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Abstract

Epicardial adipose tissue (EAT) is a visceral fat deposit related to coronary artery disease. Fully 

automated quantification of EAT volume in clinical routine could be a timesaving and reliable tool 

for cardiovascular risk assessment. We propose a new fully automated deep learning framework 

for EAT and thoracic adipose tissue (TAT) quantification from non-contrast coronary artery 

calcium CT scans. A first multi-task convolutional neural network (ConvNet) is used to determine 

heart limits and perform segmentation of heart and adipose tissues. A second ConvNet, combined 

with a statistical shape model (SSM), allows for pericardium detection. EAT and TAT 

segmentations are then obtained from outputs of both ConvNets. We evaluate the performance of 

the method on CT datasets from 250 asymptomatic individuals. Strong agreement between 

automatic and expert manual quantification is obtained for both EAT and TAT with median Dice 

score coefficients (DSC) of 0.823 (inter-quartile range (IQR): 0.779–0.860) and 0.905 (IQR: 

0.862–0.928), respectively; with excellent correlations of 0.924 and 0.945for EAT and TAT 

volumes. Computations are performed in <26 seconds on a standard personal computer for one CT 
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scan. Therefore, the proposed method may represent a tool for rapid fully automated quantification 

of adipose tissue and may improve cardiovascular risk stratification in patients referred for routine 

CT calcium scans.

Index Terms

Convolutional neural networks; Deep learning; Epicardial adipose tissue; Non-contrast CT

I. INTRODUCTION

EPICARDIAL adipose tissue (EAT) is a local visceral fat depot contained by the 

pericardium, thus surrounding the coronary artery tree. This metabolically active fat depot—

a recognized source of pro-inflammatory mediators— has been shown to promote the 

development of atherosclerosis in underlying coronary vasculature, through its direct contact 

with the coronary arteries [1–6]. Increased EAT volume has been shown to be independently 

related to major adverse cardiovascular events (MACE) [7–10], particularly in asymptomatic 

individuals, or to coronary artery diseases [11]. EAT can be manually measured from widely 

used coronary artery calcium (CAC) CT scans, performed for cardiovascular risk assessment 

[12, 13]. Thus, the quantification of EAT in clinical routine would be of great interest for a 

potential improvement in risk assessment and MACE prediction. However, it requires a 

time-consuming process. To date, measurement of EAT is not implemented in clinical 

practice, due to the absence of reliable, timesaving and fully-automated quantification 

methods. Quantification of EAT is technically a challenging task as it requires identification 

of the pericardium; quantification of thoracic adipose tissue (TAT, union of epicardial and 

paracardial adipose tissue (PAT)) is easier as it does not have this requirement. However, 

even if TAT and EAT volumes are correlated [14], previous studies shown EAT has a higher 

prognosis capability due to its immediate proximity to the heart and coronary arteries. 

Figure 1 shows the pericardium and adipose tissues around the heart in non-contrast CT.

We propose a fast and fully automated algorithm for EAT and TAT volume quantification 

from non-contrast calcium scoring CT datasets, using a deep learning approach, based on 

convolutional neural networks (ConvNets) [15]. We first introduce previous work on EAT 

quantification, and ConvNets applied to medical imaging. We then describe the data used in 

this work and present the experiments performed. Finally, we conclude this paper with 

potential involvements suggested by the results and provide some ideas for further analyses. 

To our knowledge, this is the first application of deep learning for fully automated 

quantification of EAT and TAT from coronary calcium scoring CT scans.

II. RELATED WORK

A. Epicardial adipose tissue quantification in CT modality

Previous work on EAT quantification have been semi-automated and relied on expert manual 

measurements, following initial localization of the heart [16–18]. These approaches mainly 

consisted of identification of control points in transverse views. A spline was then 

interpolated to provide a segmentation of the pericardial sac for each axial slice. However, 
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this time-consuming method is not suitable for clinical routine due to the tedious process 

required to quantify each dataset. Several solutions were then proposed to perform an 

automatic segmentation of the pericardium. In prior studies [14, 19], authors used the 

anatomy of the thoracic cavity and combined region-growing with adaptive thresholds to 

define a cardiac bounding box. This box allowed to define heart position in transverse views, 

but also to determine inferior and superior limits in the 3D CT volume. Atlas-based methods 

were also proposed to initialize the pericardium contour [20–23]. These initializations can 

limit the time required for the expert to analyze the whole 3D CT volume to define heart 

limits, and consequently also reduce expert variability; however, they do not identify 

automatically the pericardium border. A second step to detect the pericardial layer is 

required. To this end, a feature detector with an adapted kernel size only responding to the 

thin pericardium was proposed [20, 21]. When tested on 50 patients, this approach detected 

the mid-anterior region where the pericardial wall appears as a thin layer with higher 

Hounsfield units (HU) than the fat tissue. However, this approach had difficulties in 

detecting the pericardium in the superior and inferior parts of the heart where the adipose 

tissue distribution varies between patients. In [19], a radial sampling was performed on each 

transverse view, from the center of the heart. A detection of pericardium points was then 

performed along the direction of the sampling after a pre-processing step based on heart 

anatomy and intensity clustering. Recently, random forests were also proposed to classify 

voxels on the entire 3D pericardium shape [22]. Detection was performed along directions 

perpendicular to the pericardial surface, similarly to the radial sampling used in [19], which 

allows a rotational invariant feature detection, independently from the orientation with 

respect to the anatomy. This approach was validated on a small cohort of 30 coronary CT 

angiography (CTA) datasets.

