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Abstract

Pericytes heterogeneity is based on their morphology, distribution, and markers. It is well known 

that pericytes from different organs may have distinct embryonic sources. Yamazaki et al. (2017) 

using several transgenic mouse model reveal by cell-lineage tracing that pericytes are even more 

heterogeneous than previously appreciated. This study shows that pericytes from within the same 

tissue may be heterogeneous in their origin. Remarkably, a subpopulation of embryonic dermal 

pericytes derives from the hematopoietic lineage, an unexpected source. Reconstructing the 

lineage of pericytes is central to understanding development, and also for the diagnosis and 

treatment of diseases in which pericytes play important roles.
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Approximately one hundred years ago, Karl Wilhelm Zimmermann named a population of 

contractile cells pericytes because they were primarily located around blood vessels 
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(Zimmermann, 1923). The word pericyte derives from the Greek kytos, a hollow vessel, 

appropriately describing a cell surrounding a blood vessel. Back then, these cells were 

identified mainly by their anatomical location and morphology. Pericytes have long 

projections that encircle the vessel walls which are widely scattered in all tissues (Hirschi 

and D’Amore, 1996). They surround endothelial cells and communicate with them along the 

length of the blood vessels by physical contact and paracrine signaling (Diaz-Flores et al., 

1991).

Defining a specific molecular marker for pericytes has been challenging. Until recently, light 

and electron microscopy were the only techniques able to visualize them, thus limiting the 

knowledge acquired from those studies. In the last years, with the advent of fluorescent and 

confocal microscopy, technologies combining anatomical location, expression of surface 

markers, and genetic lineage tracing enabled the discovery of pericytes’ varying, sometimes 

unexpected, roles in health and disease (Birbrair et al., 2015). It is already known that 

pericytes stabilize blood vessels and participate in vascular development, maturation, 

remodeling, architecture, and permeability (Enge et al., 2002; Hellstrom et al., 2001; Leveen 

et al., 1994; Lindahl et al., 1997; Soriano, 1994). Additionally, they regulate blood flow 

(Pallone and Silldorff, 2001; Pallone et al., 1998; Pallone et al., 2003), and, in the central 

nervous system, collaborate with astrocytes to maintain the functional integrity of the blood 

brain barrier (Al Ahmad et al., 2011; Armulik et al., 2010; Bell et al., 2010; Cuevas et al., 

1984; Daneman et al., 2010; Dohgu et al., 2005; Kamouchi et al., 2011; Krueger and 

Bechmann, 2010; Nakagawa et al., 2007; Nakamura et al., 2008; Shimizu et al., 2008). 

Pericytes also may affect immune function by regulating lymphocyte activation and by 

phagocytic activity (Balabanov et al., 1999; Balabanov et al., 1996; Bouchard et al., 1997; 

Castejon, 2011; Fabry et al., 1993; Fisher, 2009; Hasan and Glees, 1990; Jeynes, 1985; Kim 

et al., 2006; Thomas, 1999; Tu et al., 2011; Verbeek et al., 1995). Interestingly, strong 

evidence identified pericytes as stem cells capable to form several other cell types (Birbrair 

et al., 2017a; Birbrair and Delbono, 2015; Birbrair et al., 2017b; Birbrair et al., 2014a; 

Birbrair et al., 2013a, b, c; Birbrair et al., 2013d, 2014b, 2015; Birbrair et al., 2014c; 

Brighton et al., 1992; Collett et al., 2003; Crisan et al., 2008; Davidoff et al., 2004; 

Dellavalle et al., 2011; Dellavalle et al., 2007; Diaz-Flores et al., 1992; Doherty et al., 1998; 

Dore-Duffy et al., 2006; Farrington-Rock et al., 2004; Feng et al., 2011; Olson and Soriano, 

2011; Richardson et al., 1982; Tang et al., 2008).

