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Abstract

Cerebellar ataxias constitute a heterogeneous group of disorders that result in impaired speech, 

uncoordinated limb movements, and impaired balance, often ultimately resulting in wheelchair 

confinement. Motor dysfunction in ataxia can be attributed to dysfunction and degeneration of 

neurons in the cerebellum and its associated pathways. Recent work has suggested the importance 

of cerebellar neuronal dysfunction resulting from mutations in specific ion-channels that regulate 

membrane excitability in the pathogenesis of cerebellar ataxia in humans. Importantly, even in 

ataxias not directly due to ion-channel mutations, transcriptional changes resulting in ion-channel 

dysfunction are tied to motor dysfunction and degeneration in models of disease. In this review, 

we describe the role that ion-channel dysfunction plays in a variety of cerebellar ataxias, and 

postulate that a potential therapeutic strategy that targets specific ion-channels exists for cerebellar 

ataxia.
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Introduction

Cerebellar ataxias are a large, heterogeneous group of movement disorders affecting neurons 

in the cerebellum and its associated pathways. Clinically, cerebellar dysfunction manifests as 

unsteady gait, abnormal eye movements, uncoordinated limb movements, and difficulties in 

speech. Although many cerebellar ataxias share clinical features, genetic causes are diverse 

and highlight the potential difficulty to diagnose and appropriately treat these disorders. For 

instance, there are over 30 known genetic mutations associated with autosomal-dominant 

spinocerebellar ataxia (SCA) that affect a wide variety of molecular pathways [27]. The 

recent discovery of several new disease-causing SCA mutations suggests that many 

undiscovered disease genes still remain [19, 32, 72, 95, 96].
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Although disease-causing mutations in cerebellar ataxia are diverse, and expression of 

disease proteins are often widespread or ubiquitous throughout the central nervous system, 

cerebellar involvement is prominent. A subset of SCAs result from glutamine-encoding 

CAG repeats (the so-called polyglutamine SCAs: SCA1, 2, 3, 6, 7, 17). Although 

polyglutamine-expanded protein expression is widespread, and not necessarily restricted to 

just the nervous system, degeneration is restricted to specific neurons in the cerebellum and 

its associated pathways [87]. Purkinje neurons, brainstem neurons, and neurons of the 

cerebellar nuclei are particularly vulnerable to degeneration. Among these, Purkinje neurons 

are most prominently involved in SCAs [27]. The increased susceptibility of Purkinje 

neurons to degeneration in SCA suggests that these neurons may possess unique metabolic 

or physiologic properties that make them more vulnerable to a variety of insults. A unique 

feature of Purkinje neurons that may enhance their vulnerability is that they are autonomous 

pacemaker neurons which sustain firing 40 Hz even in the absence of synaptic input [36, 

81]. Perturbations in ion-channel expression and function have the potential to greatly 

impact Purkinje neuron firing and drive motor impairment.

Growing evidence indicates that neuronal dysfunction is a central mechanism of disease 

across many etiologies of SCA. Conventional ion-channel mutations are known causes of 

several spinocerebellar ataxias and episodic ataxias [19, 25, 31, 32, 49, 57, 61, 72, 95, 96, 

101, 106], while ion-channel dysfunction secondary to disease-causing mutations have been 

identified in several mouse models of polyglutamine SCA [21, 22, 54, 91]. This review will 

summarize current understanding of ion-channel dysfunction in cerebellar ataxia and explore 

ion-channel modulation as a potential strategy for the treatment of motor dysfunction.

Neuronal dysfunction in cerebellar ataxia

Purkinje neurons receive and integrate signals from several distinct neuronal pathways. 

Purkinje neuron intrinsic firing is modulated by synaptic activity to modify activity of 

downstream motor pathways. Under normal conditions, Purkinje neurons can sustain firing 

at a large dynamic range, up to several hundred spikes per second in vivo [100]. In order to 

properly transmit motor information, Purkinje neurons must be capable of fast modulation of 

this firing in order to encode information. There is debate as to whether Purkinje neurons use 

firing-rate coding, coding through synchronized Purkinje cell activity, or hybrid multiplexed 

coding to transmit output signals to motor nuclei [20, 37, 40]. Nevertheless, it is clear that 

rapid and precise modulation of Purkinje neuron membrane potential is necessary to encode 

coordinated motor output.

