each chain, the samples from 

four chains are combined. The convergence of all the MCMC chains is tested using trace 

plots, Geweke statistics, and Gelman-Rubin statistics (Andrieu et al., 2003; Gilks et al., 

1995). To differentiate the infarcted and healthy regions from the estimated tissue properties, 

we calculate a threshold value that minimizes the intra-region variance on the estimated 

parameter values (Otsu, 1975).

4.1. Validation of the accuracy and efficiency of the presented method

We first validate the accuracy of the presented method against directly sampling the exact 

posterior pdf using the standard MH method. Fig. 3 presents four examples of posterior pdfs 

obtained from different synthetic data cases. As shown, the presented sampling strategy 

(green curve) closely reproduces the true posterior pdf (red curve) obtained from direct MH.

Next, we compare the computational cost of the presented method with that of the direct 

MH in terms of the number of model evaluations needed and actual computation times. The 

comparison is based on 14 synthetic cases run on a computer with a Xeon E5 2.20 GHz 

processor and 128 GB RAM. The presented method reduces the number of model 

evaluations by an average of 64.47% despite the overhead of constructing the GP surrogate 

which, as highlighted in the purple bar in Fig. 4 left, is very small compared with the 
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number of model evaluations required for sampling. The computation time is reduced from 

41.073±2.028 hours with direct MH to 7.961±2.028 hours with the presented method.

The efficiency of the sampling method is also measured in terms of its acceptance rate. Here, 

acceptance rate refers to the fraction of the accepted candidates out of all those proposed to 

the exact posterior pdf. As shown in the right panel of Fig. 4, the presented method improves 

the acceptance rate from 0.2653 ± 0.0500 of the direct MH to 0.3988 ± 0.0788. This means 

that the presented method is able to improve the proposal distribution by filtering out a large 

portion of candidate samples that would eventually be rejected by the exact posterior pdf, 

thereby avoiding evoking expensive simulation models on these candidates.

4.2. Comparison with directly sampling the GP surrogate

Directly sampling the GP surrogate pdf instead of the exact pdf, as commonly done in 

existing methods (Schiavazzi et al., 2016), requires significantly less computation because 

model simulation is not needed. However, the sampling accuracy also becomes critically 

reliant on the accuracy of the surrogate model. As illustrated in the examples in Figs. 3c and 

3d, sampling the GP surrogate (blue curve) produces a distribution that is different from the 

exact pdf not only in general shape but also in locations of the mode. In comparison, while 

the accuracy in the GP surrogate affects the efficiency of the presented method, the 

estimated pdf converges to the exact pdf as obtained by the direct MH. Using the mean, 

mode, and standard deviation of the exact pdf as the baseline, Table 1 shows that sampling 

errors of the presented method are significantly lower than those from sampling the 

surrogate only (paired t-test on 139 estimated parameters, p < 0.001).

4.3. Analysis of the sampled posterior distributions

Several factors can contribute to the uncertainty in the estimated model parameters, 

including but not limited to the sparse measurement data, parameter correlation, model over-

parameterization, and limited spatial resolution in comparison with the underlying tissue 

heterogeneity (which we will refer to as “model under-parameterization” for the remainder 

of the paper). Some of these factors vary with the method used to represent the parameter 

space. For example, different low-dimensional representations of the parameter space may 

result in different correlations between each dimension of the parameter, as well as different 

over- and/or under-parameterization of the model. Therefore, in this section, we consider the 

presented approach on two types of low-dimensional representations of the parameter space: 

a uniform division of the cardiac mesh into 10 segments using the AHA standard, and a non-

uniform division of the cardiac mesh into 7-15 clusters using a method that aims to 

adaptively group homogeneous nodes of the cardiac mesh together (Dhamala et al., 2016). 

Below, we analyze and interpret the estimated posterior pdfs in relation to the 

aforementioned contributing factors to uncertainty. We elaborate on three examples with a 

varying degree of “parameter heterogeneity”, a term we use to denote a state in which a 

dimension of the parameter representation is too low in resolution to reflect the underlying 

heterogeneity.

