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Summary

This article is motivated by the increasing need to model risk for large hospital and health care 

systems that provide services to diverse and complex patients. Often, heterogeneity across a 

population is determined by a set of factors such as chronic conditions. When these stratifying 

factors result in overlapping subpopulations, it is likely that the covariate effects for the 

overlapping groups have some similarity. We exploit this similarity by imposing structural 

constraints on the importance of variables in predicting outcomes such as hospital admission. Our 

basic assumption is that if a variable is important for a subpopulation with one of the chronic 

conditions, then it should be important for the subpopulation with both conditions. However, a 

variable can be important for the subpopulation with two particular chronic conditions but not for 

the subpopulations of people with just one of those two conditions. This assumption and its 

generalization to more conditions are reasonable and aid greatly in borrowing strength across the 

subpopulations. We prove an oracle property for our estimation method and show that even when 

the structural assumptions are misspecified, our method will still include all of the truly nonzero 

variables in large samples. We demonstrate impressive performance of our method in extensive 

numerical studies and on an application in hospital admission prediction and validation for the 

Medicare population of a large health care provider.
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1. Introduction

According to recent studies (Pfuntner, Wier, and Steiner, 2013; Moore, Levit, and 

Elixhauser, 2014), inpatient hospital services account for 7% of health care utilization but 

constitute the largest share of total health care spending, 29%, in the United States in 2009. 

As health care costs continue to rise and the population ages, policymakers are increasingly 

concerned about the growing burden of hospital-based medical care expenses on the 

government, insurers, patients, and employers. As a result, there is an urgent need to build 

predictive models for hospital admissions and readmissions so that hospitals and health care 

systems can intervene to improve care and reduce costly admissions. In particular, the 

primary motivation of this article is risk modeling for a Medicare Accountable Care 

Organization (ACO). One goal of ACOs is to provide a system of coordinated and targeted 

care for Medicare beneficiaries to improve health outcomes. Accurate assessment of the 

hospitalization risk of patients with different co-morbidities can help inform an ACO’s care 

coordination and management programs.

However, there are many challenges in building predictive models for the risk of 

hospitalization among the Medicare ACO patients with different co-morbidities. First, there 

is a large number of variables available from both electronic health records (EHR) and 

Medicare claims. Furthermore, some of these variables are disease specific. For example, the 

Glycated Hemoglobin (A1c) test is usually only measured for patients with diabetes. In 

addition, a particularly challenging issue researchers face in hospital-wide risk modeling is 

the heterogeneity of the study population. Many patients, especially the elderly, have 

multiple chronic conditions, further complicating modeling efforts. For example, in our 

motivating study, we are faced with the subpopulations shown in Figure 1. In particular, 

three prevalent chronic conditions, congestive heart failure (CHF), diabetes, and chronic 

obstructive pulmonary disease (COPD), increase health care costs substantially through 

repeated hospital admission. Hence, it is important to build reliable risk prediction models 

for the subpopulations with these conditions. A major complication in constructing reliable 

models for these populations is the inherent differences among the subpopulations with 

different chronic conditions. For example, the effect of hypertension among patients with 

CHF may increase the risk of hospitalization. However, it is known that hypotension can be 

a hospitalization risk for patients with diabetes (Lipska et al., 2014) and as such, the effect of 

blood pressure may be different for these two different populations. Furthermore, the effect 

of blood pressure for patients with both CHF and diabetes may be altogether different from 

patients with only CHF or only diabetes.

To account for such heterogeneity, risk models should be flexible, allowing for covariate 

effects to vary across different subpopulations. One direct way is to build models for every 

subpopulation. Another approach would be to construct a single model which accounts for 

heterogeneity by including all possible interactions between the indicators of CHF and 

diabetes and all covariates. However, this approach leads to a complex model and can be 

hard to present or summarize the results. Furthermore, these approaches do not make 

efficient use of the data as there may be intrinsic structure underlying the subpopulations. 

Specifically, we may expect certain variables to contribute to hospital admission for all 

patients. On the other hand, we also can expect a variable related to diabetes (e.g., A1c level) 

Huling et al. Page 2

Biometrics. Author manuscript; available in PMC 2018 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to be important for subjects with diabetes whether they have other co-morbidities or not. 

Ignoring this structural information may result in a loss of efficiency, especially in the 

subpopulations with smaller sample sizes (i.e., those with more conditions).