Pericytes differ in their embryonic origin between tissues (Armulik et al., 2011; Sims, 1991, 

2000). Very little is known about the exact identity of pericyte ancestors within developing 

tissues, and there is evidence for numerous distinct developmental sources (Armulik et al., 

2011). Lineage tracing studies indicate that pericytes in the cephalic region and thymus are 

of neuroectodermal origin (Foster et al., 2008; Muller et al., 2008; Simon et al., 2012; Trost 

et al., 2013; Zachariah and Cyster, 2010); while in lung, heart, liver and gut, the 

mesothelium is the main source of perivascular cells (Armulik et al., 2011; Asahina et al., 

2011; Cai et al., 2008; Khan et al., 2016; Mellgren et al., 2008; Que et al., 2008; Zhou et al., 

2008). In most other organs, pericytes derive from the mesoderm; specifically, the 

sclerotomal compartment (Armulik et al., 2011; Asahina et al., 2011; Bergwerff et al., 1998; 

Etchevers et al., 2001; Korn et al., 2002; Que et al., 2008; Wilm et al., 2005; Winkler et al., 

2011; Yamanishi et al., 2012).
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Understanding the origin and the processes that drive pericyte formation is a central question 

in developmental biology. Whether all pericytes from the same tissue have the same ancestry 

remains unknown. Nevertheless, in a recent article in Cell Reports, Yamazaki and colleagues 

showed that a pericyte subpopulation within the embryonic skin derives from an unexpected 

source (Yamazaki et al., 2017). The authors used in vivo lineage-tracing technologies to 

track specifically neural crest-, endothelial-, and hematopoietic-derived cells. These 

experiments suggested that during development the sources of tissue pericytes are 

heterogeneous. Strikingly, some of the pericytes in the embryonic skin and brain had 

hematopoietic origin (Yamazaki et al., 2017). Furthermore, the authors showed defective 

pericyte development in a mouse model with a known impairment of the myeloid lineage, 

suggesting that cells from this lineage contribute to pericyte formation in ectodermal organs 

(Yamazaki et al., 2017). Additionally, this study unravels an important signal (TGFβ) 

necessary for hematopoietic progenitors to differentiate into pericytes (Yamazaki et al., 

2017). This study brings a new possible ancestor for pericytes, and reopens the discussions 

about pericytes’ heterogeneity. These cells are heterogeneous not only in their morphology, 

distribution, molecular markers and function, but also in their origin even within the same 

tissue.

Pericytes have been anatomically defined by their perivascular location in the blood vessel 

wall in close contact with endothelial cells (Feng et al., 2011; Sa-Pereira et al., 2012). 

However, not all perivascular cells are pericytes. Besides smooth muscle cells, other cellular 

types have been described as perivascular: i.e. adventitial cells (Crisan et al., 2012), 

fibroblasts (Soderblom et al., 2013), and macrophages (Bechmann et al., 2001; Guillemin 

and Brew, 2004). Classical electron microscopy studies of pericytes reveal their location 

under the vascular basal lamina (Allsopp and Gamble, 1979), in contrast to other 

perivascular cells. None of pericyte markers are specific, since they are also expressed by 

other cell types; and their expression in pericytes is highly dependent on the developmental 

stages (Armulik et al., 2011). Thus, pericitic markers used in this study could refer to other 

cell populations. For instance, PDGFRβ is a known marker of other cell types, such as 

fibroblasts (Soderblom et al., 2013; Spitzer et al., 2012); while NG2 proteoglycan could be 

expressed in macrophages (Yotsumoto et al., 2015). Additionally, pericytes that do not 

express NG2 were also recently described (Stark et al., 2013). Recent studies discovered 

new molecular markers for pericytes, such as Gli1 (Kramann et al., 2015; Kramann et al., 

2017) and Tbx18 (Guimaraes-Camboa et al., 2017). Whether the perivascular cells derived 

from hematopoietic progenitors in the embryonic skin are pericytes still needs to be 

clarified. The combination of pericyte molecular markers with immunolabeling of the basal 

lamina in genetic lineage tracing models will confirm the nature of those cells.