In the first example shown in Fig. 5, the infarct in the septum region is better represented by 

the uniform method than the adaptive method with respect to parameter heterogeneity. 
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Specifically, the uniform method generates three heterogeneous segments that are 37.32% of 

the heart volume; in comparison, the adaptive method generates four heterogeneous clusters 

that are 53.09% of the heart volume. In this case, the mode estimated using the uniform 

method accurately captures the infarct region (Dice coefficient: 0.5896), whereas the 

adaptive method captures the infarct with false positives at the right ventricle (Dice 

coefficient: 0.3447). Correspondingly, while the uniform method shows high confidence in 

the solution obtained in the region of true infarct, the adaptive method shows high 

uncertainty in the region of true infarct. In addition, it is interesting to note that both low-

dimensional representations result in high parameter uncertainty at the right ventricle region 

and the anterior region adjacent to the region of infarct. This uncertainty, independent of the 

low-dimensional representation of choice, may indicate difficulty in estimating parameters 

in this region of the heart due to non-identifiability and limited measurement data.

In the second example that has an infarct in the anterior region as shown in Fig. 5, both the 

uniform and adaptive methods show similar parameter heterogeneity in representing the 

infarct. Specifically, with the uniform method, the infarct lies completely within a segment 

such that only one segment that is 10.42% of the heart volume contains heterogeneous 

tissue; in comparison, the adaptive method generates three heterogeneous clusters that is 

10.16% of the heart volume. As shown, using the uniform method, the estimated mode 

reveals higher parameter value in the segment that contains the infarct (Dice coefficient: 

0.1622) with high confidence. However, the standard deviation plot shows high uncertainty 

in the estimated parameters throughout the cardiac mesh, possibly to compensate for the fact 

that the true infarct is much smaller than the segment representing the infarct. In 

comparison, using the adaptive method, the estimated mode has high parameter value in a 

narrower region representing the compact infarct with higher accuracy (Dice coefficient: 

0.5763). Likewise, high parameter uncertainty is obtained in a more concentrated region that 

overlaps the heterogeneous clusters. Additionally, similar to the first example, both low-

dimensional representations show high uncertainty in the region that is adjacent on the left to 

the region of true infarct. This indicates difficulty in accurately estimating parameters in 

those regions, possibly again due to non-identifiability and limited data.

Finally, Fig. 5 case 3 shows an example in which an infarct is better represented by the 

adaptive method than the uniform method with respect to parameter heterogeneity. 

Specifically, uniform method generates five segments with heterogeneous tissue, totaling 

45.01% of the heart volume; in comparison, the adaptive method also generates five clusters 

with heterogeneous tissue, but totaling only 30.59% of the heart volume. In this case, the 

mode obtained using the adaptive method captured the region of infarct with higher accuracy 

(Dice coefficient: 0.6220) than the mode obtained using the uniform method (Dice 

coefficient: 0.3269). A closer look at the standard deviation plots reveals that, in general, 

high uncertainty is obtained in the regions of heterogeneous tissue when using either 

method. Overall, because a higher proportion of the cardiac mesh is associated with 

heterogeneous representations when using the uniform method (model under-

parameterization), an overall larger region of high parameter uncertainty is obtained with the 

uniform method compared with the adaptive method.
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While the issue of model under-parameterization is more evident with the uniform method 

as explained above, the issue of model over-parameterization is more evident with the 

adaptive method. This is because the adaptive method as described in Dhamala et al. (2017a) 

could result in a large number of small clusters at heterogeneous regions around the infarct. 

Consequently, parameter values at these regions are associated with a high uncertainty as 

seen in the standard deviation plots obtained by using the adaptive method in Fig. 5, likely 

due to the issue of non-identifiability given limited and indirect measurement data. An 

example case, in which this issue is more pronounced, is shown in Fig. 6. Here, several 

small clusters (c-e) are formed by the adaptive method at the region of the inferior-lateral 

infarct and its border. For parameter values at these clusters, the MH sampling has difficulty 

converging to a distribution with distinct modes, which is reflected as high uncertainty in the 

resulting parameter values. These examples show that probabilistic parameter estimation can 

help reveal the issue of identifiability, which cannot be observed when a single point 

estimate is being sought.

