
Environmental limits of Rift Valley fever revealed
using ecoepidemiological mechanistic models
Giovanni Lo Iaconoa,b,c,1, Andrew A. Cunninghamd, Bernard Bette, Delia Gracee, David W. Reddingf,
and James L. N. Wooda

aDepartment of Veterinary Medicine, Disease Dynamics Unit, University of Cambridge, Cambridge CB3 0ES, United Kingdom; bPublic Health England,
Didcot, Oxford OX11 0RQ, United Kingdom; cSchool of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, United Kingdom; dInstitute of
Zoology, Zoological Society of London, London NW1 4RY, United Kingdom; eAnimal and Human Health Program, International Livestock Research Institute,
Nairobi, 00100 Kenya; and fCentre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College
London, London WC1E 6BT, United Kingdom

Edited by Burton H. Singer, University of Florida, Gainesville, FL, and approved June 19, 2018 (received for review February 23, 2018)

Vector-borne diseases (VBDs) of humans and domestic animals
are a significant component of the global burden of disease and
a key driver of poverty. The transmission cycles of VBDs are
often strongly mediated by the ecological requirements of the
vectors, resulting in complex transmission dynamics, including
intermittent epidemics and an unclear link between environmen-
tal conditions and disease persistence. An important broader
concern is the extent to which theoretical models are reliable at
forecasting VBDs; infection dynamics can be complex, and the
resulting systems are highly unstable. Here, we examine these
problems in detail using a case study of Rift Valley fever (RVF),
a high-burden disease endemic to Africa. We develop an ecoepi-
demiological, compartmental, mathematical model coupled to the
dynamics of ambient temperature and water availability and
apply it to a realistic setting using empirical environmental data
from Kenya. Importantly, we identify the range of seasonally
varying ambient temperatures and water-body availability that
leads to either the extinction of mosquito populations and/or
RVF (nonpersistent regimens) or the establishment of long-term
mosquito populations and consequently, the endemicity of the
RVF infection (persistent regimens). Instabilities arise when the
range of the environmental variables overlaps with the threshold
of persistence. The model captures the intermittent nature of RVF
occurrence, which is explained as low-level circulation under the
threshold of detection, with intermittent emergence sometimes
after long periods. Using the approach developed here opens up
the ability to improve predictions of the emergence and behaviors
of epidemics of many other important VBDs.
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Vector-borne diseases (VBDs) form an important class of
infectious diseases, with over 1 billion human cases and 1

million human deaths per year (1), and they are a significant con-
tributor to global poverty. Current patterns of VBD occurrence
are likely to change in the future due to the accelerating rate
of global climate and other environmental change that is pre-
dicted over the next century (2). Climate and land use change
as well as globalization are expected to affect the geographic
distribution of arthropod species (3) through a variety of mech-
anisms, such as changes to the variability in weather conditions
that alter survival; reproduction and biting rates of the vectors;
changes to the availability of water bodies via, for instance, new
irrigation patterns and dam constructions, creating new habitats
for disease-competent vectors; and human mobility and animal
trade increasing the opportunity for vectors to reach and estab-
lish in new areas. Pathogen ecology is influenced by climate
and weather as well; for instance, temperature affects both the
susceptibility of vectors to infection and pathogen extrinsic incu-
bation periods, which usually require pathogen replication at
ambient temperatures (4, 5). From here on, we refer to “ambient
temperature” as “temperature.”

These issues provide the basis of the work reported here. We
focus on Rift Valley fever (RVF), an important mosquito-borne
viral zoonosis. The causative virus is responsible for major epi-
demics in Africa, and its range seems to be expanding as shown by
phylogeographic analysis (6) and recent epidemic occurrence in
Saudi Arabia and Yemen (7–10). Furthermore, concern has been
raised about the potential for environmental/climatic changes
causing increased impact of RVF in endemic areas or facilitat-
ing its spread to new regions of the world (10–12). Rift Val-
ley fever virus (RVFV) has a significant economic impact on
the livestock industry in Africa and can cause fatal disease in
humans (13).