Purkinje neuron action potentials are dependent on precise, coordinated activity of a large 

complement of ion-channels in order to maintain autonomous repetitive spiking. 

Spontaneous action potentials are driven by resurgent sodium current carried by the voltage-

gated sodium channel Nav1.6 [81]. Upon reaching threshold, Nav1.6 and Nav1.1 channels 

become maximally activated, generating the upstroke of the action potential. The falling 

phase of the action potential is driven by voltage-gated potassium channels, mostly Kv3 

family members [67]. Upon membrane depolarization, voltage-gated calcium channels 

(mainly Cav2.1 and Cav3 family members) also become activated, allowing external calcium 

entry into Purkinje neurons [80, 97]. These voltage-gated calcium channels are tightly 
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coupled to calcium-activated potassium channels (KCa channels), so that the net effect of 

calcium entry is an outward potassium current which hyperpolarizes the membrane potential 

[107]. The major KCa channels in Purkinje neurons are large-conductance calcium-activated 

potassium (BK, KCa1.1) channel and the small-conductance calcium-activated potassium 

(SK) channel (SK2, KCa2.2), which generate the after-hyperpolarization (AHP) [16, 28, 84]. 

The AHP is essential for de-activation of voltage-gated sodium and potassium channels, 

which allows for their activation during the subsequent action potential. The depolarization 

of the membrane potential during the interspike interval, which is necessary for autonomous 

spiking, is mediated by unique resurgent kinetics of voltage-gated sodium channels [81]. 

Finally, an assortment of subthreshold-activated potassium channels are active during the 

interspike interval [1, 10, 30, 53, 56, 79], while other channels such as TRPC3 and the 

inositol 1,4,5-trisphosphate receptor play important roles mediating calcium homeostasis 

and the modulation of cerebellar learning [8, 35, 55, 98]. Purkinje neurons spiking is 

therefore sensitive to perturbations in ion-channels, and mutations in any of these channels 

can cause motor dysfunction as outlined below.

Several studies have highlighted the importance of Purkinje neuron spike regularity and 

firing frequency for motor function. Early studies were performed in mutant mice with 

mutations in Cav2.1, the P/Q-type calcium channel encoded by the Cacna1a gene [24, 64, 

103]. Normally, autonomous spiking in Purkinje neurons is very precise, with little variation 

in the duration of the interspike interval. Strikingly, Purkinje neurons in these mouse models 

show irregular spiking compared to wild-type controls, as evidenced by an increase in the 

coefficient of variation of the interspike interval between action potentials [39, 104]. 

Consistent with a role for calcium entry to regulate KCa channel activity, SK channel 

activators improve both Purkinje neuron spike regularity and motor performance [33, 104]. 

Additionally, the spiking of neurons of the deep cerebellar nuclei, which receive input from 

Purkinje neurons and act as the output of cerebellar motor processing, is also dependent 

upon KCa activity [90]. This suggests that there is a direct link between ion-channel 

function, Purkinje neuron spiking, and motor output from the cerebellum, and that 

pharmacologic agents which target ion-channel dysfunction may have therapeutic potential.

Conventional ion-channel mutations causing SCA

While disease-causing mutations in ataxia are diverse, many affected proteins are in related 

molecular pathways, suggesting that these pathways may be particularly important for 

neurons in the cerebellar motor circuit. There is some evidence that ataxia-related genes may 

cluster around pathways involving calcium homeostasis, synaptic integration, and membrane 

excitability [9]. Many of these potential ataxia-related genes show enriched expression in 

cerebellar Purkinje neurons, suggesting that not only are these pathways particularly 

important for cerebellar function, but also that Purkinje neuron dysfunction likely plays a 

central role in motor dysfunction in ataxia [9].