Finally, different low-dimensional representations of the parameter space can also result in 

different correlations among the parameters in each dimension. In Fig. 7, we show an 

example with an infarct localized in the septal region, in which the parameter of one of the 

regions shows both a positive correlation and a negative correlation with parameters in other 

regions. As shown at the top of Fig. 7c, the parameter in region 7 and region 6 exhibits a 

negative correlation with a switching behavior (i.e., when the parameter in region 7 is 

estimated in a healthy range, the parameter in region 6 is estimated in an unhealthy range). 

At the same time, the parameter in region 7 and region 5 exhibit a positive correlation (i.e., 
when the parameter in region 7 is estimated in a healthy range, the parameter in region 6 

also is estimated in a healthy range; Fig. 7c, bottom). This is reflected as higher parameter 

uncertainty in all three regions.

5. Evaluation on a blinded EP model and in-vivo MRI scar

In this section, we study the presented method in quantifying the uncertainty in model 

parameters for post-infarction human hearts, where validation data for the 3D myocardial 

infarct is available from in-vivo magnetic resonance imaging. Compared with the infarct 

settings in synthetic data experiments, these MRI-derived 3D infarcts have the following 

characteristics that increase the heterogeneity in tissue properties: 1) the presence of both 

dense scar core and gray zone, 2) the presence of a single or multiple scars with complex 

spatial distribution and irregular boundaries, and 3) the presence of both transmural and non-

transmural scars. The resolution to which such heterogeneity can be captured is largely 

limited by the method of dimensionality reduction. Because previous work has shown that 

an adaptive non-uniform low-dimensional representation may be able to better represent 

tissue heterogeneity (Dhamala et al., 2017a), the experiments below are conducted using 

only the adaptive low-dimensional representation of the parameter space. Because in-vivo 
electrical mapping data were unavailable, here measurement data for probabilistic parameter 

estimation are generated by a high-resolution (average resolution: 350 μm) multi-scale (sub-

cellular to organ scale) in-silico ionic electrophysiological model on the MRI-derived 

patient-specific ventricular models as detailed in Arevalo et al. (2016). Data used for 

parameter estimation are extracted from 300-400 epicardial sites, temporarily down-sampled 
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to a 5 ms resolution, and corrupted with 20 dB Gaussian noise. Note that although no in-vivo 
electrical data were available, the experiments are designed to mimic a real-data scenario 

because: 1) the 3D EP model used to generate the measurement data is known to be capable 

of generating high-fidelity EP simulation of patient-specific hearts (Arevalo et al., 2016), 2) 

this model is unknown to the framework of GP-accelerated MH and thus no “inverse crime” 

is involved, and 3) only a small subset of epicardial data corrupted with noise is used as 

measurement data.

For clarity, below we analyze the performance of the presented method with respect to two 

contributing factors to the heterogeneity of the scar: 1) scar transmurality, and 2) gray zone. 

For ground truth, these regions were determined from the 3D infarcts mapped to the high 

resolution cardiac mesh from MRI Arevalo et al. (2016).

1) Scar transmurality

In examples case 1, case 2, and case 3 shown in Fig. 8, a portion of the scar is non-

transmural. From left to right, the non-transmural portion of the scar lies respectively on the 

lateral wall, the anterior-septal region, and the anterior-lateral wall of the left ventricle as 

denoted by a purple circle. In all three cases, the estimated mode misses these regions of 

non-transmural scar; the estimated mean exhibits higher parameter values deviating from 

that for healthy tissue, yet the value is not as high as that for scar tissue. In all cases, 

parameter values in these regions are associated with high uncertainty. This provides a 

useful confidence measure for the estimated mode, suggesting that these regions do not 

consist entirely of healthy tissue as reflected by the mode.