RVFV has a complex, multispecies epidemiology, and it is
transmitted by biting mosquitos and occasionally, directly by
animal body fluids. Infected mosquitos transmit RVFV when
taking a blood meal, potentially infecting a wide range of species.
The disease is most significant in domestic ruminants, although
wild animals [e.g., buffalos (14) and rodents (15)] might play
an important role as reservoir hosts. Although more than 40
mosquito and midge species are known to be capable of trans-
mitting RVFV (16), Aedes sp., Mansoni sp., and Culex sp. are
thought to be the most important for virus transmission to
livestock and people.

Significance

Vector-borne diseases represent complex infection transmis-
sion systems; previous epidemiological models have been
unable to formally capture the relationship between the
ecological limits of vector species and the dynamics of
pathogen transmission. By making this advance for the key
disease, Rift Valley fever, we are able to show how sea-
sonally varying availability of water bodies and ambient
temperatures dictate when the mosquito vector popula-
tions will persist and importantly, those sets of conditions
resulting in stable oscillations of disease transmission. Impor-
tantly, under the latter scenario, short-term health control
measures will likely fail, as the system quickly returns to
the original configuration after the intervention stops. Our
model, therefore, offers an important tool to better under-
stand vector-borne diseases and design effective eradication
programs.
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Climatic drivers, such as temperature and rainfall, have a
strong impact on the complex ecology of both RVFV and its
vectors (17–20). Thus, the epidemiology of RVFV is likely to be
strongly impacted by climate change (21). Other environmental,
cultural, and socioeconomic factors, such as gathering of large
numbers of people and domestic animals during religious fes-
tivities, have relevant implications for the infection dynamics of
RVFV, including driving epidemics (22–25).

The complex features of RVFV infection dynamics have led
to many studies. Empirical statistical approaches have identified
key environmental variables (e.g., temperature and rainfall) that
are associated with disease epidemics, enabling disease risk to
be mapped (11, 18, 19, 22, 23, 25–35). Mechanistic models have
added crucial insights for understanding links between disease
transmission and the environment by exploring the impact of
seasonality and studying the processes leading to epidemic trans-
mission (24, 36–52). Despite progress, these approaches are still
subject to important limitations: the earlier mechanistic mod-
els do not incorporate seasonality; most models tend to include
either only rainfall or only temperature as a contributing factor;
and if included, seasonality is usually incorporated only as an
ad hoc periodic variation in the response (e.g., oviposition rate)
rather than in the causative variable, undermining the realism of
the approaches.

A further critical limitation of these studies is that they rely on
rainfall data. In empirical statistical approaches, rainfall is often
considered a “predictor variable” [with the commonly associated
problem of collinearity (53)]. In mechanistic models, rainfall is
usually a proxy for breeding sites. In complex hydrogeological
models, rainfall is merely an input to represent water bodies;
the major problem with this approach is that the dependence of
RVFV on rainfall varies widely across countries and ecoregions
due to, for example, different types of terrain, evaporation rates,
delay between rainfall occurrence and establishment of water
bodies, etc.

To overcome these limitations, we developed a unified, pro-
cess-based model built on a realistic representation of how the
dynamics of water bodies obtained from satellite images (rather
than rainfall) and temperature influence the ecology of the
primary mosquito vectors and the epidemiology of RVFV. A
critical feature of using this approach is our ability to investi-
gate the combined impact of seasonality on both water avail-
ability and temperature, allowing us to (i) capture the influ-
ence of seasonal patterns of temperature and water bodies on
the quantitative transmission dynamics of RVFV, (ii) quan-
tify the environmental drivers that lead to regional endemicity
of RVFV, (iii) assess if transovarial transmission in Aedes sp.
(the only species of mosquitos for which ovarian transmission
is known) is necessary for RVFV persistence, (iv) isolate the
mechanisms allowing virus reemergence after long periods of
inactivity in endemic regions (43, 54), and (v) identify if and
under which conditions the complex patterns of RVFV epi-
demics resemble chaotic behavior [i.e., the system being highly
sensitive to initial conditions (55), rendering disease predictions
difficult].