Common methodologies were found among the studies proposed in the literature for 

automatic EAT quantification. To generalize the proposed approaches, automatic EAT 

quantification can be decomposed as a two-stage process: a first localization of the heart in 

the 3D CT volume, including inferior and superior heart limits definition, followed by a 

pericardium line detection. After these two steps, a final post-preprocessing was used in all 

the studies to exclude non-fat voxels with corresponding HU outside the adipose tissue 

attenuation range, defined in most of the studies from −190HU to −30HU.

To summarize, several approaches have been proposed for EAT quantification with 

promising initial results. However, there is still an unmet clinical need for a robust, fast and 

fully automated algorithm suitable for integration of EAT quantification from non-contract 

CT in clinical routine.

B. Convolutional neural network (ConvNets)

In the past few years, the popularity of deep learning methods has exponentially increased. 

These techniques have drastically improved the state-of-the-art performances for various 

tasks such as computer vision, speech recognition or natural language processing [15]. The 

popular AlexNet model proposed by Krizhevsky et al. [24], based on ConvNets, 

outperformed the results of previous works in the ImageNet classification challenge [25] and 

contributed to the interest for deep learning approaches. The development of ConvNets 
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initially started three decades ago, inspired by the animal visual process, and one of their 

first applications was the recognition for handwritten digit [26]. ConvNets are variants of 

artificial neural networks in which the hidden layers are composed by convolution filters. 

These filters perform as feature extractors. Depending on the kernel size, each neuron in a 

layer responds only to a region of the previous layer, called receptive field. The filters are 

applied on the whole input of the layer with the same weights. Thus, each filter performs a 

feature detection independently from its position in the input and provide a feature map. 

Convolutional layers are usually combined with activation function, such as the rectified 

linear unit (ReLU), which add non-linearity in the network, and pooling layers which reduce 

the size of the input and ensure shift invariance in the feature detection. The sequence of 

consecutive convolutional, activation and pooling layers can be referred to hidden 

convolutional unit (HCU), as shown in Figure 2.

Recently, ConvNets have found many applications in the field of medical imaging with an 

increasing number of publications. For example, ConvNets were used in cancer imaging for 

breast cancer [27, 28], brain tumor [29, 30] and lung nodule [31–33] detection, for 

classification of interstitial lung disease [34, 35] or for breast arterial calcifications [36]. In 

cardiac imaging, ConvNets have been widely used for ventricle and heart segmentation in 

MRI [37–40]. The second edition of the Annual Data Science Bowl (2016) held a 

competition on automated ejection fraction estimation from cine cardiac MRI, and thus has 

motivated the number of recent works proposed for ventricle segmentation. Previous studies 

have also described automatic coronary calcium scoring from both CTA and CT datasets 

[41, 42].

C. ConvNets and segmentation

Although ConvNets were historically developed for classification, several approaches have 

been proposed to allow segmentation tasks. A straightforward solution is to perform a patch-

based pixelwise classification. The network is fed with a patch centered at the pixel to be 

classified and provides an output probability of the pixel of belonging to each class. The 

repetition across the whole image results in image segmentation. Although this approach has 

been efficiently used in several studies [34, 36], it only focuses on the neighborhood of the 

specified pixel, depending on the patch size, and thus limits the information used by the 

network for the global representation of the input. In [43], authors proposed fully 

convolutional networks (FCN), a variant of ConvNets, for semantic segmentation. This 

approach upsamples maps from intermediate HCU to the input resolution. These upsampled 

maps are then used to provide output probability maps for each class. FCN are fed with the 

entire image and only one forward pass is required to perform the segmentation. All the 

information contained within the input image can thus be used by the network to perform a 

more global representation. Each HCU are associated to a level of abstraction and their 

combination provide a multiresolution description of the image. Based on this work, several 

other segmentation networks have been proposed, such as the famous U-Net [44] and 

SegNet [45], and shown to be efficient for both non-medical and medical images 

segmentation. The main difference between these networks lies in the combination of the 

different layers and how the upsampled feature maps are concatenated. This approach is 
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particularly interesting in medical imaging as it allows for the utilization of the whole 

anatomy and, by doing so, may provide a superior localization of the region of interest.

While deep learning methods, and especially ConvNets, have been widely used in medical 

imaging to tackle various problems, to the best of our knowledge, they have not been used 

yet for automatic pericardium identification and robust EAT quantification from non-

contrast CT datasets.

III. MATERIAL

A. Datasets

The cohort used in this study comprised 250 consecutive non-contrast ECG-triggered CT 

datasets acquired for standard CAC scoring. These datasets were randomly collected from 

the prospective EISNER trial acquired at Cedars-Sinai Medical Center [46]. The patient 

population was composed by asymptomatic subjects with no previously known coronary 

artery disease but with cardiovascular risk factors. The population is described in Table 1. 