2) Gray zone

Case 4 and case 5 in Fig. 8 show examples in which a trans-mural dense scar is surrounded 

by gray zone. In both cases, the mean and mode estimates obtain high parameter values in 

the region of dense scar and gray zone. The parameter values in the regions of dense scar are 

higher than those in gray zones. In addition, the mean estimates reveal the gray zone to be 

wider than the estimates from MRI data, whereas the mode estimates do not. Parameters for 

these border regions are associated with high uncertainty as shown in the standard deviation 

plots, reflecting the underlying tissue heterogeneity in these regions and the possible model 

under-parametrization as a result of the low-dimensional representation of the parameter 

space.

6. In-vivo evaluation using 120-lead ECG and catheter data

We conduct real-data studies on three patients who underwent catheter ablation of 

ventricular tachycardia due to prior myocardial infarction (Sapp et al., 2012). The patient-

specific heart-torso geometrical models are constructed from axial computerized 

tomography images. The uncertainty of tissue excitability in the AP model (1) is estimated 

from 120-lead ECG. Similarly, all experiments are conducted using the adaptive low-

dimensional representation of the parameter space (Dhamala et al., 2017a). For validation of 

the results, we consider the relation between the estimated tissue excitability and the in-vivo 
epicardial bipolar voltage data obtained from catheter mapping. It should, however, be noted 
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that voltage data can be used only as a reference, not as the gold standard for the measure of 

tissue excitability. Below we focus our analysis on how the obtained parameter uncertainty is 

associated with the heterogeneity of the underlying tissue.

Case 1

The voltage data for case 1 (Fig. 9a) shows a dense infarct at inferolateral left ventricle (LV) 

with a heterogeneous region extending to lateral LV. Adaptive dimensionality reduction as 

described in Dhamala et al. (2017a) generates eight regions of the heart to be parameterized, 

five of which are listed in Fig. 10 along with the estimated posterior marginal pdfs for their 

parameters. As shown, the parameter for the region of infarct core (a) is correctly estimated 

with high confidence. The parameter for the region of immediate border to the infarct (e) has 

a mean/mode value that is in between the healthy and infarct core, correctly indicating a 

border zone, whereas other regions in the infarct border are estimated as either healthy (c-d) 

or infarcted (b). For all these regions around the heterogeneous infarct border (b-e), 

uncertainties of the estimation are higher. This produces an estimation with correct posterior 

mode/mean with high confidence at the infarct core, and high uncertainty at the 

heterogeneous infarct border.

Case 2

The voltage data for case 2 (Fig. 9b) shows a massive yet quite heterogeneous infarct at 

lateral LV. The adaptive dimensionality reduction method generates 12 regions of the heart 

to be parameterized, five of which are listed in Fig. 11 along with the estimated marginal 

pdfs for their parameters. As shown, for remote healthy regions (a-b), their parameters are 

correctly estimated with high confidence. For heterogeneous border regions close to the 

infarct (c-d), their parameters are estimated in the healthy range but with lower confidence. 

For the region that corresponds to the infarct (e), its abnormal parameter is correctly 

captured but with a high uncertainty – likely reflecting the heterogeneous nature of tissue 

properties in this region. As summarized in Fig. 9b, while the estimation correctly reveals 

the region of infarct as in case 1, it is also associated with a higher uncertainty compared 

with the less heterogeneous infarct in case 1.

Case 3

The voltage data for case 3 (Fig. 9c) shows low voltage at lateral LV and RV, although it was 

not certain whether the low voltage on lateral RV was due to the presence of an infarct or fat 

layer. After dimensionality reduction with the adaptive method, there are seven regions of 

the heart that remain to be parameterized (Fig. 12a). The infarct region in lateral LV (region 

1) is estimated with a distribution that has medium uncertainty and a mode of 0.257. This 

could indicate the presence of infarcted tissue along with some healthy tissue 

(heterogeneity). In contrast, the marginal distribution for the healthy apical region (region 2) 

is estimated with a very narrow uni-modal distribution with a mode of 0.142. Interestingly, 

several regions in the lateral RV (region 4, 5, and 7) show very high uncertainty with a 

distribution of the parameter value extending from healthy to infarct range. Overall, results 

show an estimate of healthy tissue in the apical region with high confidence, an estimate of 

heterogeneous tissue with infarct at lateral LV with medium confidence (Fig. 9c), and an 

estimate of the ambiguous region in lateral RV as healthy with high uncertainty.
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7. Discussion