Analysis
Our analyses were conducted within two main contexts: a the-
oretical case, represented by a simple sinusoidal variation of
the surface area of water bodies and of temperature (repre-
sented by Eqs. 5 and 6), and a realistic situation, where we
used empirical data for Kenya

[
viz., spatially averaged temper-

ature (56) and the total surface area of water bodies over the
entire territory divided by the surface of Kenya] (SI Appendix,
SI Text). Here and throughout, we refer to these two situa-
tions as “theoretical model” and “realistic model,” respectively.
We first ran the theoretical model by systematically changing
the mean annual temperature and mean annual surface area of

water bodies (i.e., parameters Tm and SP
m in Eqs. 5 and 6); for

each simulation, we ascertained whether the predictions result
in sustained fluctuations in populations of Culex sp. or Aedes sp.
[the dominant vectors in Kenya (57)] or in the prevalence of
RVFV in livestock. All other parameters were kept the same,
and the surface area of water bodies and temperature were
allowed to fluctuate in phase with annual periodicity (e.g., the
parameters φS =φT =π in Eqs. 5 and 6) (SI Appendix, SI Text
discusses a situation where this constraint was relaxed). We con-
ducted analyses in both the theoretical and realistic models using
different initial conditions and numbers of livestock. How fre-
quently the surface areas of water bodies change is likely to
have an impact on mosquito populations. Thus, for the theo-
retical model, we varied the frequency of water bodies’ body
surface area fluctuation (i.e., ωS in Eqs. 5 and 6) while ensur-
ing the same overall annual surface area of water bodies. To
investigate the intermittent nature of observed RVF epidemics,
we assumed that, when the mean number of infected livestock
is below a certain threshold, the epidemic is not detected. This
is a reasonable assumption considering the frequency of sub-
clinical infections and the limited diagnostic facilities available
in endemic areas. Cases detected within 30 d are assumed to
be part of the same epidemic. We then ran the realistic model
100 times with the initial number of livestock and with infec-
tion prevalence in the livestock randomly drawn from uniform
distributions (100–5,000 for the number of livestock and 5–20%
for the infection prevalence, respectively). All other parame-
ters were kept the same. The simulation was also run in the
absence of transovarial transmission. In each case, we then
estimated the periods of time during which RVFV was not
detected. Predictions of the duration of interepidemic periods
for the realistic model were compared with historical data of
RVF epidemics that had occurred in Kenya from 2004 to 2013
obtained from the Global Animal Disease Information System,
EMPRES-i (58).

Results
Influence of the Seasonal Patterns of Temperature and Water Bod-
ies on the Quantitative Dynamics of RVFV. The theoretical model
shows (Fig. 1; more details are in SI Appendix, Fig. S19) that
different amplitudes and frequencies of fluctuations in temper-
ature and water availability within the system result in different
disease patterns. It is possible, for example, that one or both
mosquito species might go extinct, that there could be stable
oscillations with one or more annual peaks in the mosquito pop-
ulation but in an RVFV-free situation, that there could be stable
mosquito populations with sporadic RVFV epidemics, or that
RVFV might become endemic.

Quantifying the Environmental Drivers Leading to Regional En-
demicity of RVFV. The theoretical model predicts the existence
of a temperature-dependent threshold in mean surface area
of water bodies below which mosquito populations and RVFV
always fade out (gray areas in Fig. 1, which are referred to as the
“nonpersistent regimen”). The model also showed the param-
eter space (i.e., the set of all possible combinations of values
for the different parameters) resulting in a “persistent regimen”
(i.e., sustained oscillations in the vectors and RVFV) (colored
areas in Fig. 1). The intensity of the color reflects the yearly
averaged population of the mosquitos or the yearly averaged
prevalence of RVFV in livestock. The optimal conditions for
mosquito occur when the mean body surface area is at its greatest
and when the mean temperature is ∼26 ◦C for Culex and ∼22 ◦C
for Aedes (Fig. 1). The prevalence of RVFV in livestock is pre-
dicted to be highest when temperature is ∼26 ◦C. The ranges of
mean annual temperature and mean annual water-body surface
area resulting in sustained fluctuations in mosquito abundance,
in particular for Aedes sp., differ from those causing sustained
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Fig. 1. Environmental constraints leading to persistent and nonpersistent regimens mosquitos and RVFV. (A–C) Impact of mean water bodies’ surface area
and mean temperature on the population of mosquitos and RVFV prevalence. Water bodies’ surface area and temperature are described by sinusoidal
functions according to Eqs. 5 and 6. The x axis shows the mean water bodies’ surface area SP