No scans were excluded due to poor image quality or artefacts. The average number of 

transverse slices per scan was 55, with a slice spacing equal to 2.5 mm or 3 mm. The 

dimension of each axial slice was 512×512 pixels of 0.684 mm × 0.684 mm. A total of 

13756 transverse views were used in this study.

B. Ground truth generation

The evaluation of the ConvNet procedure for EAT quantification requires the definition of a 

reference gold standard. With this purpose, an imaging cardiologist certified in cardiac CT 

(level III reader) with over 3 years of experience in reading CAC scoring CT, manually drew 

a closed contour on every axial slice to identify the pericardium, encompassing the heart and 

EAT. A second closed contour was drawn around the first to include the PAT (external to the 

pericardium). Delineations were made using semi-automated QFAT research software 

(version 2, developed at Cedars-Sinai Medical Center). Binary masks were then generated 

for the EAT and heart, PAT and the thoracic mask defined as their union. Finally, as 

described in the related works, a threshold was used to exclude pixels with corresponding 

HU outside the fat attenuation range [−190HU, −30HU]. A median filter was also applied on 

each slice with a 3×3 kernel size to limit the influence of artefacts in the fat quantification. 

The inferior limit was defined as the axial slice below the posterior descending artery, while 

the superior limit was identified by the bifurcation of the pulmonary trunk [47].

IV. METHODS

A. Overall framework

Our proposed method is depicted in Figure 3. The fat segmentation is performed in axial 

slices, which are given as input of a first network Net1. This network is composed by a 

convolutional architecture whose objective is to capture hierarchical features from the input. 

From this step, multiple tasks are performed. Firstly, fully connected (dense) layers are 

stacked to the architecture to determine if the input slice is located within the heart limits 

(Task 1). Secondly, up-sampling was done on the HCU of the convolutional architecture to 
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perform two segmentation tasks: one for the union of intra and extra pericardial structures 

(Task 2), defining the thoracic mask, and one for their differentiation (Task 3), defining 

epicardial and paracardial masks, respectively. One of the novelty in our approach is the 

combination of dense layers and up-sampling blocks to perform a conjoint optimization of 

the convolutional architecture used for both slice classification and segmentation. A 

pericardium detection is then done by a second network Net2. The epicardial mask resulting 

from Net1 is firstly used to perform a radial sampling and transform the input CT slice from 

Cartesian to cylindrical coordinates. The transformed input is then given to the Net2 which 

provides an output probability map of the pericardial sac. The maximal probabilities are then 

used to define a contour whose shape is regularized with a statistical shape model (SSM). 

The SSM was built by performing a singular value decomposition (SVD) on expert manual 

contours to extract main shape variabilities. Finally, the post-processing, including the HU 

threshold ([−190HU, −30HU]) to remove non-fat pixels and the median filtering, provides 

the binary fat images for adipose tissue quantification.

B. Convolutional architecture

The convolutional architecture used in Net1, described in Table 2, consisted in 6 stacked 

HCU. Each HCU was composed by convolutional, ReLU and max-pooling layers. The first 

HCU captured neighborhood texture information at pixel location with a kernel size of 5×5. 

A stride parameter equal to 2 was used for both convolution and pooling, reducing the input 

size from 512×512 to 128×128. The 5 others HCU were identical: a 3×3 convolutional 

kernel size and stride parameters equal to 1 and 2 for convolution and pooling, respectively, 

were used. As the depth increases, the feature maps size decreases. The high-level layers 

captured global information from the previous maps, describing the anatomical organization 

and providing localization information, and were used for slice selection.

C. Slice selection using dense layers

Dense layers were concatenated to the convolutional architecture to perform the slice 

selection (Task 1). Two first layers were connected to the HCU 6. Each one was composed 

by 1024 neurons. These layers combined the information from the convolutional architecture 

to provide two scores, one for each class: selection or rejection of the current input slice. A 

final SoftMax layer was used to normalize the 2 output scores and provide probabilities for 

the axial slice to be located inside or outside the heart limits. The input slice was then 

selected if the associated probability to belongs within the limits was superior or equal to a 

threshold ts (section V.D).

D. Segmentation using upsampling layers

When the input slice was selected, the results from binary mask segmentations (Tasks 2 and 

3) were considered. Two upsampling blocks were added to the convolutional architecture. 

The first block was used to perform the thoracic mask segmentation. In each unit from HCU 

2 to HCU 6, the feature maps were firstly combined to provide a score map: each pixel of 

the score map was assigned with the result of a weighted sum of corresponding pixels in all 

the feature maps. The weighted sum was done by a convolutional layer with a F×1×1 kernel 

size, where F is the number of feature maps. Five upsampling layers were then used to 

transform the score maps to the input size. Instead of using learnable weights in the 
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upsampling layers, we fixed the weights to perform a bilinear interpolation, thus reducing 

the dimensionality of the optimization problem. Another convolutional layer with a 5×1×1 

kernel size was used to combine the upsampled maps from the 5 HCU and provide 2 output 

maps. Again, a SoftMax function normalized the scores, for each pixel, to obtain 

probabilities of being inside or outside the thoracic mask. The binary mask segmentation 

was obtained, as in the previous task, by applying a threshold tTho on the thoracic probability 

map (section 0).