Surprisingly, Yamazaki and colleagues found that perivascular cells were labeled in Vav-

Cre/R26REYFP mice, but not in Tie2-Cre/R26REYFP mice (Yamazaki et al., 2017). It is 

known that Tie2 gene is expressed by endothelial cells (Maisonpierre et al., 1997; Schnurch 

and Risau, 1993). However, hematopoietic cells also express Tie2 (Arai et al., 2004; 

Takakura et al., 1998). Consistent with this, Tie2-Cre mice display Cre recombinase in both 

endothelial cells and hematopoietic cells, especially in hematopoietic stem cells (HSCs) 

(Constien et al., 2001; de Lange et al., 2008; Kisanuki et al., 2001; Tang et al., 2010). During 

development, both endothelium and definitive HSCs which form all hematopoietic cells, 
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arise from a shared precursor, the hemogenic endothelium (Chen et al., 2009; Hirschi, 2012; 

Medvinsky and Dzierzak, 1996; Nguyen et al., 2014; Rafii et al., 2016). Due to this, it is 

virtually impossible to avoid some Cre recombinase activity in hematopoietic cells when 

using endothelial specific promoters with constitutively active Cre recombinase. Similarly, 

Vav-Cre strains have been shown to target both hematopoietic and endothelial cells (Croker 

et al., 2004; de Boer et al., 2003; Georgiades et al., 2002). It will be interesting to explore 

whether the embryonic hematopoietic cells that originate dermal pericytes derive from a 

different source than the hemogenic endothelium.

Interestingly, a recent study shows that cardiac endothelial cells give rise to ~20% of 

pericytes in the murine embryonic heart (Chen et al., 2016). Thus, the developmental 

sources of pericytes are more heterogeneous than previously appreciated. These surprising 

findings raise the possibility that distinct subsets of pericytes, depending on their 

developmental origin, could differentially contribute to different pathological conditions.

Additionally, to examine which specific hematopoietic cells form pericytes, CD11b-Cre/

TdTomato mice were analyzed (Yamazaki et al., 2017). Nevertheless, pericytes may express 

CD11b in culture (Balabanov et al., 1996), as well as after stroke (Ozen et al., 2014). Thus, 

although pericytes in the skin vasculature are labeled in this genetic tracing mouse model 

(Yamazaki et al., 2017), whether dermal pericytes express CD11b earlier during 

development or if they derive from non-pericyte CD11b+ cell populations remains to be 

elucidated.

Although the authors show that dermal myeloid progenitors differentiate into pericytes in 

culture (Yamazaki et al., 2017), recent studies have shown that cells’ behavior in vitro could 

be completely different from their functionality in vivo (Guimaraes-Camboa et al., 2017; 

Snippert and Clevers, 2011; van Berlo et al., 2014). Artificial conditions in the dish which 

characterize cell culture systems may activate differentiation potential that could be not 

shared by these same endogenous cells in vivo under physiological conditions (Guimaraes-

Camboa et al., 2017; Snippert and Clevers, 2011; van Berlo et al., 2014).

Thus, the plasticity observed in vitro might be simply a consequence of the artificial cell 

culture microenvironment. Based on this, a recent study has challenged the current view 

about pericytes’ capacity to differentiate into other cell types and reopened the discussion 

about pericytes’ plasticity (Birbrair et al., 2017a; Guimaraes-Camboa et al., 2017).

Furthermore, Yamazaki and colleagues used a transgenic mouse model (PU.1 knockout) in 

which severe impairment of the myeloid lineage was previously reported (McKercher et al., 

1996; Scott et al., 1994). In those mice, F4/80+ macrophages were absent from the skin. 