7.1. Quality of the surrogate vs. acceptance rate

To understand how the acceptance rate of the presented GP-accelerated MH method is 

related to the accuracy of the GP surrogate, we measure the quality of the GP surrogates 

built in the synthetic data experiments by their Kullback-Leibler (KL) divergence to the 

exact posterior pdfs. The KL-divergence from the GP surrogate pdf π*(θ|Y) to the exact 

posterior pdf π(θ|Y) is defined by:

DKL π θ Y π∗ θ Y = ∫
−∞

∞
π θ Y log π θ Y

π∗ θ Y
dθ . (21)

Because above KL divergence cannot be obtained analytically, we estimate it using Monte 

Carlo simulation (Hershey and Olsen, 2007) as follows:

DKL π θ Y π∗ θ Y = 1
N ∑

i = 1

N
log

π θi Y
π∗ θi Y

, (22)

where θi are N random samples of π(θ|Y) obtained from direct MH method. As shown in 

Fig. 13, in most cases, the KL divergence of the surrogate pdf is low, indicating a high 

accuracy of the surrogate pdf. However, some surrogate pdfs had a high KL divergence from 

the exact pdf, indicating limited accuracy which is most likely related to the increased 

complexity in the shape of the un-normalized log exact posterior pdf. As expected, a 

negative correlation between the quality of the GP surrogate and the acceptance rate of the 

GP-accelerated MH method (correlation coefficient = −0.777) can be observed in Fig. 13. In 

other words, a more accurate GP surrogate will result in a higher efficiency of the presented 

sampling method, whereas a less accurate GP surrogate would be less effective in 

accelerating the MH sampling. However, a more accurate GP surrogate would also be more 

expensive to construct, whereas a less accurate one would be faster to construct. How to 

balance between these two steps, as well as how to construct an accurate surrogate without 

evoking a large number of model evaluations, are to be investigated in future works.

7.2. Related works

Related works on uncertainty quantification in personalized models can be broadly 

categorized into two types: 1) forward uncertainty quantification, and 2) inverse uncertainty 

quantification. Forward uncertainty quantification focuses on the uncertainty in model 

output as a result of variations in different model parameters. To overcome the challenge of 

repeatedly evaluating the expensive simulation model, methods such as generalized 

polynomial chaos or stochastic collocation are commonly used. In the domain of 

electrocardiography, this includes examples such as the study of sensitivity of model output 

to conductivity parameters (Geneser et al., 2008), the study of sensitivity of measured ECG 

signals on heart motion (Swenson et al., 2011), and the study of sensitivity of ECG signal 

components as a result of variations in sub-endocardial ischemia (Johnston et al., 2017). 
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These works are fundamentally different from the presented work that focuses on the inverse 

uncertainty quantification.

The inverse uncertainty quantification focuses on the uncertainty within the model (such as 

the estimated model parameters) as a result of different uncertain factors involved in the 

personalization of the model. Among existing works, the approach presented in Lê et al. 

(2016), although applied to a brain tumor growth model, is most common in its spirit with 

the presented framework. Specifically, the work presented in Lê et al. (2016) also utilizes a 

two stage sampling method (GPHMC) in which first a GP surrogate of the unnormalized 

negative log posterior pdf is learned with HMC and then its gradient is uti-lized in HMC for 

efficient sampling. To compare the presented method and the GPHMC method, we 

conducted experiments on six synthetic cases. Implementation of the GPHMC method as 

detailed in Lê et al. (2016) is utilized. We take 50 initialization points and 3000 exploratory 

points during the construction of the GP surrogate. The comparison is presented with respect 

to the two major elements of these methods: 1) GP surrogate construction, and 2) posterior 

pdf sampling. For the constructed GP surrogates, their mean KL divergences to the exact 

posterior pdf are respectively 6.58 and 38.57 for the presented method and the GPHMC 

method. This gain in accuracy by the presented method could be because of the utilization of 

a Mátern 5/2 kernel in GP, and an active scheme with a derivative free deterministic 

optimization to select training points. An increase in the number of training points in the 