Indeed, conventional ion-channel mutations are known to result in ataxia. In general, these 

channelopathies tend to present as pure cerebellar ataxia as compared to more diverse 

symptoms in the polyglutamine SCAs [27]. Mouse models have provided valuable insight to 

the functional implications of disrupted ion-channel function in many of these ataxia-
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causing channelopathies. These models clearly demonstrate that electrophysiologic 

dysfunction contribute to motor impairment in ataxia.

In SCA13, point mutations in the KCNC3 gene result in the production of the voltage-gated 

potassium channel, Kv3.3, with either no functional current or altered kinetics [31, 106, 

113]. Kv3.3 knockout mice serve as a mouse model for SCA13. In these mice, the lack of 

Kv3.3 current reduces the slope of action potential repolarization in cerebellar Purkinje 

neurons [3, 70]. Since full and efficient repolarization, which is mediated by Kv channels 

and calcium-activated potassium channels, allows for complete de-activation of voltage-

gated sodium channels in preparation of the next action potential, the available resurgent 

sodium current through Nav1.6 is reduced in these neurons. Purkinje neurons from Kv3.3 

knockout mice therefore display reduced firing frequency due to the altered interaction 

between Kv3.3 and other ion-channels that are active during the interspike interval [3]. Since 

Purkinje neuron-specific re-expression of Kv3.3 rescues spiking and motor function in 

global Kv3.3 null mice, Purkinje neuron electrophysiologic dysfunction is a primary source 

of behavioral impairment in these mice [44, 45]. These studies demonstrate the importance 

of considering interactions between ion-channels when exploring electrophysiologic 

phenotypes in mouse models of ataxia.

The ITPR1 locus, which encodes the inositol 1,4,5-trisphosphate (IP3) receptor gene, has 

emerged as a particularly important target gene site for SCA [98]. Currently, SCA15/16 is 

known to result from mutations in ITPR1 [49, 57, 101], and the recently identified 

nonprogressive congenital ataxia, SCA29, also maps to the ITPR1 locus [6, 43, 112]. 

Traditionally, ITPR1 mutations are associated with loss-of-function of the IP3 receptor. 

However, as has been demonstrated in at least one case, ITPR1 mutations can also cause 

cerebellar ataxia due to enhanced calcium release upon IP3 binding [12]. IP3 and 

diacylglycerol are produced upon postsynaptic metabotropic glutamate receptor (mGluR) 

activation, and IP3 subsequently binds to the IP3 receptor and promotes calcium release 

from internal stores [8]. In mice, full knockout of Itpr1 is fatal after postnatal day 23 [68] but 

before this time, cerebellar Purkinje neurons show a complete inability to produce synaptic 

long-term depression [47]. Additionally, Itpr1 heterozygous mice exhibit motor impairment 

on the rotarod [75], as do mGluR1 knockout mice [2], suggesting that synaptic dysregulation 

which occurs upon altered IP3 receptor function contributes to cerebellar ataxia.

In humans, mutations in the KCND3 gene, which encodes the A-type potassium channel 

Kv4.3, result in SCA19/22 [25, 61]. In heterologous cells, mutations in KCND3 tend to 

impair stability of Kv4.3-containing protein complexes, reduce Kv4.3 channel expression at 

the cell surface, and impair current density of these channels [25, 26, 61, 94]. Although 

Kv4.3-mutant mice have not been generated, it is probable that deletion of Kv4.3 would 

disrupt cerebellar processing. It is unclear how prominent a role Kv4.3 plays in Purkinje 

neuron function, and conflicting reports exist about the expression of Kv4.3 in adult Purkinje 

cells [42, 89]. However, Kv4.3 is observed in other adult cerebellar neuronal populations, 

including granule cells and molecular layer interneurons, suggesting that pre-synaptic 

alterations in cerebellar processing may disrupt Purkinje neuron integration and output from 

the cerebellar cortex [42]. Notably, Purkinje neuron degeneration in SCA19/22 patients 

suggests that these channels are indeed important for Purkinje neuron function [25].
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Although ataxia is not the primary feature of disease, mutations in voltage-gated sodium 

(Nav) channels can result in ataxia in both humans and mouse models. In humans, mutations 

in SCN1A, the gene encoding Nav1.1, result in Dravet syndrome, a form of Severe 

Myoclonic Epilepsy in Infancy (SMEI) which can be accompanied by cerebellar ataxia [17]. 