Although the vascular network covered by endothelial and smooth muscle cells appeared 

normal, these vessels had a reduction in pericytes (Yamazaki et al., 2017). Interestingly, the 

reduction in the number of pericytes was approximatelly 50%, while the proportion of 

dermal pericytes derived from the hematopoietic lineage seems to correspond to 

approximately one fourth of all pericytes in the skin. It will be interesting to explore whether 

the absence of one pericyte subpopulation may influence the development of other pericitic 

subtypes in the same tissue but of different origin.
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PERSPECTIVES/FUTURE DIRECTIONS

Pericytes development and survival are regulated by several signals coming from other cells, 

i.e. platelet-derived growth factor-β (PDGF-β) (Leveen et al., 1994), transforming growth 

factor-β1 (TGFβ) (Gaengel et al., 2009), heparin-binding epidermal growth factor (HB-

EGF)(Stratman et al., 2010); stromal-derived factor 1-a (SDF-1α)(Song et al., 2009); Sonic 

hedgehog (Shh)(Nielsen and Dymecki, 2010); Jagged-1 (Jag-1)(Liu et al., 2009); Ephrin 

(Salvucci et al., 2009). Macrophages produce several of these molecules (Arango Duque and 

Descoteaux, 2014; Coulthard et al., 2012; Edwards et al., 2009; Goh et al., 2009; Heldin and 

Westermark, 1999; Pereira et al., 2013). Future studies will address whether the lack of 

macrophage-derived signals may affect pericytes survival.

Also, it remains unknown whether pericytes at early stages of skin development express PU.

1 gene; and whether the absence of pericytes in PU.1 knockout mice is due to autonomous 

efect on pericytes. These issues may be addressed by using pericyte-specific inducible 

CreER driver, such as Tbx18-CreERT2 recently described (Guimaraes-Camboa et al., 2017), 

crossed to PU.1 floxed mouse (Iwasaki et al., 2005). In the resulting mice, Tbx18-

CreERT2/PU.1fl/fl, PU.1 could be deleted specifically in pericytes at different 

developmental stages.

Mukouyama group found that TGFβ signaling is required for the differentiation of 

hematopoietic cells into pericytes in the embryonic skin, by deleting the gene for TGFβ 
receptor specifically in hematopoietic cells (Yamazaki et al., 2017). The primary sources of 

TGFβ in the skin remains unknown. Blood vessels form highly branched and ramified 

networks with nerves extending into almost every part of our body (Carmeliet and Tessier-

Lavigne, 2005). The functional interdependence between the two systems is reflected in 

their close anatomic apposition (Bates et al., 2003; Lewis, 1902; Quaegebeur et al., 2011). 

The nervous system provides precise control of vascular diameter and blood flow. Blood 

vessels and nerves can crosstalk to one another and stimulate each other’s growth by 

neurotrophic or angiogenic guidance signals, respectively (Butler et al., 2010). Ingrowth of 

nerves precedes arterial formation, which follows axons branching pattern in the embryonic 

skin (Li et al., 2013; Mukouyama et al., 2002). The most prevalent cell type in peripheral 

nerves is the Schwann cell. In the bone marrow, Schwann cells maintain HSCs in the 

quiescent state through the production of activated TGFβ. It remains unknown whether 

during embryonic skin development perineural cells (Schwann cells) regulate the formation 

of perivascular cells (pericytes) through TGFβ production.

Within the same tissue, pericytes were characterized as heterogeneous based on their 

phenotype, molecular markers, distribution, and function (Armulik et al., 2011; Sims, 1991, 

2000; Stark et al., 2013). For instance, in the adult skeletal muscle, two pericyte subtypes 

were identified based on their expression of Nestin-GFP. They differ in their differentiation 

potential; while type-1 pericytes (Nestin GFP−/NG2 DsRed+) can form fat and fibroblasts, 

type-2 pericytes (Nestin GFP+/NG2 DsRed+) have myogenic, neurogenic and angiogenic 

potential (Birbrair et al., 2014a; Birbrair et al., 2013a, c; Birbrair et al., 2014b, 2015; 

Birbrair et al., 2014c). Whether those same subtypes are present during embryogenesis 
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remains unknown. And, more interestingly, further studies will reveal the origin of skeletal 

muscle pericytes subpopulations.