GPHMC method may increase the accuracy of the GP surrogate. For the posterior pdf 

sampling, surprisingly we observed an acceptance rate of ≤ 0.1 with GPHMC although the 

accuracy of the GP surrogate was comparable between the two methods. We speculate that 

given the non-smooth and complex shape of the negative log posterior pdf and its first 

derivative in this study, a GP – especially one with a squared exponential kernel that 

assumes an infinitely differentiable prior over the negative log posterior pdf – could not 

accurately approximate its local derivatives. This inaccuracy in the approximated local 

derivatives may then lead to poor candidate samples proposed by the HMC, resulting in low 

acceptance rate. In contrast, because the presented method only depends on the approximate 

global shape of the log posterior pdf without utilizing its derivative information in the 

sampling, a smoother approximation such as a GP with Mátern 5/2 kernel could increase the 

acceptance rate.

The selection of points for the construction of a GP surrogate shares common intuition with 

active learning (Kapoor et al., 2007), Bayesian optimization (Brochu et al., 2010), and multi-

armed bandits problems (Srinivas et al., 2012) in which based on a history of actions and 

rewards a decision needs to be made on the next best point to query from the solution space. 

More recently, there has been an interest in utilizing these methods to approximate 

intractable pdfs (Kandasamy et al., 2015). In contrast to these works that focus on obtaining 

a surrogate model that can directly replace the exact pdf, the presented framework focuses 

on utilizing this surrogate to accelerate the sampling without a compromise in accuracy.

8. Conclusion

In this paper, we present a novel framework to efficiently yet accurately sample the posterior 

distribution of parameters in patient-specific cardiac elec-trophysiological models. This is 
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achieved by first an active construction of an efficient GP surrogate of the posterior pdf, 

followed by the use of this surrogate to improve the proposal distribution of the standard 

MH. The presented method is evaluated on both synthetic and real data experiments. Our 

future work will investigate methods to further improve the accuracy of the surrogate model, 

without requiring a large number of model evaluations. We will also investigate an adaptive 

GP-accelerated MH method that will continuously update the surrogate GP with accepted 

samples during sampling.
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Appendix A. Spatially-adaptive multi-scale parameter estimation

The spatially-adaptive multi-scale parameter estimation framework generates a non-uniform 

representation of the parameter space consisting of higher resolution in the heterogeneous 

tissue regions and low resolution is the homogeneous tissue regions (Dhamala et al., 2016). 

To achieve this, it consists of three major components: 1) a multi-scale hierarchical 

representation of the cardiac mesh, 2) a coarse-to-fine optimization, and 3) a criterion for 

adaptive spatial resolution adjustment. First, a coarse-to-fine hierarchical representation of 

the cardiac mesh is generated using a bottom-up hierarchical clustering on the nodes of the 

cardiac mesh. The average of the pairwise Euclidean distances between each node in two 

clusters is taken as the similarity measure during clustering. Next, beginning from the 

coarsest scale of the multi-scale hierarchy, optimization and spatial resolution adjustment are 

carried out alternatively along the multi-scale hierarchy. During this, the optimization step is 

used to estimate the optimal parameters at the present resolution and the spatial resolution 

adjustment step is used to determine the next appropriate resolution. This is done until 

further resolution refinement does not improve the optimization result. In specific, in the 

optimization step, an objective function consisting of the negative correlation coefficient and 

sum of the squared error between the measurement ECG signal and the simulated ECG 

signal with parameters at the current resolution is optimized. In the adaptive spatial 

resolution adjustment step, clusters at the present resolution are identified to be refined or 

coarsened by calculating the gain as a result of their refinement in the objective function 

value as follows. For each pair of sibling clusters that were refined from a common parent 

cluster, the gain is computed as the change in the objective function value with current 

optimal parameter value versus replacing the values of the sibling clusters with the value of 

their parent cluster. For clusters that do not have a sibling due to previous coarsening, the 

gain equals the change in the objective function value due to the change in its value during 

the coarsening and after the optimization. The cluster with a maximum gain is further 

refined, whereas clusters with no gain are coarsened. This refinement and coarsening is 

carried out along the multi-scale hierarchy. We show an example of the final parameter 

regions obtained by this method and the 10 regions obtained by the AHA model in Fig. A.