In mice, Nav1.1 knockout causes ataxia associated with reduced Purkinje neuron firing 

frequency [52]. In addition to mutations in Nav channel pore-forming subunits, mutations in 

interactor proteins also contribute to Purkinje neuron dysfunction and ataxia. In humans, 

mutations in the FGF14 gene, encoding the fibroblast growth factor 14, result in SCA27 

[102]. FGF14 has been shown to interact with voltage-gated sodium channels to modulate 

neuronal excitability [65], and disruptions in FGF14 expression cause ataxia in mice [105]. 

In FGF14−/− mice, Purkinje neuron spontaneous firing is greatly disrupted, with 80% of 

neurons appearing silent. Additionally, Nav 1.6 expression is reduced in Purkinje neurons of 

FGF14−/− mice, suggesting that this interaction is necessary for normal membrane 

expression [92]. The FGF14F145S mutation reduces Nav1.6 expression at the axon initial 

segment, and reduces sodium currents in hippocampal neurons, leading to early 

depolarization block upon current injections [58]. A recent study illustrates that FGF14 

directly modulates resurgent sodium current mediated by Nav1.6 through interactions with 

the FGF14 N-terminus [109], suggesting that this function may be impaired and thereby 

drive a lack of spontaneous firing in FGF14−/− mice. Finally, there is evidence that FGF14 

mutations may contribute to presynaptic changes that affect Purkinje neuron function. In 

granule cells, FGF14 mutations act in a dominant negative manner to suppress both sodium 

and calcium currents [58, 108]. AMPA receptor-mediated excitatory postsynaptic potentials 

(EPSCs) were reduced in Purkinje neurons following parallel fiber stimulation, suggesting 

that FGF14 mutations contribute to impaired neurotransmission from cerebellar granule cells 

[99]. Together, these data suggest that the FGF14-Nav interaction may be important in 

cerebellar neurons to modulate both intrinsic excitability and presynaptic activity through its 

interaction with voltage-gated sodium channels.

Mutations in the transient receptor potential channel type C3 (TRPC3) contribute to 

cerebellar ataxia in both mice and humans (SCA41). TRPC3 signaling is essential for 

mGluR1-mediated synaptic transmission and contributes to the induction of long-term 

depression in Purkinje neurons [35, 55]. A point mutation in the TRP domain of TRPC3, 

p.Arg762His, was identified in a patient with cerebellar ataxia and mild atrophy of the 

cerebellar vermis [32]. In moonwalker mice, a point mutation in Trpc3 results in motor 

impairment and progressive Purkinje neuron loss [7]. Notably, Purkinje neuron firing is 

markedly abnormal in moonwalker mice, with depolarization block of Purkinje neuron 

spiking [88]. Trpc3 activity may also play a normal role in regulating Purkinje neuron 

intrinsic firing frequency, particularly in the anterior cerebellum [114]. It is therefore 

possible that in addition to its roles in synaptic regulation, TRPC3 directly regulated 

Purkinje neuron firing frequency.

Recently, a point mutation in the CACNA1G gene was identified as the causative mutation 

in SCA42 [19, 72]. This mutation, p.Arg1715His, is located in the voltage-sensing S4 

domain of the T-type calcium channel, Cav3.1 [19, 72]. When cloned into HEK293 cells, the 

p.Arg1715His mutation does not affect maximum channel conductance but does shift Cav3.1 

activation to more positive membrane potentials [19, 72]. In mice, T-type calcium channel 
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blockade reduces Purkinje neuron spike frequency in vitro, while mice lacking Cav3.1 in 

several brain regions, including the cerebellum, show increased Purkinje neuron spike 

frequency and irregularity in vivo [66, 77]. Synaptic dysfunction and the resulting 

impairment of motor learning is prominent in Cav3.1−/− mice, as these mice demonstrate an 

impaired ability to produce long-term potentiation at the parallel fiber-Purkinje neuron 

synapse, impaired performance on a rotarod, and impairments in the vestibulo-ocular reflex 

[66]. It is possible that reduced Cav3.1 activity may also reduce calcium availability for 

calcium-activated potassium channels, thereby impairing the generation of a normal spike 

after-hyperpolarization (AHP) and reducing spike regularity. However, the contribution of 

Cav3.1 as a calcium source for calcium-activated potassium channels remains controversial 

[107].

