Skip to main content
. Author manuscript; available in PMC: 2018 Aug 5.
Published in final edited form as: Biometrics. 2017 Oct 26;74(2):557–565. doi: 10.1111/biom.12769

Table 1.

This table investigates the performance in terms of AUC of the different modeling approaches on the various subpopulations as defined by the chronic conditions CHF, COPD, and diabetes. Each row represents a separate subpopulation (with ‘N’ indicating the absence of the condition and ‘Y’ the presence). The best AUC for each subpopulation is printed in bold.

AUC Number of variables selected


(CHF, COPD,
Diabetes)
Sample size
train
Sample size
validation
VennLasso VennLasso
adaptive
Interaction
lasso
Interaction
hierLasso
Separate
lasso
Expanded
lasso
VennLasso vennLasso
adaptive
Separate
lasso
Expanded
lasso
(N, N, N) 14, 939 14, 693 0.760 0.767 0.769 0.766 0.770 0.701 119 85 47 17
(Y, N, N) 1, 488 1, 543 0.692 0.692 0.687 0.690 0.683 0.665 35 34 15 17
(N, Y, N) 471 518 0.727 0.721 0.667 0.701 0.604 0.687 20 17 97 4
(N, N, Y) 2, 917 3, 022 0.699 0.693 0.690 0.695 0.679 0.649 36 35 15 19
(Y, Y, N) 196 189 0.587 0.593 0.609 0.519 0.583 0.512 33 31 2 12
(Y, N, Y) 720 784 0.752 0.750 0.760 0.740 0.706 0.722 54 54 34 18
(N, Y, Y) 138 131 0.727 0.726 0.688 0.725 0.569 0.510 43 42 2 2
(Y, Y, Y) 120 110 0.619 0.629 0.567 0.568 0.501 0.533 55 60 33 14