In the approach of this article, we incorporate the above discussed structural assumptions in 

variable selection to borrow strength across subpopulations. We assume that the effects of 

each covariate can differ for different subpopulations, but their importance respects the 

hierarchical structure of the stratifying factors. We assume that if a particular variable is 

predictive for patients with only one condition (e.g., CHF), it should be predictive for 

patients with that condition and additional conditions (e.g., CHF and diabetes). However, a 

variable can be predictive for patients with both conditions but not for those with single 

conditions. For example, pioglitazone and other similar medications for diabetes may cause 

or worsen CHF (Tannen et al., 2013). Therefore, such medication information can be 

predictive of hospitalization risk for patients with both diabetes and CHF, but may not be 

predictive for diabetic patients without CHF. In smaller subpopulations, such as those with 

three or more chronic conditions, this hierarchical constraint can especially aid in the 

selection of important covariates and can thus help in borrowing strength across the various 

subpopulations. The smaller subpopulations usually are of more importance as they are high 

utilizers of the health care services.

The above assumption is materialized in this article through a penalty which induces 

hierarchical variable selection for heterogeneous populations with overlapping patterns. The 

penalty is based on the overlapping group lasso, an extension of the group lasso penalty of 

Yuan and Lin (2006) which allows for some of the groups of covariates to overlap. In 

essence, our approach addresses variable selection of interactions to capture heterogeneity. 

Therefore, existing variable selection approaches for interactions can potentially be applied 

in our setting (Zhao, Rocha, and Yu, 2009; Bien, Taylor, and Tibshirani, 2013). However, 

these approaches do not allow the interaction term to be selected unless the main effect is 

selected. Framing our setup in terms of interactions, we could think of the coefficients for 

the, say, the diabetes only and CHF only subpopulations to be the main effects and the 

interaction to be the coefficients for the subpopulation with both diabetes and CHF. Using 

existing approaches would not allow for the coefficients for the subpopulation with both 

diabetes and CHF to be included without the coefficients for the diabetes only and CHF only 

subpopulations. This does not seem to be plausible scientifically-speaking. For example, 

many diabetic drugs are known to have cardiac side effects. Therefore, consumption of these 

drugs can be innocuous for diabetic patients with healthy hearts but problematic for patients 

with both diabetes and CHF.

A key methodological contribution of this article is in leveraging the overlapping group lasso 

to explicitly handle data-generating scenarios with multiple subpopulations. Our formulation 

relaxes the requirement of independence between subpopulations. Furthermore, while there 

are theoretical results for the latent group lasso (Percival, 2012), to our knowledge, there are 

no theoretical results for the adaptive overlapping group lasso or such extensions to 

generalized linear models.
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We prove consistency of variable selection and asymptotic normality when our hierarchical 

selection assumption holds. We show that even when our structural assumption does not 

hold, our selection will still consistently include all of the truly nonzero coefficients. Some 

truly zero coefficients may be selected in this case, but asymptotic normality still holds and 

thus the truly zero coefficients will converge in probability to zero. We show that the above 

asymptotic results hold under the generalized linear models and semiparametric linear 

models. Through extensive numeric studies and analysis of the ACO data, we demonstrate 

that our approach outperforms various ad hoc approaches of addressing population 

heterogeneity.

2. Methodology

Consider a model with covariate effects that differ based on C stratifying factors. For 

example, suppose, we have three stratifying factors H, P, and D (congestive Heart failure, 

chronic obstructive Pulmonary disease, and Diabetes, respectively) on which we would like 

to stratify the main effects of our model. The form of the population stratified on these 

factors is depicted in Figure 1. Then all of the possible subpopulations are HPD, the 

subpopulation with all three factors, HP, HD, PD, H, P, D, and none, the subpopulation with 

none of the three factors. More generally, when a model is stratified on C binary factors, this 

results in K = 2C subpopulations. Here, we focus on binary stratifying factors instead of 

factors with multiple levels such as age categories. In such a model, each covariate has 2C 

different effects, one for each subpopulation. For k = 1,…, K, let Xk denote the covariate 

information for subpopulation k. For simplicity of presentation, we will assume that all 

subpopulations have the same set of covariates available. Therefore Xk is of dimension nk × 

p. Let Yk be the response vector of length nk for subpopulation k. Our methodology can 

naturally handle cases where there are covariates (e.g., A1c) specific to certain 

subpopulations. In such cases, the number of parameters can differ for different 

subpopulations.

To describe the structure of coefficients of covariates across the given subpopulations, we 

introduce a double-subscript notation for the coefficients and the relevant variables to which 

they correspond. We denote βk, j as the coefficient of jth covariate for subpopulation k. In 

this notation, all coefficients for subpopulation k are represented by the vector βk,· = (βk,1,

…, βk, p) and all coefficients for jth covariate are represented by the vector β·,j= (β1, j,…, 

βK, j). Naturally, we use β to represent all coefficients corresponding to all covariates across 

all subpopulations.