m, while the y axis shows the mean temperature Tm; these are
the only parameters that are changed in the simulations while the frequency (ωS =ωT = 2π/365) and phase (φS =φT =π) are kept constant. (D–F) Impact
of frequency of oscillations in water bodies’ surface area on the population of mosquitos. Water bodies’ surface area is described by sinusoidal functions
according to Eq. 5 with φS =π, while the temperature is kept constant (T = 25 ◦C). The x axis shows the mean water bodies’ surface area SP

m, while the y
axis shows the annual number of seasonal peaks in water bodies’ surface area; these are the only parameters that are changed in the simulations. The gray
areas correspond to a region in the space of parameters where the mosquitos population (A, B, D, and E) or the yearly averaged infection prevalence in
livestock (C and F) drops to zero after a transient phase (negative largest Floquet exponents of the linearized system around the null solution). The colored
regions with no black dots correspond to a region in the space of parameters where the mosquitos population or the yearly averaged infection prevalence
in livestock will always establish sustained oscillations after a transient phase (negative largest Floquet exponents of the linearized system around a periodic
limit cycle solution). The intensity of the color corresponds to the yearly average number of mosquitos or infection prevalence in livestock. The black dots in
B and E identify a region in the space of parameters where the solution is unstable (positive largest Floquet exponents; this is because the time considered
is too short for the solution to stabilize).

oscillations of RVFV in livestock. There are some regions where
RVFV endemicity is possible in the absence of Aedes sp., and
there are a few situations where a persistent mosquito popula-
tion does not support RVFV endemicity (SI Appendix, Fig. S19).
Under a constant temperature of 25 ◦C, the average abundance

of Culex sp. decreases with increasing frequency of oscillation in
water availability (Fig. 1D). This is due to nontrivial interactions
arising from particular mosquito population sizes at times when
the surface of water bodies starts decreasing. In contrast, Aedes
sp. abundance increases with the frequency of oscillations in
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water-body surface area (Fig. 1E). This is not surprising, as in
contrast to Culex sp., the hatching of Aedes sp. eggs is driven by
flooding and desiccation cycles. In the extreme case of no water-
body fluctuation, Aedes sp. is expected to go extinct, although
this does not always occur, as a small proportion of Aedes
eggs hatches spontaneously without desiccation/flooding (59)
(SI Appendix, Fig. S20). The domain of the RVFV persistent
conditions is dependent on the abundance of livestock, NL, in
particular when this impacts on the biting and oviposition rate
(SI Appendix, Figs. S21–S23). The intensity of the fluctuations
in temperature and in the surface area of water bodies seems
to have little impact on mosquito abundance and on whether
RVFV becomes endemic (SI Appendix, Fig. S24).