Similarly, a second upsampling block was used for the epicardial/paracardial masks 

segmentation. In this case, 3 output probability maps were obtained, one for each of the 3 

classes to predict: epicardial mask, paracardial mask or the background. Because the 

thoracic mask was defined as the union of both epicardial and paracardial masks, we used it 

as a stencil for the segmentation. Epicardial and paracardial masks were defined by pixels 

inside the thoracic mask with greater epicardial or paracardial probabilities, respectively. 

From these definition, we ensured there was no overlap between epicardial and paracardial 

masks, and that their union was equal to the thoracic mask.

The first network Net1 performed a first initialization of the pericardium which can be 

defined as the boundary between epicardial and paracardial masks. However, this definition 

is prone to shape irregularities. Discrepancies are likely to appear as the convolutional 

architecture performed a global representation of the input with respect to the anatomy but 

does not focus on the thin pericardium layer.

E. Pericardium identification

We performed a pericardium detection to regularize and improve the previous segmentation. 

Firstly, a radial sampling from the centroid of the segmented epicardial mask was performed 

to transform the input CT slice from Cartesian (x, y) to cylindrical (ρ,θ) coordinates. 

Sampling parameters were chosen to obtain a squared transformed image as input to the 

second ConvNet. A total of 256 rays were used to sample the image from 0° to 360° with an 

angle step Δθ≈1.4°. In each direction, 256 sampled points were obtained from ρ=0mm 

(centroid) to ρ=100mm, with a radius step Δρ≈0.39mm. The size of the transformed slice 

was 256×256. The transformed CT slice was given as input of a second FCN Net2 whose 

convolutional architecture is presented in Table 3. Again, upsampling was performed from 

HCU 2 to HCU 5, and 2 output probability maps were provided, one for the pericardium line 

and one for the background. Each of the 256 columns of the pericardium probability map 

corresponded to a direction θ of the radial sampling. Along each direction, the pixel 

associated to the maximum probability was defined as a contour point (ρ,θ). The 256 points 

were used to define a new pericardium contour.

F. Pericardium SSM and regularization

To limit the influence of misclassifications of Net2, a shape regularization was performed 

with a SSM on the contour identified in the previous step. To build the SSM, a radial 

sampling was firstly used to transform manual pericardium contours from training datasets 

into vectors of cylindrical coordinates, with the same previous parameters (Δθ from 0° to 

360°). A SVD was then performed on the sampled contours to extract shape variabilities 
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among the training population. The new contour from Net2 was projected to the space 

spanned by the left singular vectors (components of the model) obtained from the SVD. The 

regularization was then performed by reconstructing the new contour as a weighted sum of 

the SSM components. By limiting the components used in the reconstruction to the K first 

singular vectors, high frequencies corresponding to shape discrepancies, and encoded in last 

components, were removed. The regularized pericardium contour was finally rasterized to 

provide the final binary epicardial mask.

G. Post processing

Finally, the post processing step provided the binary fat segmentation. As used in the 

generation of the reference, a standard adipose tissue HU range [−190HU, −30HU] 

threshold was used on binary masks, and a median filter was applied.

V. EXPERIMENTS

In this section, we present all the experiments that were used to train, parameterize and 

evaluate the proposed method.

A. Evaluation and statistical analysis

The proposed method was evaluated in two ways. Firstly, the overlap ratio between expert 

and automatic fat segmentation was measured with the Dice score coefficient (DSC), defined 

as:

DSC(Fatex, FatDL) =
2 ∣ Fatex ∩ FatDL ∣

∣ Fatex ∣ + ∣ FatDL ∣

where Fatex and FatDL are the binary fat segmentation from the expert and the proposed 

deep learning algorithm, respectively. The volumes from both measures were compared 

using Pearson’s correlation coefficient, Bland-Altman analysis [48], and Wilcoxon signed-

rank tests.

B. 10-fold cross validation

To perform a robust non-biased evaluation of the framework, a 10-fold cross validation was 

used. The whole cohort of 250 cases was split in 10 subsets of 25 cases each one. For each 

fold of the 10-fold cross validation, the following datasets were used: (1) training dataset - 8 

subsets (200 cases) were used to train the ConvNets and create the SSM, (2) validation 

dataset - one subset (25 cases) was defined to tune the networks, select the optimal number 

of components in the SSM regularization and verify there was no over-fitting, (3) test dataset 

- the last subset (25 cases) was used for the evaluation of the method. The final results were 

then concatenated from 10 separated subsets. Thus, the overall test population was 250 

subjects with 10 different models.

C. Networks training

Our networks architectures are based on initially proposed FCN [43] and have been 

optimized through multiple experiments. The number of layers, numbers of kernels per 
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layer, numbers of neurons in dense layers and numbers of upsampling layers, as well as 

optimization parameters, were then determined as the ones maximizing the performances 

over the validation subsets. Thus, the configuration providing the best training convergence 

and optimal generalization error (error obtained on the validation dataset) was used for the 

evaluation on the test subsets.