The density of a generalized linear model with canonical link given a single observation (yk, 

xk) for subpopulation k can be written as:

f k(yk | xk, θk) = h(yk) exp(ykθk − ϕ(θk)), (1)

where θk = xkβ
k·
0 , xk = (xk,1,…, xk, p), and β

k·
0  are the true coefficients.
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We assume that ϕ(θk) is a convex function for each k = 1,…, K. This is true for most 

generalized linear models. For example, in the Gaussian linear model, ϕ(θk) is a strictly 

convex quadratic form. In logistic regression, ϕ(θk) = log(1 + eθk) is a strictly convex 

function. In the log-linear regression model, ϕ(θk) = exp(θk) is also a strictly convex 

function.

A widely used framework for the selection of variables in generalized linear models is the 

penalized log-likelihood method. In order to borrow strength across the overlapping 

subpopulations, we propose to perform variable selection in a hierarchical fashion by 

maximizing the following penalized likelihood

∑
k = 1

K
ℓk(βk, ·) − λP(β), (2)

where P is an overlapping group lasso penalty with special structure to induce hierarchical 

selection patterns and the likelihood ℓk is the likelihood corresponding to subpopulation k. In 

particular, we choose

P(β) = ∑
j = 1

p
∑

G ∈ 𝒢
λG, j‖βG, j‖2, (3)

where βG, j = (β·, j)G as the subvector of β·, j defined by the index set G ⊆ {1,…, K}, λG, j 

represents group-specific weights,  is a set of groups of covariates, and ‖η‖2 denotes 

(∑ j = 1
d |η j |

2 )1/2
 for a vector η ∈ Rd. Specifically, each element in  is a set of indices 

corresponding to covariates in β. We will discuss how  is constructed later in this section. 

A sensible choice of λG, j is |G|1/2, where |G| denotes the cardinality of the indices in G, 

however this may not guarantee consistent selection. In particular, if a condition similar to 

the irrepresentable condition (specified in Jenatton et al. (2011)) does not hold, then 

selection consistency is not guaranteed. Furthermore, this choice of weights may not 

guarantee an oracle property, which would guarantee consistent estimation in spite of 

misspecification of our hierarchical assumption. To address this issue, we adopt adaptive 

weights analogous to the adaptive lasso weights of Zou (2006). Specifically, we set 

λG, j = ‖βG, j
MLE‖2

−γ
 for some γ > 0, where βk, j

MLE is the maximum likelihood estimate of the jth 

coefficient from an unpenalized GLM for subpopulation k. When all groups contain single 

coefficient, our optimization problem reduces to the adaptive lasso.

The key for our proposed approach is the specific choice of  in (3). The groups in  are 

chosen to have overlapping elements in a way that enables variable selection of the covariate 

effects in a hierarchical fashion. Examples of the selection patterns of interest are illustrated 

in Figure 2. We will formally define the elements in  which induce these selection patterns 

later in this section. In order to construct  appropriately, we must work with either the zero 

patterns or the non-zero patterns induced by a specific choice of . A zero pattern is a subset 

Huling et al. Page 5

Biometrics. Author manuscript; available in PMC 2018 August 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the covariate effects which have been set to zero and a non-zero pattern is a subset of the 

covariate effects which are non-zero. The zero pattern for variable selection from the 

overlapping group lasso is the union of groups. Specifically, for the set  of all groups, by 

the results in Jenatton, Audibert, and Bach (2011) the possible zero-patterns can be 

represented as

𝒵 = ∪
G ∈ 𝒢′

G; 𝒢′ ⊆ 𝒢 .

The non-zero patterns, denoted as C ≡ {ZC: Z ∈ }, can be represented as the intersection 

of complements of elements in  and is thus more difficult to work with directly than . To 

see how  might be constructed, consider a scenario with just two stratifying factors H and 

P. If we choose  to be {{H}, {P}, {H, P, HP}}, then we can see that the corresponding set 

 only allows covariates to be selected for the H or P subpopulations if they are also 

selected in the HP subpopulation. Additional covariates can, however, be selected only for 

the HP subpopulation.

Before the most general case is constructed, we will develop some notation. Let the 

contained sets (the sets below the denoted set in the hierarchy, where HPD is defined as the 

top of the hierarchy) be HPD = {HPD, HP, HD, PD, H, P, D}, HP = {HP, H, P, }, …, H = {H}, …. 