A recently discovered ion-channel mutation in the KCNMA1 gene, which encodes the BK 

channel, produces ataxia with cerebellar atrophy. In a heterologous cell expression system, 

G354S KCNMA1 greatly reduces macroscopic BK currents and acts in a dominant-negative 

fashion [95, 96]. Interestingly, both loss-of-function and gain-of-function BK channel 

mutations can cause epilepsy [73], indicating a narrow tolerable range of expression for BK 

channels. BK channel-null (BK−/−) mice display increased Purkinje neuron membrane 

excitability and exhibit motor impairment [84]. In global BK knockout mice, Purkinje 

neuron spontaneous firing is markedly impaired. A majority of Purkinje neurons from BK−/− 

mice are silent or fire in a burst pattern, while the remaining spontaneously firing cells do so 

at a greatly reduced frequency, in association with loss of the BK channel-dependent fast 

AHP [84]. Additionally, Purkinje neuron-specific deletion of BK channels also causes 

cerebellar ataxia, demonstrating the importance of BK channels for normal cerebellar 

physiology and motor function [13]. Together, this work highlights the importance of KCa 

channels in the maintenance of tonic firing in Purkinje neurons.

Ion-channel dysfunction in polyglutamine SCA

Although conventional channelopathies present a clear role for altered neuronal membrane 

excitability in ataxia, these forms of ataxia are less common and are estimated to be 

responsible for around ten percent of all cases of SCA [27]. Much more common are the 

polyglutamine SCAs, which result from expanded glutamine-encoding CAG repeat 

sequence in their respective causative genes. Apart from SCA6, which affects the α-subunit 

of the Cav2.1 voltage-gated calcium channel encoded by the CACNA1A gene, the disease-

causing proteins in polyglutamine SCA are not directly associated with ion-channel 

function. ATXN1 (the disease protein in SCA1) is associated with transcriptional regulation 

and RNA splicing [48, 60, 111], ATXN2 (SCA2) plays a role in RNA metabolism [69, 74, 

93], ATXN3 (SCA3) is de-ubiquitinating enzyme [18, 62], ATXN7 (SCA7) is a member of 

the SAGA transcriptional complex [38], and TBP (SCA17) is an essential component of tata 

box-based transcriptional initiation [110] (reviewed in [76]). These related functional roles 

suggest that transcriptional disruption may be an important initiating event in the 

polyglutamine SCAs.

Indeed, transcriptional disruption has been noted in mouse models of SCA. Gene expression 

analyses such as RNA sequencing and gene co-expression network analyses have been 
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useful for the identification of molecular pathways which may be disrupted in SCA [9, 46, 

78]. Interestingly, several genes show common downregulation of their mRNA transcripts in 

multiple SCA mouse models. These include several members of neuronal excitability 

pathways, including key ion-channels for Purkinje neuron function [9, 21, 22, 34, 46, 78]. 

Recent work has demonstrated that altered ion-channel expression in SCA can disrupt 

Purkinje neuron membrane excitability, and mouse models of polyglutamine SCA suggest 

that ion-channel modulators may represent a therapeutic strategy for both motor dysfunction 

and neurodegeneration.

In a mouse model of SCA1, disrupted Purkinje neuron membrane excitability is associated 

with reduced expression and function of two potassium channels, BK and the G-protein 

coupled inwardly-rectifying potassium (GIRK1) channel [22]. Functionally, Purkinje 

neurons from ATXN1[82Q] mice demonstrate a depolarized somatic membrane potential 

and a reduced fast afterhyperpolarization (AHP) amplitude early in disease, leading to a 

large proportion of non-firing cells. As disease progresses, dendritic degeneration reduces 

the size of ATXN1[82Q] Purkinje neurons, thereby increasing the current density of 

remaining BK and GIRK1 channels to restore spontaneous firing, although at a reduced 