Two varieties of bone marrow pericytes were distinguished according to their location in the 

blood vessels: arteriolar and sinusoidal (Birbrair and Frenette, 2016). Arteriolar and 

sinusoidal pericytes can be separated in Nestin-GFP transgenic mice according to Nestin-

GFP transgene expression level (Birbrair et al., 2011; Kunisaki et al., 2013). Sinusoidal 

pericytes express low levels of the Nestin-GFP transgene, thus are denominated Nestin-GFP 

dim cells. Arteriolar pericytes express high levels of the Nestin-GFP transgene, thus are 

denominated Nestin-GFP bright cells. Additionally, arteriolar pericytes express the pericytic 

marker NG2 proteoglycan, and do not express leptin receptor; while sinusoidal pericytes 

express leptin receptor, but lack NG2 expression (Kunisaki et al., 2013). Interestingly, 

although both pericyte subtypes produce the chemokine C-X-C motif ligand 12 (CXCL12), 

only Cxcl12 derived from arteriolar pericytes is importante for HSC maintenance (Asada et 

al., 2017). The embryonic origin and the developmental relationship of bone marrow 

pericyte subpopulations remain to be elucidated.

In the spinal cord, pericytes that express the glutamate aspartate transporter Glast differ from 

those that express desmin and αSMA (Goritz et al., 2011). After spinal cord injury, only 

Glast+ pericytes increase in number and form the core of the scar, suggesting that the role of 

spinal cord pericytes’ subpopulations differ in tissue repair after CNS injury (Goritz et al., 

2011). Nevertheless, whether spinal cord pericytes have distinct origins is still unknown.

Pericytes’ potential to differentiate into several cell types has been established by numerous 

studies; and the general consensus holds that pericytes are cells with high plasticity; 

although a recent study challenges this concept (Birbrair et al., 2017a; Guimaraes-Camboa 

et al., 2017). Future studies should address whether this hematopoietic lineage-derived 

pericyte subpopulation vary in its differentiation capability in comparison to other pericytes 

from the same tissue. Pericyte-intrinsic changes may be reversible or not but, either way, 

represent another source of heterogeneity; a pericyte subpopulation could be more prone to 

differentiate or to enter apoptosis than another.

Furthermore, it will be interesting to test whether this differentiation from hematopoietic 

cells into pericytes during development could be reversed under certain pathological 

circumstances; are pericytes able to form hematopoietic cells?

In addition to genetic cell fate mapping, transcriptomic and single cell analysis represent 

fundamental tools that will help us understand the roles and the origins of pericyte 

subpopulations within the same tissue. This understanding may bring new approaches for 

several pathologic conditions as pericytes are present in all tissues and play important roles 

related to tissue turnover and regeneration. Taking their diversity into account, pericytes will 

be crucial in advancing our understanding of development, disease and aging.
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Highlights

• Pericytes from within the same tissue may be heterogeneous in their origin.

• A subpopulation of embryonic dermal pericytes derives from the 

hematopoietic lineage.
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Figure 1. Heterogeneity in the pericytes origins
Pericytes are present around blood vessels in several tissues, such as brain, heart, lungs, 

skeletal muscle, pancreas, intestine, bone marrow, kidney, and others. During the embryonic 

development, pericytes in the head, cephalic region and thymus originate from the 

neuroectodermis, the ones found in gut, liver, lungs and heart are derived from the 

mesothelium, while the mesoderm gives rise to pericytes in other organs (such as kidneys, 

liver and pancreas). The study of Yamazaki and colleagues now suggests that surprisingly a 

subgroup of pericytes may derive from the hematopoietic lineage (Yamazaki et al., 2017). 

With the appearance of state of art technologies, such as new pericyte-lineage tracing mouse 

models, the true origin of pericytes subgroups will likely be revealed with much greater 

details in future studies.
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