Then for each covariate,

𝒢 = {HPD, HP, HD, PD, H, P, D, {none}} . (4)

Checking  for this choice of  verifies that this group structure imposes the desired 

hierarchical selection constraints. Note that there is no structural pattern imposed on the 

coefficients corresponding to the none subpopulation. It is often unreasonable to assume that 

effects of variables for the subpopulation with none of the stratifying factors should be 

affected by subpopulations with any of the stratifying factors. For concreteness, if the 

stratifying factors are chronic conditions, the none group would correspond to the population 

with no chronic conditions.

More generally, for any given set of stratifying factors, S1,…, Sc, the set of groups which 

induces the desired selection pattern is the union of all possible contained sets generated by 

S1,…, Sc in addition to the set {none}. Specifically, the set of groups is

𝒢 = {Si: i ∈ {1, …, c}} ∪ {SiS j: i, j ∈ {1, …, c}, i < j} × ∪ … ∪ {S1⋯Sc} ∪ {none} .

The hierarchical penalty can still be applied for scenarios with disease-specific covariates. 

For example, blood A1c may only be available for diabetic patients. In this case, if we have 

stratifying factors H, P, and D, we would impose hierarchical selection for blood A1c only 

within subpopulations of patients with diabetes. We can simply remove all terms 

corresponding to non-diabetic populations in the formulation of the penalty. For A1c, the 

group structure would be 𝒢 = {HPD, HD, PD, D}.
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3. Computation and Asymptotic Properties

Computation for the group lasso with overlapping groups is non-trivial. A general 

computational algorithm for minimizing ∑k = 1
K ℓk(βk, ·) − λP(β), with overlapping groups is 

described in the online Supplementary Material. The algorithm is straightforward to 

implement, is computationally efficient, and can accommodate any convex ℓk.

In the rest of this section, we present theoretical results regarding selection consistency for 

the adaptive group lasso penalties with potentially overlapping groups. Suppose that the 

group structure described above is true in the sense that the hierarchical structure imposed 

by the groups accurately reflects the structure of important covariates in the data. The 

following theorems give us the model selection consistency and oracle properties when p is 

fixed. The model selection consistency guarantees that with probability tending to 1, the 

estimated nonzero coefficients will be nonzero in truth and the estimated zero coefficients to 

be zero. The oracle property guarantees that our estimation for the nonzero coefficients is as 

asymptotically efficient as if we had known in advance which coefficients are zero. The 

following results hold for any overlapping group lasso penalty, not just the specific choice of 

groups we propose.

We prove similar results in two classes of widely-used models. The first result pertains to 

scenarios where ℓk is the log-likelihood for any generalized linear model. The second result 

pertains to the linear model under milder assumptions than are required for the results for 

generalized linear models and is presented in the online Supplementary Material. The proofs 

are available in the online Supplementary Materials as well. The conditions required for both 

cases are similar to the conditions required for the asymptotic properties of the maximum 

likelihood and least squares estimates, respectively.

3.1. Assumptions

In this subsection, we lay out the assumptions required for asymptotic results for the 

overlapping group lasso for generalized linear models. We prove that using an adaptively 

weighted sparsity-inducing penalty, we can obtain oracle properties with overlapping group 

structure. Again, our sparsity-inducing estimator is defined by the following problem

argmin 
β

∑
k = 1

K 1
N { − Yk

⊤(Xkβk, ·) + ek
⊤ϕ(Xkβk, ·)} + λP(β), (5)

where P(β) = ∑ j = 1
p ∑G ∈ 𝒢 λG, j‖βG, j‖2, ϕ(Xkβk,·) represents a nk-dimensional vector with 

transformation ϕ(·) on each entry of Xkβk,·, ek is a nk-dimensional vector with all ones, and 

N = ∑k = 1
K nk is the total sample size. We set λG, j = ‖βG, j

MLE‖2
−γ

, where βk, j
MLE is the maximum 

likelihood estimate of the jth coefficient from an unpenalized GLM for subpopulation k and 

γ > 0. When all groups contain a single coefficient, our optimization problem reduces to the 

adaptive lasso. Thus, the theoretical result below can be seen as a natural extension of the 

adaptive lasso for generalized linear models.
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We assume the following regularity conditions:

(C.1) Ik = Ek[ϕ″(xkβk, ·
0 )xkxk

⊤] is finite and positive definite, where Ek[·] is the 

expectation w.r.t xk under the measure of subpopulation k.

(C.2) For subpopulation k, there is a sufficiently large enough open set k that 

contains βk, ·
0  such that ∀βk,· ∈ k,

|ϕ‴(xkβk, ·) | ≤ Mk(xk) < ∞ ,

and

Ek[Mk(xk) | xk, jxk, lxk, m | ] < ∞ ,

for all 1 ≤ j, l, m ≤ p.