frequency [22]. This suggests that neuronal remodeling during the degenerative process may 

actually modulate intrinsic excitability, and that dendritic degeneration may be a 

compensatory process to restore Purkinje neuron spiking. Interestingly, through a parallel 

process, loss of these channels results in a persistent increase in dendritic membrane 

excitability even in the presence of dendritic degeneration. Molecular pathways which 

influence dendritic excitability, such as protein kinase C activity, may act as targets for 

intervention in SCA [116]. Reducing dendritic hyperexcitability partially improves dendrite 

loss in ATXN1[82Q] mice [15]. A recent study has demonstrated that a combination of 

chlorzoxazone and baclofen, two potassium channel-activating drugs, improves both 

aberrant Purkinje neuron spiking and dendritic hyperexcitability in ATXN1[82Q] mice, 

thereby providing lasting improvements in motor dysfunction [117]. This combination of 

drugs is tolerated in human SCA patients and may improve symptoms [117]. A separate 

study has demonstrated that alterations in Purkinje neuron spiking can be corrected by 

aminopyridines [41], compounds which non-selectively block voltage-gated potassium 

channels and which have been previously shown to indirectly activate KCa channels [4]. 

Aminopyridines also improve motor performance in ATXN1[82Q] mice [41]. Together, 

these studies highlight a role for potassium channels in maintaining normal physiology in 

both the soma and dendrites of Purkinje neurons, and identify these channels as potential 

therapeutic targets.

Recent work in a mouse model of SCA2 has indicated that here too, altered potassium 

channel function underlies firing abnormalities. ATXN2[127Q] mice display motor 

impairment and dendritic degeneration, long preceding overt Purkinje neuron loss [34]. In 

addition, Purkinje neurons from these mice show progressive reductions in firing frequency 

with no change in spike regularity [21, 34]. These changes in firing are accompanied by a 

progressive reduction in the transcripts for Kcnma1 (encoding the BK channel) and Kcnc3 
(encoding the voltage-gated potassium channel Kv3.3) which are important for Purkinje 

neuron repetitive spiking [21, 34]. Similar to ATXN1[82Q] mice (SCA1), early in disease, a 

significant fraction of ATXN2[127Q] Purkinje neurons display an absence of repetitive 
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spiking in association with reduced BK and Kv3 channel function [21]. Later in disease, 

repetitive spiking is restored through the generation of a novel AHP likely mediated through 

subthreshold-activated potassium channels which can compensate for the loss of BK- and 

Kv3.3-mediated repolarizing currents during the interspike interval [21]. In the 

ATXN2[58Q] transgenic model of SCA2, where there is no prominent dendritic 

degeneration, aberrant Purkinje neuron bursting is seen both in vitro and in vivo [29, 54]. SK 

channel activators improve Purkinje neuron firing properties, and improve motor 

dysfunction in ATXN2[58Q] mice [54]. Additionally, a direct interaction between ATXN2 

and the inositol 1,4,5-trisphosphate (IP3) receptor results in abnormal calcium signaling in 

ATXN2[58Q] mice which can be improved by treatment with dantrolene, a ryanodine 

receptor inhibitor [63]. Dantrolene also improves motor impairment in ATXN2[58Q] mice 

[63], suggesting that normalizing calcium signaling may either directly reduce calcium-

mediated excitotoxicity or may improve the function of KCa channels to improve Purkinje 

neuron pacemaking. Overall, these studies indicate a clear role for potassium channel 

dysfunction which impairs Purkinje neuron spiking and thereby contributes to motor 

impairment in SCA2.