In a first attempt, the three tasks of Net1 were trained independently with the same 10 folds. 

However, the slice classification task (Task 1) trained alone provided a poor accuracy in 

detecting inferior and superior limits. Similarly, the epicardial/paracardial segmentation 

(Task 3) did not provide a good differentiation between the two classes. By combining all 

the task together in a simultaneous training, we noticed a drastic improvement for both 

classification and segmentation.

The optimization of Net1 was thus performed as a multi-task training (Task 1–3, Figure 3). 

Backpropagations for each loss function of the three tasks described in section IV were done 

simultaneously. The global loss and gradients of the network were defined as a weighted 

sum of the losses and gradients of the three tasks. The optimal set of weight values, defined 

as the one leading to the best generalization on the validation dataset, was obtained by a grid 

search with steps equal to 0.1.

The second network Net2 was trained until the convergence of the validation loss was 

reached. The same architecture of the first network (5 last HCU) was used.

For each network, the training was performed by minimizing the cross-entropy loss function 

using a stochastic gradient descent optimizer. For optimization parameters, the starting 

learning rate was set to 0.005, with a rate decay of 0.5 every 20000 iterations. A momentum 

parameter equal to 0.9 and a batch size of 20 were also added to regularize the optimization. 

Finally, to limit overfitting, drop out layers [49] were used before each score computation 

with a drop out ratio equal to 0.5. The training slices where randomly shuffled to prevent the 

networks from learning over similar epochs.

D. Segmentations

Three parameters were used in the segmentation definition: the probability thresholds ts and 

tTho used for the slice selection and the thoracic segmentation, respectively, and the number 

of components K used in the pericardium shape regularization. The influence of these three 

parameters was assessed on the validation subset. For each fold, the threshold values ts and 

tTho maximizing the slice classification accuracy and the DSC between expert manual and 

automatic measurements for TAT, respectively, were then used for the segmentation of the 

test subset. Similarly, the number of components K which maximized the DSC for EAT on 

the validation subset was also used to regularize segmentations on the test subset.

E. Implementation

The proposed method was implemented in python using the Caffe library [50] for the 

processes involving ConvNets. The other parts of the method were implemented in C++ and 

python. All experiments were done on a Linux OS, with an Intel Core i7-6800K CPU @ 

3.40GHz, 2 NVIDIA 1080 GPU and 32GB of RAM. The time required for the training in 
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each fold of the cross validation was approximatively 11 hours. After the development, the 

method was tested on a standard personal computer on a Windows 10 OS with CPU 

computation only (Intel Core i7-6700 CPU @ 3.40GHz and 16GB or RAM). The mean time 

required to quantify EAT and TAT on the 250 cases was 25.63±3.72 seconds per case, using 

CPU computation only and 3.26±0.87 seconds with GPU computation, compared to 

approximatively 10–11 minutes for EAT and TAT quantifications performed by the expert.

VI. RESULTS

We present in this section all the results from the experiments.

A. Multi-task optimization

The optimization on the first fold is presented in figure 4. The global loss function is equal 

to a weighted sum of the 3 tasks; (1) slice classification, (2) thoracic segmentation and (3) 

epicardial segmentation. The optimal weights for the 3 tasks, according to the grid search, 

were 0.2, 0.4 and 0.4, respectively.

B. Slice selection

Performance for the slice classification task (Net1, of being within the heart limits) was 

evaluated by receiver operating characteristic (ROC) curves performed on the test dataset for 

each of the 10 folds. Net1 provided a very high performance in the slice selection with a 

mean area under the curve (AUC) of 0.992±0.002. The maximal classification accuracy of 

0.953±0.005 was obtained for a threshold ts=0.531±0.051. The low standard deviation of the 

optimal threshold demonstrated a coherence between the 10 Net1 trained in each cross-

validation fold. The model has proved to correctly identify heart limits with mean slice 

position errors per scan of 0.22±0.287 and 0.132±0.316, in slice units, for the inferior and 

superior limits, respectively. No misclassified slices were found in the median zone or 

outside the heart far from limits. We observed a slightly lower error obtained for the superior 

limit compared to the inferior limit.

C. Thoracic segmentation and fat quantification

The second task of the Net1 consisted in the segmentation of the thoracic mask, providing 

the TAT segmentation after the post-processing. Across the 10 test datasets, a median DSC 

of 0.905 (IQR: 0.862–0.928) was obtained for a probability threshold tTho=0.214±0.008. 