(C.3)
0 < infk =1,…,K lim infN + ∞

nk
N ≤ supk = 1, …, Klim supN + ∞

nk
N < 1.

3.2. Asymptotic Results

The following results are applicable to settings more general than the specific group 

structure presented in Section 2. In particular, we show an oracle property for the selection 

of nonzero patterns which arise from any specified group structure. As a result, asymptotic 

results for our hierarchical penalty are obtained immediately. We first present the asymptotic 

results for cases where the possible zero patterns induced by the specified group structure 

includes the true zero pattern. Under this case, the group structure has been correctly 

specified.

The sets J·, j ⊂ {1,…, K} and Ĵ·, j ⊂ {1,…, K} are the index sets corresponding to the 

nonzero coefficients in β · , j
0  and β̂·, j, respectively, and Jk,· ⊂ {1,…, p} is the index set for 

nonzero coefficients in βk, ·
0 . For a m × m matrix A, and H1, H2 ⊆ {1,…, m}, let the matrix 

AH1H2 in R|H1|×|H2| be the submatrix of A with rows of A indexed by H1 and columns of A 
indexed by H2.

Theorem 1—Assume the data are generated under the model represented by equation (1) 

and that our estimator is given by equation (5). Furthermore, assume that the non-zero 

patterns  induced by the specified group structure  contain the true zero pattern. Assume 

conditions (C.1)–(C.3) and let λG, j = ‖βG, j
MLE‖2

−γ
 for some γ > 0 such that N(γ+1)/2 λ → ∞. 

If Nλ 0, then we have the following:

P(J · , j = J · , j) 1 as N ∞ , (6)

and
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nk(βk, · − βk, ·
0 ) d Zk, (7)

where Zk, Jk, ·
N |Jk, ·|

(0, (IJk, ·Jk, ·
k )−1) and Z

k, Jk, ·
c = 0.

An important aspect of Theorem 1 and following theorems is that they do not require 

independence between subpopulations. It is expected that subpopulations with shared 

chronic conditions are similar to each other, and hence we would not expect them to be 

independent from each other.

We now present results that pertain to cases where the group structure has been misspecified 

in the sense that the set C induced by a particular choice of  does not contain the true 

non-zero pattern of β0. In such cases, we prove that although the true non-zero pattern will 

not be recovered exactly, at least all of the truly non-zero coefficients will be estimated to be 

non-zero in an asymptotic sense. To clarify the specific non-zero pattern that is recovered 

under group misspecification, we introduce notation similar to that in Jenatton et al. (2011).

For any subset I ⊆ {1,…, K} and a given set of groups , the hull is defined as the 

complement of the union of all groups not overlapping with I:

Hull(I) = ∪
G ∈ 𝒢, G ∩ I = ∅

G
c

.

Our results show that the adaptive overlapping group lasso is consistent in selecting the hull 

of the true nonzero coefficients in addition to providing optimal estimation of the hull. This 

implies that if the group structure  is misspecified, the hull of J·, j, the true nonzero pattern 

of β · , j
0 , can be consistently selected and estimated and if the group structure is indeed 

correctly specified, the true nonzero pattern will be consistently estimated. Essentially, the 

hull of the true nonzero pattern induced by a group structure  (and corresponding C) is 

the smallest element in C that covers, or contains, the true non-zero pattern. An example of 

the hull of a nonzero pattern which will be selected is illustrated in the right-most diagram in 

Figure 2.

Note that Hull(Ĵ·, j) = Ĵ·, j. Denote H·, j = Hull(J·, j). Similar to Jk,· = {j ∈ {1,…, p} : k ∈ 
J·, j}, we can define Hk,· = {j ∈ {1,…, p} : k ∈ H·, j}, which corresponds to the hull of the 

nonzero pattern for the covariates corresponding to population k.

Theorem 2—Assume the data are generated under the model represented by equation (1) 

and that our estimator is given by equation (5). Here, we do not necessarily assume that the 

group structure is correctly specified. Assume conditions (C.1)–(C.3) and let 

λG, j = ‖βG, j
MLE‖2

−γ
 for some γ > 0 such that N(γ+1)/2 λ → ∞. If Nλ 0, then we have the 

following:
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P(J · , j = H · , j) 1 as N ∞ , (8)

and

nk(βk, · − βk, ·
0 ) d Zk, (9)

where Zk, Hk, ·
N |Hk, ·|

(0, (IHk, ·Hk, ·
k )−1) and Z

k, Hk, ·
c = 0.