SCA3 is the most common dominantly inherited ataxia, and is caused by an expanded CAG 

repeat sequence in the ATXN3 gene [85]. Although SCA3 displays prominent involvement 

of neurons in the cerebellar nuclei in addition to extracerebellar involvement, Purkinje 

neuron pathology is sometimes a prominent feature of disease [87]. In the ATXN3[84Q] 

transgenic mouse model, changes in Purkinje neuron physiology accompany motor 

impairment [91]. Purkinje neurons from these mice display altered spiking in association 

with increased inactivation of Kv1 potassium channels [91]. The SK channel-activating 

compound SKA-31 improves spiking in ATXN3[84Q] Purkinje neurons and also improves 

motor performance, indicating that potassium channel dysfunction can be targeted 

pharmacologically in these mice [91]. Similar to ATXN2[58Q] mice, abnormal calcium 

signaling has been noted in ATXN3[84Q] mice. ATXN3 directly interacts with the IP3 

receptor to increase calcium release events [14]. Inhibition of intracellular calcium release 

through dantrolene also improves motor performance and reduces Purkinje neuron 

degeneration [14], suggesting that a common disease mechanism may contribute to altered 

calcium homeostasis across mouse models of SCA2 and SCA3.

SCA6 results from an expanded CAG repeat in the CACNA1A gene which encodes the 

voltage-gated calcium channel Cav2.1 [115]. In homozygous SCA684Q/84Q knock-in mice, 

Purkinje neurons show increased spike irregularity and a reduction in firing frequency early 

in disease [50]. The compound 4-aminopyridine (4-AP), a potassium channel blocker which 

also indirectly activates KCa channels [5], restores spike regularity to SCA684Q/84Q Purkinje 

neurons both in vitro and in vivo [50]. Interestingly, chronic treatment with 4-AP improves 

motor function in SCA684Q/84Q mice [50]. These data suggest that Purkinje neuron spiking 

abnormalities are present in a mouse model of SCA6, and that these alterations in spiking 

may be targeted by potassium channel modulators.

These studies in SCA1, SCA2, SCA3, and SCA6 highlight a role for potassium channel 

dysfunction in altered Purkinje neuron physiology in ataxia. It is important to recognize, 

however, that alterations in different ion-channels can produce similar alterations in Purkinje 
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neuron firing. It is therefore important to understand the specific ion-channel changes that 

underlie altered spiking in ataxia. Overall, activating calcium-activated potassium channels 

appears to correct altered spiking resulting from a variety of different etiologies, and 

represents a therapeutic target that is shared across multiple forms of ataxia.

Therapeutics based on ion-channel modulation

Designing effective therapies for SCA has proven difficult. Although most SCAs share 

clinical features, the underlying genetic mutations are diverse and in some cases remain 

unknown. Recent work has demonstrated the therapeutic potential of gene silencing 

therapies for ataxia. Among the most promising of these therapies are the antisense 

oligonucleotide (ASO)-based strategies in the polyglutamine SCAs. In mouse models of 

SCA2 and SCA3 [71, 86], ASOs have been shown to reduce expression of the respective 

disease-causing proteins, along with providing lasting improvements in motor performance 

in SCA2 mice [71, 86]. Additionally, ASO treatment improves firing abnormalities in two 

mouse models of SCA2, suggesting that transcriptional changes in ion-channels may be 

improved upon ASO treatment [86]. Although ASOs offer an exciting avenue of treatment 

for the polyglutamine SCAs, these therapies will likely offer limited therapeutic benefit 

SCAs in which disease-causing mutations are not autosomal dominant gain-of-function 

mutations, or are in cellular pathways where knocking down mutant protein is deleterious. In 

these cases, a more appropriate approach to therapy may be to identify shared features of 

disease which are observed across many etiologies of SCA. Emerging evidence presented in 

this review suggests that electrophysiologic dysfunction may be a shared feature of many 

SCAs.

Recent clinical trials with riluzole for the treatment of SCA suggest that shared features of 

neuronal dysfunction exist in human disease [82, 83]. While riluzole has several ion-channel 

targets, it is a known activator of KCa channels [11, 23]. KCa channel activators demonstrate 

therapeutic potential in the treatment of SCAs [33, 54, 59, 91]. A larger clinical trial with a 

pro-drug of riluzole is ongoing (ClinicalTrials.gov Identifier: NCT02960893). While yet 

preliminary, these trials suggest the promise of ion-channel modulators for the treatment of 

SCA. Future research should focus on the design of other ion-channel modulators with 

increased specificity and potency to correct symptoms that result from neuronal dysfunction.