The optimal threshold provided for each fold a high correlation between automatic and 

manual TAT volume quantifications (correlation coefficient R=0.945, p<0.00001) as 

presented in figure 5. The Bland-Altman analysis (figure 6) demonstrated a bias between the 

two measures equal to 0.12 cm3 (95% Confidence Interval (CI): [−3.29,3.28]). No 

significant differences were found between the two measurements (expert vs. automatic, 

p=0.92). The median TAT volume was 130.35cm3 (IQR: 89.12–198.18) and 130.94cm3 

(IQR: 87.24–193.69) for expert and automatic quantification, respectively. This high 

agreement between our proposed method and expert measurement is very promising for 

clinical routine consideration and for further analyses. A comparison between expert and 

automatic segmentation is presented in figure 7.
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D. Epicardial segmentation and fat quantification

The second network Net2 and the SSM regularization allowed for an accurate pericardium 

identification. A comparison of the pericardium defined by Net1 and the pericardium after 

SSM regularization is presented in figure 8. From this example, while the initial definition 

(green) does not provide a reliable contour, the final definition of the pericardium (red) 

ensures a robust contour similar to the expert manual delineation (white). The resulting DSC 

for the epicardial mask (before the fat threshold) and for EAT were 0.926 (IQR: 0.914–

0.937) and 0.823 (IQR: 0.779–0.860), respectively. They were obtained for K=4 components 

used in the shape regularization. The median EAT volume was 78.03cm3 (IQR: 57.08–

105.79) and 78.64cm3 (IQR: 54.48–106.58) for expert and automatic quantifications, 

respectively. An excellent correlation was obtained (0.926, p<0.00001) (figure 9). The 

Bland-Altman analysis demonstrated a low bias of −1.41cm3 (95% CI:[−3.08,0.26]) (figure 

10). No significant differences were found between the two distributions (p=0.79). An 

example of EAT segmentation (after the post-processing to remove non-fat pixels) is 

presented in figure 11 and compared to expert manual delineation. For comparison, when 

not considering the combination of the Net2 and SSM for EAT quantification, the DSC and 

volume correlation were 0.727 (IQR: 0.693–0.765) and 0.894. A significant difference was 

obtained between expert and Net1 quantifications (p<0.0001). When considering the 

pericardium detection from Net2 but not the shape regularization, a median DSC of 0.814 

(IQR: 0.762–0.847) was obtained, showing no significant difference with the full method 

(p=0.09). However, when comparing the Hausdorff distances for the pericardium contours 

without SSM regularization [7.61mm (IQR:6.48–9.12)] and with [5.03mm (IQR: 4.34–

7.20)], a significant difference was observed (p<0.001). These results show the interest of 

the second step for pericardium identification and regularization.

E. Interest of the multi-task learning

To assess the interest of using multi-task learning for Net1, especially combining the slice 

classification with the mask segmentations, we compared TAT segmentations when 

separating the tasks during the training to those previously presented (section VI. C.). TAT 

was segmented on each slice using single task learning, and independently, slices predicted 

outside the limits were then removed. The median DSC was 0.863 (IQR: 0.823–0.890), 

showing a significant difference compared to DSC from multi-task learning according to the 

Wilcoxon test (p<0.00001). The average errors on limit prediction, when doing single task 

learning, were 1.24±0.652 and 1.03±0.476, in slice units, for inferior and superior limits, 

respectively.

F. Comparison to the state-of-the-art: U-Net

To compare our proposed approach to a reference segmentation method from the literature, 

we performed a comparative study with the U-Net architecture [44]. The originally proposed 

architecture was used for the comparison and dense layers were concatenated to the deepest 

layer for slice classification supervision. The same meta-parameters were used for the 

training of the U-Net networks. Results were evaluated using the same 10 folds. As for our 

proposed approach, the U-Net segmentation target were the binary masks, and the post-

processing was applied to remove non-fat pixels. For TAT quantification, the modified U-
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Net architecture provided DSC and volume correlation of 0.822 (IQR: 0.779–0.852) and 

0.874 (p<0.0001), respectively, with a significant difference from expert quantification 

(p=0.041). For EAT quantification, DSC and correlation were 0.719 (IQR: 0.633–0.762) and 

0.829 (p<0.0001). Again, a significant difference was obtained with the expert measures 

(p<0.0001).

G. Accuracy

In both tissues quantification, we observed a decrease in the accuracy when the volume 

increases. This observation may have several explanations such as higher adipose tissue 

around the diaphragm or anatomical variations leading to specific adipose tissue 

distributions as presented in figure 12. A weak correlation was found between EAT errors 

and BMI (r=0.229, p=0.0003). However, no correlations were obtained between other 

patient’s characteristics reported in Table 1 and errors in percentage (relatively to expert 

measures).

H. Comparison to inter-observer variability

Finally, to fully assess the performance of the proposed approach, a second expert performed 

manual measurements on 30 cases randomly selected among the initial 250 cases. The 

second expert was blinded from results from the first expert and from the automated 

approach. We compared the automated quantifications with the manual measurements from 

both experts on the 30 cases. Table 4 summarize the results.