We emphasize that Theorem 2 does not require that the group structure  is correctly 

specified. However, if the group structure is indeed correctly specified, the classical oracle 

property holds, with our estimator obtaining the same asymptotic efficiency as if we knew 

the non-zero coefficients in advance and in addition obtaining variable selection consistency. 

If the group structure is misspecified, our estimator has the oracle property for selection of 

the hull of the true nonzero pattern, in which case our estimator obtains the same asymptotic 

efficiency as if we knew the true hull in advance. Because, we can correctly identify the 

asymptotic distribution under group structure misspecification, the resulting inclusion of 

some extra covariates which are truly zero may not be a serious issue, as their estimates will 

converge in probability to zero. Scenarios where our structural assumption may hold for 

many variables yet not for some should pose less of an issue. Thus, Theorem 1 can be 

considered a corollary of Theorem 2.

3.3. Standard Error and Degrees of Freedom

Tibshirani (1996) and Fan and Li (2001) proposed estimating standard errors of shrinkage 

estimates by utilizing a ridge regression approximation of the penalized likelihood solution. 

We follow this type of approach for standard error and degrees of freedom estimation. Note 

that when βk, j
0  is not too close to 0, the penalty applied to βk, j can be locally approximated 

by a quadratic function

∑
G ∈ 𝒢 s . t . k ∈ G

λλG, j‖βG, j‖2 ≈ ∑
G ∈ 𝒢 s . t . k ∈ G

λλG, j‖βG, j
0 ‖2

+ 1
2 ∑

G ∈ 𝒢 s . t . k ∈ G
λλG, j

1
‖βG, j

0 ‖2
((βk, j)

2 − (βk, j
0 )2) .

Then assuming that the log-likelihood is smooth with respect to β with first two partial 

derivatives continuous, then equation (2) can be locally approximated with a quadratic 

function. Minimizing with respect to the local approximation yields

βk, ·
0 − {∇2ℓk(βk, ·

0 ) + NAλ(βk, ·
0 )}−1{∇ℓk(βk, ·

0 ) + NAλ(βk, ·
0 )βk, ·

0 },
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where

Aλ(βk, ·
0 ) = ∑

j = 1

p
λdiag ∑

G ∈ 𝒢 s . t . k ∈ G, G ∩ J · , j ≠ ∅

λG, j
‖βG, j‖2 k = 1, …, K

.

Hence by standard techniques, a sandwich estimator of the covariance of βk̂,· is

cov(βk, ·) = {∇2ℓk(βk, ·) + NAλ(βk, ·)}
−1 × cov{∇ℓk(βk, ·)}{∇2ℓk(βk, ·) + NAλ(βk, ·)}

−1 .

Furthermore, the number of effective parameters in the adaptive overlapping group lasso 

estimator can be approximated by ∑k = 1
K tr{(∇2ℓk(βk, ·) + NAλ(βk, ·))

−1∇2ℓk(βk, ·)}.

4. Simulation

Simulation studies were carried out to evaluate and compare the finite-sample performance 

of various models. In the simulation, we considered the number of stratifying factors C = 2, 

3, 4, corresponding to a total number of subpopulations K = 22, 23, 24. The sample size per 

condition combination nk was chosen to be the same and varied from 25 to 500, yielding 

corresponding total sample sizes of N = nk · 2C. The number of covariates p was set to 100, 

resulting in a total number of parameters to be estimated of 100 · 2C.

The data were generated according to a logistic model where the coefficients βk,· were 

generated with a hierarchical zero-structure and the error terms are independent and 

identically distributed. Among the p = 100 coefficients, the number m which can be nonzero 

was varied from 25, 50, 100. Each βk, j for j = 1,…, m was set to 0 with a probability to 

achieve an overall sparsity level of 0.875. For each βk, j set to 0, all βk*, j with k* < k in the 

hierarchy are also set to 0. Each βk, j for j = m + 1,…, 100 was set to 0, thus resulting in 

overall zero proportions of 0.875, 0.75, and 0.50 for m = 25, 50, and 100, respectively. The 

nonzero coefficients were generated from a uniform random variable on (−c, −0.5c) ∪ (0. 5c, 
c), where c > 0. The strength of signal was varied by varying c from 0.25, 0.5, 1.