Concluding remarks

The spinocerebellar ataxias are a large, diverse family of neurodegenerative disorders 

affecting the function of cerebellar pathways. Information to the cerebellum ultimately 

depends on proper coding by many different neuronal populations, all converging on 

cerebellar Purkinje neurons. Diverse ion-channel mutations result in cerebellar ataxia. In the 

more common polyglutamine ataxias, changes in ion-channel transcript levels result in 

altered ion-channel function. Recent work in rodent models of ataxia has highlighted the 

connection between Purkinje neuron dysfunction and motor impairment, suggesting that ion-

channel modulation may be a promising therapeutic strategy for many forms of cerebellar 

ataxia.
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Highlights

• Motor impairment in cerebellar ataxia results in part from neuronal 

dysfunction

• Mutations in specific ion-channels cause human cerebellar ataxia

• Ion channel dysfunction is present in models of polyglutamine 

Spinocerebellar Ataxia

• A therapeutic strategy targeting specific ion-channels exists for cerebellar 

ataxia
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Figure 1. Ion-channel dysfunction is associated with spinocerebellar ataxia in humans and 
rodent models
Ion-channels, which are displayed in the cell membrane, and other ion-channel associated 

proteins causing spinocerebellar ataxia in humans or rodent models of disease, are shown. 

SCAs associated with each protein are listed above or under each protein. Mutations which 

result in an SCA channelopathy are listed in red. Ion-channel dysfunction in mouse models 

of polyQ SCA are listed in blue. Dravet syndrome, a severe myoclonic epilepsy of infancy 

which can result in ataxia, is shown in green. Dashed arrows signify a protein-protein 

interaction. Solid arrows signify the direction of ion movement upon channel activation. 

Abbreviations: SCA, spinocerebellar ataxia; polyQ, polyglutamine; Nav, voltage-gated 

sodium channel; Kv, voltage-gated potassium channel; Cav, voltage-gated calcium channel; 

BK, large conductance calcium-activated potassium channel; TRPC3, transient receptor 

potential cation channel type 3; mGluR1, metabotropic glutamate receptor type 1; FGF14, 

fibroblast growth factor 14; ITPR1, inositol 1,4,5 trisphosphate receptor type 1; PLC, 

phospholipase C; Na+, sodium ion; K+, potassium ion; Ca2+, calcium ion.
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Table 1
Ion-channel mutations resulting in spinocerebellar ataxia

Known SCA channelopathies are listed. The associated gene is listed for each SCA, along with the known 

functional roles of each ion-channel or protein.

Gene Associated ataxia or inherited 
disorder

Encoded channel or protein Normal function

CACNA1A SCA6 [115], Episodic ataxia 
type 2 [51]

Cav2.1
Voltage-gated calcium channel, pore-forming 
subunit

Inward calcium current (P/Q-type) upon 
depolarization
Coupled to KCa channels to regulate 
spike frequency and regularity

KCNC3 SCA13 [31, 106, 113] Kv3.3
Voltage-gated potassium channel

Potassium entry upon membrane 
depolarization, causing hyperpolarization

ITPR1 SCA15 [57, 101], SCA16 [49], 
SCA29 [6, 43, 112]

Inositol 1,4,5-trisphosphate (IP3) receptor Calcium release from internal stores 
upon IP3 binding

KCND3 SCA19 [25], SCA22 [61] Kv4.3
Voltage-gated potassium channel

Potassium entry upon membrane 
depolarization, causing hyperpolarization

SCN8A Dravet syndrome [17] Nav1.6
Voltage-gated sodium channel, pore-forming 
subunit

Sodium entry and membrane 
depolarization during the action potential

FGF14 SCA27 [102] Fibroblast growth factor 13 Interacts with Nav to influence 
excitability

TRPC3 SCA41 [32] Transient receptor potential cation channel type 
3

Essential for mGlur1- mediated synaptic 
transmission, long-term depression

CACNA1G SCA42 [19, 72] Cav3.1
Voltage-gated calcium channel

Inward calcium current (T-type) upon 
depolarization

KCNMA1 Unnamed SCA [95, 96] K 1.1
Ca Large conductance calcium-activated 
potassium (BK) channel

Outward K current + upon activation
Regulates spike frequency and regularity
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