VII. DISCUSSION

We developed and evaluated a novel multi-task deep convolutional neural network approach 

for fully automatic quantification of epicardial and thoracic adipose tissues from non-

contrast calcium scoring CT datasets. To our knowledge, multi-task ConvNets for both heart 

classification and segmentation with shape regularization for pericardium detection has not 

been applied before to clinical cardiac CT data. We demonstrated that automatic adipose 

tissue volume quantifications by the proposed method show strong agreement with expert 

manual measurements. In addition, deep learning estimations of epicardial contours also 

showed strong agreement to expert manual delineations. The proposed method may offer a 

timesaving tool for fully automated EAT and TAT quantification in clinical routine which, 

when integrated with calcium scoring from non-contrast CT scans, could improve 

cardiovascular risk stratification, without additional radiation exposure for the patient or 

additional interaction for the physician. The runtime for segmentation and quantification of 

volumetric adipose tissues is <26 seconds for a whole 3D scan on a standard computer 

compared to approximatively 10–11 minutes for EAT and TAT quantification performed by 

the expert, which potentially facilitates TAT and EAT volume quantification in clinical 

routine for improved cardiovascular risk assessment.

Our fully automated approach correlated highly with standard manual measurements of 

EAT. The variability between automatic quantification and expert manual measurement 

reported in our study is similar to the inter-expert variability as reported in a previous study 

on the EISNER cohort [18] and in other cohort [51]. Notably, the segmentation results were 
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statistically equivalent between our approach and either expert reader. The results obtained 

on 30 cases and compared to the measurements from two expert readers demonstrated the 

proposed approach can be considered as a third expert reader for TAT and EAT 

quantification. The novel aspect of this approach is fully automated, high performance 

segmentation of EAT and TAT from standard coronary calcium scoring CT, which offers 

immediate translational value and enhances the clinical impact of this work.

Our approach has been evaluated on the largest cohort to date for EAT and TAT volumetric 

quantification with N=250 CT scans. We used a multi-task training approach for the 

quantification of EAT and TAT. In a previous study, multi-task training has also provided 

equivalent or higher performances for medical image segmentation compared to task 

specific training [52]. In our approach, we enhanced the multi-task procedure by combining 

different architectures, namely dense layers and upsampling blocks, that are trained 

simultaneously to derive a unique deep learning model that performs cardiac CT slice 

classification and tissue segmentation at the same time. The multitask learning performed 

better than single task learning, tried in a first attempt. It improved performances of both 

heart limits detection and epicardial segmentation. The improvement of the epicardial 

segmentation allowed to provide a more robust identification of the centroid for the radial 

sampling. This robustness was important to not introduce variability in the SSM which was 

related to centroid position and not to pericardium shape. Moreover, the proposed deep 

learning framework incorporated a probability map computation for pericardial contour 

pixels followed by a statistical pericardial shape model to enhance the delineation of the 

pericardium to a smooth contour. Finally, we compared our proposed approach to a modified 

version of U-Net with slice classification supervision. For TAT quantification, U-Net 

provided lower results than our method, for both DSC and volume quantification. A 

significant difference was also observed between the U-Net TAT quantifications and the 

expert manual measurements. For EAT quantification, U-Net performed also worse than our 

approach, even when considering only the results from the first step, without pericardium 

identification and shape regularization. Again, a significant difference was obtained with the 

expert manual measurement. The reason for the lower performances obtained by U-Net may 

potentially be the upsampling process combined with the skip connections. In U-Net, the 

upsampling is performed on the second half, with consecutive up-convolutions, from the 

lowest resolution to the input resolution. In parallel, the skip connections transport the 

information directly to the second half of the architecture. Thus, the direct transport of the 

very early layers, especially the first one directly connected to the output, gives more 

importance to high resolution signals, attenuating the signal from deep layers. In our 

proposed approach, upsampling is used to connect the intermediate layers directly to the 

output (Figure 3, section IV. D.), unlike U-Net skip connections which go through the 

consecutive up-convolutions, especially the deepest ones. We also removed the connection 

of the first layer, to limit high variations in the output.

There are some limitations in our study. We used single-center CT datasets with one expert 

reader as the reference standard for training data. In future work, we plan to evaluate our 

framework on larger multicenter cohorts with multiple expert readers. We observed lower 

accuracy for both TAT and EAT as the volume increases. This observation can be explained 

by anatomical variations in patients with higher BMI. In most of outlier cases, a larger 
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amount of adipose tissue was observed in the superior and anterior part of the heart (Figure 

12). Moreover, in these cases, the pericardium line was barely visible, which explain the low 

accuracy of the automatic delineation and quantification. In future work, more cases with 

such anatomical variations will be included in the training dataset to allow the ConvNets to 

learn this adipose tissue pattern and improve the accuracy. Finally, a 2D approach was 

considered instead of using 3D ConvNets. This choice was motivated by several reasons. 

Firstly, the complexity of the network increases when considering 3D convolutions, while 

the number of observations decreases. Indeed, a whole 3D scan would be considered as a 

single observation, compared to an average of 55 observations (2D slices) per scan for the 

2D approach. The number of training data would then be reduced from >11000 to 200. Also, 

the anisotropy of the data, as well as the different number of slices between scans, are other 

reasons which motivated us to consider 2D ConvNets in a first attempt. A preprocessing step 

would be required to reshape the scan and may lead to missing information in some 

observations due to the difference in the field of view between scans. In future work, we will 

increase the number of data and use a reshape preprocessing to evaluate a 3D convolutional 

approach.