We evaluate our method in addition to several other approaches of handling population 

heterogeneity. The “Separate Lasso” approach maximizes K penalized likelihoods, ℓk(βk,·) − 

λk‖βk,·‖1, separately for each subpopulation. Another similar approach to address 

heterogeneity of main effects is provided by maximizing the following likelihood:

∑
k = 1

K
ℓk(βk, ·) − ∑

k = 1

K
λ‖βk, ·‖1

The primary difference between this, which we call the “Expanded Lasso” and the “Separate 

Lasso” is that there is one intercept in the Expanded Lasso and one tuning parameter instead 

of K tuning parameters. We also fit models with interactions of the stratifying variables with 

all of the covariates, which we call the “Interaction Lasso” and “Interaction HierLasso.” The 
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former uses a lasso penalty on all coefficients whereas the latter utilizes an overlapping 

group lasso penalty which enforces the hierarchy as specified in Zhao et al. (2009). Note that 

our method with the adaptive weights cannot be fit when nk < p. Therefore, we also fit 

alternatively a model that uses λG, j = |G|1/2. We denote this method in the simulation as 

“vennLasso.” Our method is denoted as “vennLasso Adaptive.” Our simulation covers the p 
> n paradigm and as such our theoretical results for the vennLasso Adaptive method do not 

apply. Motivated by the work of Huang et al. (2008), we use marginal regression estimates 

to construct λG, j for the adaptive version of the vennLasso when p > n.

The models are compared in terms of predictive performance as measured by area under the 

receiver operating characteristic curve (AUC) on an independent data set of 10,000 

observations. The AUC results are shown in Figure 3 for the setting with p = 100 and the 

average sparsity of the coefficients is 0.875, meaning on average 87.5% of coefficients are 

zero. When the information contained in simulated data sets is relatively weak, that is when 

the sample size per stratum nk, or the max effect size, or the number of stratifying variables 

C are small, the advantage of our method is not obvious as all methods performed quite 

inadequately. The advantage of our method is more noticeable when nk becomes bigger 

(e.g., 75) or C becomes bigger (e.g., 4) or the signal strength is stronger (e.g., max effect size 

of 1). The average AUCs from our methods are larger than 0.7 whereas the AUC from the 

second best method (“Interaction HierLasso”) is just about 0.66 when nk = 150, C = 4, and 

the max effect size is 0.5. In the extreme case when the information contained in simulated 

data sets is very strong, that is when nk is as large as 500 and C = 4, all methods (except 

“Interaction Lasso”) perform well. The improvement of our method over the comparison 

methods also seems to be more noticeable with larger C. Results for other settings with 

higher and lower sparsity are very similar and thus the figures corresponding to these 

simulations are in the online Supplemental Materials.

While prediction is the primary interest of this article, we also investigate the variable 

selection properties of vennLasso and vennLasso Adaptive. We investigate the average 

number of false positives and false negatives. With some compromise of false positives, our 

methods tend to have much better false negative controls than other approaches when C is 

larger. These results are presented in the online Supplementary Materials. Furthermore, 

average coverage levels for adaptive version of our proposed estimator are also given in the 

online Supplementary Materials for some selected settings. The coverage levels are close to 

95% overall, but slight over-coverage can also happen in some settings.

Computation time for the vennLasso and vennLasso adaptive scale well when the number of 

observations increases, however, the computation time increases exponentially with the 

number of stratifying factors C, as C increases the number of parameters exponentially. In 

no setting is the computation time longer than approximately 4000 seconds on average. 

Computation times for the vennLasso and vennLasso Adaptive are given in the online 

Supplementary Materials.
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5. Modeling Hospital Admission with Validation

The ACO data to be modeled contains information on hospital admissions for 41,979 

patients. The data for each patient are collected on a monthly basis. Of interest for the ACO 

each month is the predicted risk of hospitalization for the following 3 month period. 12 

months of baseline data are utilized for each patient for modeling hospitalization within the 

subsequent 3 month period. Covariates include lab values such as A1c level, health care 

payment information, demographic information, Hierarchical Condition Categories (HCC) 

variables (Pope et al., 2004), primary care and specialty care visits, baseline hospital 

admission information, medications, and other various medical information. The response is 

an indicator of whether any given patient was hospitalized during the 3 month follow-up 

period.