14.
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Figure A.14. 
An example of division of heart into regions used in this paper: (a) ground truth infarct 

setting, (b) regions obtained by the spatially adaptive method shows higher resolution along 

infarcted region, and (c) 10 fixed regions obtained from the AHA model.
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Figure 1. 
Work-flow diagram of the presented framework.
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Figure 2. 
Examples of exact bivariate marginal pdfs superimposed with the training points collected 

during GP construction, which are spread in the parameter space but are most concentrated 

in regions of high probability density.
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Figure 3. 
Examples of the exact posterior pdfs (red) vs. those obtained by the presented method 

(green) and sampling the GP surrogate pdf (blue).

Dhamala et al. Page 28

Med Image Anal. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Comparison of the efficiency between the presented method (GP-accelerated MH) and the 

standard MH method (Direct MH). Left: computational cost. Right: acceptance rate.
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Figure 5. 
Examples of parameter estimation results when using clusters from the adaptive method vs. 
segments from the uniform method as low-dimensional representation of the spatial 

parameter space. Case 1, case 2, and case 3 respectively show an example in which the 

infarct is represented better by the segments, equally by both segments and clusters, and 

better by the clusters in terms of parameter heterogeneity.
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Figure 6. 
Example of high uncertainty associated with over-parameterization when the adaptive 

method assigned several small clusters to represent the heterogeneous regions around the 

infarct (c-e). Top row: clusters represented by one dimension of the parameter space. Middle 

row: univariate marginal density plot of the estimated parameter. Bottom row: estimated 

mean, mode and standard deviation of the parameter.
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Figure 7. 
(a) Regions of the heart obtained by the adaptive method. (red: infarct, green: non-infarct/

mixed). (b) Estimated univariate and bivariate marginal pdf plots. Numbers on the top and 

left of pdf plots correspond to regions represented by the pdf plots. (c) Trace plot for 

parameters of regions 6 and 7 (top) shows a negative correlation with a switching behavior, 

whereas that of regions 5 and 7 (bottom) shows a positive correlation.
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Figure 8. 
Mean, mode, and standard deviation of posterior pdfs estimated from epicardial potentials 

simulated by a multi-scale ionic EP model blinded to the presented estimation method. 

Purple circles denote areas of non-transmural scars (cases 1, 2, and 3) or gray zones (cases 4 

and 5).
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Figure 9. 
Mean, mode, and standard deviation of the posterior parameter pdfs estimated from 120-lead 

ECG data.
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Figure 10. 
Real-data experiments for case 1 from Fig. 9: regions of the heart to be parameterized and 

the corresponding marginal probability density plots.
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Figure 11. 
Real-data experiments for case 2 from Fig. 9: regions of the heart to be parameterized and 

the corresponding marginal probability density plots.
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Figure 12. 
Real-data experiments for case 3 from Fig. 9. (a) Regions of the heart to be parameterized. 

(b) Univariate and bivariate marginal pdf plots.
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Figure 13. 
Acceptance rate of the GP-accelerated MH method decreases as the KL-divergence from the 

GP surrogate to the exact posterior pdf increases. Data is taken from the sampled 

distributions in synthetic data experiments.
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Table 1

Mean absolute errors in the estimated mean, mode, and standard deviation against directly sampling the exact 

posterior pdf: the presented method (GP-accelerated MH) vs. sampling the GP surrogate pdf only (MH on 

GP).

Method Mean Mode Standard deviation

GP-accelerated MH 0.012 0.030 0.006

MH on GP 0.039 0.058 0.015
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