VIII. CONCLUSION

We propose and evaluate a new multi-task framework based on deep convolutional neural 

networks for fully automated quantification of epicardial and thoracic adipose tissue 

volumes from non-contract CT datasets. The proposed method provided fast segmentation 

with strong agreement with expert manual volume measurements. The proposed approach 

may represent a tool for rapid measurement of EAT volume as an imaging biomarker for 

future clinical use, offering promise for improved prediction of adverse cardiac events.
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Figure 1. 
Pericardium and adipose tissues in calcium scoring non-contrast CT.
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Figure 2. 
Example of a hidden convolutional unit (HCU). Convolutions are performed on the input to 

provide feature maps. Each neuron in the feature maps responds only to its receptive field in 

the input, defined by the kernel size. Activation function is then applied to provide non-

linearity in the network. Finally, a pooling layer reduces the dimension of the maps and 

increases the shift invariance of the feature detection.
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Figure 3. 
Framework of the proposed method. An axial slice is given as input of the first network 

Net1, which performs 3 simultaneous tasks: (1) slice prediction of being located between 

heart limits, (2) thoracic mask segmentation and (3) epicardial-paracardial masks 

segmentation. A second network Net2 is used to perform pericardium line detection after 

atransformation of the input in cylindrical coordinates. A SSM shape regularization is then 

performed to obtain the final masksegmentation. A post-processing step, including 

Hounsfield unit threshold and median filtering, provides the adipose tissue masks.
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Figure 4. 
Multi-task loss evolution during the first fold optimization. Plain and dash lines represent 

loss of the training and validation datasets, respectively.
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Figure 5. 
Automatic vs. expert TAT quantifications. An excellent agreement was obtained with a high 

correlation (R=0.945).
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Figure 6. 
Bland-Altman analysis of automatic vs. expert TAT quantifications. The analysis 

demonstrated a non-significant bias between the two measures (0.12 cm3, p=0.92).
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Figure 7. 
Comparison of automatic (left column) and expert (right column) thoracic fat segmentation. 

Blue pixels correspond to fat pixels obtained after post-processing the thoracic mask from 

Net1. Top, middle and bottom rows correspond to superior, median, and inferior parts of the 

heart, respectively. The DSC was 0.905.
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Figure 8. 
Pericardium defined by Net1 (green) and after SSM regularization (red), compared to the 

expert delineation (white). While the green line presents a non-reliable shape, the 

combination of the Net2 and the SSM ensures a smooth pericardium contour closer to the 

expert delineation.
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Figure 9. 
Automatic vs. expert EAT quantifications. A very high correlation was obtained between 

both measurements (R=0.926
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Figure 10. 
Bland-Altman analysis of automatic vs. expert EAT quantifications. A non-significant bias 

of −1.41 cm3 was obtained (p=0.79).
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Figure 11. 
Comparison of automatic (left column) and expert (right column) epicardial (red)/

paracardial (green) adipose tissue segmentations. Top, middle and bottom rows correspond 

to superior, median, and inferior parts of the heart, respectively. The DSC was 0.823.
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Figure 12. 
Axial slice from an outlier case (68-year old male) with BMI 31.1. We observe larger 

amount of adipose tissue in the superior and anterior part of the heart (yellow arrow). The 

pericardium is also invisible in this part, which explains the failure of the algorithm to 

provide a contour (red) close to the expert delineation (white). This pattern is present in most 

of the outliers in our results.
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Table 1

Patient characteristics

Characteristics Data

No. of patients 250

Sex

 No. of women† 103(41.2)

 No. of men† 147(58.8)

Age (years)* 59.8±7

Body mass index (kg/m2)** 26.6[18.3–57]

Current smoker† 20(8)

Diabetes† 17(6.8)

Hypercholesterolemia† 171(68.4)

Calcium score** 5.2[0–2296]

†
Data provided as number of patients (percentage)

*
Data provided as mean ± standard deviation

**
Data provided as median and range
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Table 2

Convolutional architecture of Net1 (for slice classification and segmentation)

Kernel size Stride Number of feature maps Output size

Input - - - 512×512

HCU 1 5×5 2 16 128×128

HCU 2 3×3 1 64 64×64

HCU 3 3×3 1 128 32×32

HCU 4 3×3 1 256 16×16

HCU 5 3×3 1 512 8×8

HCU 6 3×3 1 512 4×4
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Table 3

Convolutional architecture of Net2

Kernel size Stride Number of outputs Output size

Input - - - 256×256

HCU 1 5×5 1 16 128×128

HCU 2 3×3 1 64 64×64

HCU 3 3×3 1 128 32×32

HCU 4 3×3 1 256 16×16

HCU 5 3×3 1 512 8×8
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Table 4

Automated quantification and inter-observer variability

DSC Correlation Wilcoxon (p-value)

TAT

O1 vs. O2 0.906 0.96 0.88

O1 vs. DL 0.917 0.98 0.79

O2 vs. DL 0.895 0.97 1

EAT

O1 vs. O2 0.89 0.97 0.65

O1 vs. DL 0.808 0.98 0.80

O2 vs. DL 0.801 0.94 0.76

O1: first observer, O2: second observer, DL: automated method
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