We compare all the methods that were used in the simulation section on a validation 

approach. The data were split randomly into training and validation datasets of sizes 20,989 

and 20,990, respectively. The three modeling approaches were estimated using the training 

sample based on logistic regression models. The tuning parameter for each of the models 

was chosen via 10-fold cross validation using area under to ROC curve (AUC). The models 

were then validated by evaluating the AUC on the validation data. A breakdown of the 

validation and selection results for each of the approaches by subpopulations is presented in 

Table 1. The performance of vennLasso Adaptive is nearly the same as the other methods on 

the subpopulation with no conditions (with the vennLasso Adaptive having an AUC of 0.767 

and others ranging from 0.701 to 0.770), however for all of the other subpopulations 

vennLasso Adaptive and the vennLasso perform markedly better, especially for most of the 

smallest subpopulations. For example, for the subpopulation with all three chronic 

conditions the vennLasso adaptive and vennLasso have an AUC of 0.629 and 0.619, 

respectively, whereas others have an AUC ranging from 0.501 to 0.568. As the focus of risk 

modeling is often the populations of complex patients with many chronic conditions and 

higher disease burden, it is crucial to construct effective risk models for them in particular. 

Often, these subpopulations are of greatest interest to hospital administrators, who often 

target complex patients with more chronic conditions with tailored interventions to help 

improve their outcomes. We also compare our approach with the others in terms of oveall 

AUC for the entire validation set population. From these results displayed in Table 2, we can 

see that our approach performs better overall as well. On this dataset, the Interaction Lasso 

was computed in 678 seconds, the Separate Lasso was computed in 44 seconds, the 

Expanded Lasso was computed in 517 seconds, the Interaction HierLasso was computed in 

4395 seconds, the vennLasso was computed in 3874 seconds, and the vennLasso adaptive 

was computed in 4119 seconds. Full computation details for all methods including 

computation times are given in the online Supplementary Materials.

6. Discussion

The proposed penalty aids in unifying analyses involving heterogeneous populations by 

borrowing strength in variable selection across subpopulations. Our variable selection 

assumptions are biologically plausible and as such result in more meaningful and 

interpretable models. We have demonstrated the superiority of our approach over ad hoc 
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approaches in numerical examples and in a large scale application to health system risk 

modeling. In particular, it can dramatically improve predictive performance for smaller 

subpopulations while maintaining good predictive performance for larger subpopulations. 

This property is especially useful, as the smaller subpopulations are of great interest as they 

represent those with many chronic conditions and are at higher risk of poor outcomes.

Throughout this article, we have modeled the outcome of hospital admission as a binary 

indicator. While this measure is the primary interest of the ACO, it does not reflect the true 

nature of the outcome. Specifically, hospital admission is a time-to-event outcome and 

furthermore patients often experience hospital admissions many times. As such, it is a 

worthwhile effort to extend our framework to a semicompeting risks model.

In practice, one can also imagine scenarios where some covariates have similar magnitude of 

effects regardless of the subpopulations. For example, the effect of blood pressure could 

feasibly be the same for all subpopulations without CHF. In this case, estimation efficiency 

can be improved if such effects are encouraged to be more similar. An extension of our 

method to incorporate this idea is to add a fused lasso penalty to subpopulations which are 

“adjacent” in the hierarchy shown in Figure 2. Specifically, with two conditions, H and D, 

for each the jth covariate, we would have the two following fused lasso penalties: 

λH, HD
( j) | βH, j − βHD, j| and λD,HD|βD, j − βHD, j| but not λH,D|βH, j − βD, j|. The weight λH, HD

( j)

is chosen to be the adaptive weight |βH, j
MLE − βHD, j

MLE |−γ. This penalty can provide a safeguard 

against subpopulation misspecification and could allow for the data to determine which 

effects should be constant across all subpopulations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The above illustration depicts the sample sizes for each of the strata in the UW Health 

population included into the study.
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Figure 2. 
The left and center diagrams illustrate two examples of the desired variable selection 

patterns for overlapping strata. The two gray-highlighted groups in the leftmost diagrams 

represent the types of selection patterns of interest. Specifically, the two highlighted patterns 

on the left are elements in C, where the corresponding group structure  is defined in 

equation (4). The diagram on the right illustrates the selection properties when the group 

structure is misspecified. The groups with white text (HPD, HP, and P) form a true nonzero 

pattern which violates the structure imposed by our proposed penalty. The gray highlighted 

color indicates the nonzero pattern which will be selected asymptotically by our estimator 

with the incorrect group structure.
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Figure 3. 
The number of covariates is set to 100 and the average sparsity of the coefficients is 0.875 

for this simulation. The number of observations listed is the number of observations per 

subpopulation. Hence, the number of coefficients to be estimated and the number of total 

observations increase together, but their ratio is consistent.
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Table 2

This table investigates the performance of each method in terms of overall AUC on the entire population in the 

validation data.

Method Validation AUC

vennLasso 0.784

vennLasso Adaptive 0.782

Separate Lasso 0.765

Expanded Lasso 0.706

Interaction Lasso 0.782

Interaction HierLasso 0.779
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