When Does the Complexity of RVFV Dynamics Resemble Chaotic
Behavior? Stability refers to the property of an ecosystem to
return to equilibrium if perturbed (55) or equivalently, that
the system will always reach the equilibrium state regardless
of the initial conditions. In the theoretical model, the equilib-
ria are represented by extinction of mosquito species and/or
RVFV infection (nonpersistent regimen) or more or less com-
plex periodic oscillations (persistent regimen). For the mosquito
populations, Floquet analysis (Materials and Methods and SI
Appendix, SI Text) shows that the long-term mathematical solu-
tions are stable. For RVFV infection, numerical computations
show that the solutions are stable after the initial conditions (i.e.,
the initial number of livestock) are fixed (SI Appendix, Fig. S25).
Changing the initial number of livestock has no practical effect
on the overall population of mosquitos when the impact of live-
stock on mosquito oviposition and biting rate is assumed to be
negligible (i.e., for very large values of the parameter q as in this
case, but other scenarios are shown in SI Appendix, Fig. S23).
The number of livestock, however, predictably impacts the tem-
poral patterns of infected mosquitos and infected livestock (SI
Appendix, Fig. S25), and the system can no longer be considered
stable if the number of livestock is externally perturbed. Accord-
ingly, animal movements, including the immigration of infected
animals, might have a significant impact on the pattern of RVFV
infection. Similar behavior is observed for the realistic model,
where simulations show that, regardless of the initial conditions,
the system approaches the same asymptotic limit, with only the
initial number of livestock having a direct impact on the pat-
terns of infections (SI Appendix, Fig. S25). The property that the
system always reverts to the same asymptotic solution (after fix-
ing the initial number of livestock) is not general. An important
counterexample is shown in Fig. 2 (SI Appendix, Fig. S26). In this
simulation experiment, we consider the two scenarios illustrated
by path A and path B in Fig. 1C: first, when the mean tempera-
ture and mean surface area of water bodies are always within the
RVFV persistent regimen, and second, when these values tran-
sit from RVFV persistence to RVFV nonpersistence and then
back again. To do so, we divided the entire time (32 y) into eight
cycles; each 4-y cycle (described either by path A or by path B in
Fig. 1C) consists of four intervals of 1 y each (represented by the
segments in the paths). For each interval, we let the mean values
Tm or SP

m in Eqs. 5 and 6 change year by year (SI Appendix, Fig.
S27). For each situation, represented by paths A and B (Figure
2A and 2B respectively), we then considered two scenarios (sce-
nario 1 and scenario 2 in Figure 2 A and B) by imposing different
initial conditions in the infection prevalence but the same total
number of livestock, i.e., we kept the total number of livestock
500, but the infection prevalence for scenario 1 was set to 1%
(5 infected livestock out of 495) and the infection prevalence for
scenario 2 was set to 4% (20 infected livestock out of 480). When
the mean temperature and mean surface area of water bodies
vary within the RVFV persistent regimen (path A), the system
reaches the same limit irrespective of the different initial condi-
tions (Fig. 2A). In contrast, for the situation described by path B,

different values of the initial infection prevalence lead to quali-
tatively different solutions (Fig. 2B), a phenomenon resembling
chaotic systems observed in meteorology. This phenomenon can
be stronger for different parameter values, leading to situations
where the overall mosquito populations as well as their infection
prevalence are asymptotically different (SI Appendix, Fig. S26).

Is Transovarial Transmission in Aedes Necessary for RVFV Persis-
tence? The simulations of RVFV dynamics showed persistence
in Culex sp. in the absence of Aedes mosquitos (Fig. 3) over 15 y
in the realistic model. The numerical simulation shows that per-
sistent patterns of RVFV occur in the absence of Aedes sp. In
the theoretical model, the use of Floquet theory should pre-
vent the problem of infection persistence at unrealistic low levels
[“atto-fox problem” (60)], as the theory focuses on the stability
of the precise zero or periodic solution (although here, the stabil-
ity of RVFV was studied only numerically). In general, random
extinctions of RVFV preclude persistence of infection, although
one could argue that deterministic models mimic the fact that
random extinctions are compensated by random immigration
of infected mosquitos or livestock. Incorporating demographic
stochasticity and spatial immigration would address this con-
cern. Taking all of this into account, we cautiously conclude
that the transovarial transmission of RVFV in Aedes sp. is not a
prerequisite for RVFV persistence over time, although the mod-
els provide no evidence to discount this as an important (49)
transmission route in reality.

Isolate the Drivers Enabling the Virus to Reemerge After Long Periods
of Inactivity in Endemic Regions. Here, we assumed that, when the
mean number of infected livestock is below a certain threshold
(chosen to be 50) (SI Appendix, SI Text discusses 5 infected ani-
mals and 1% infection prevalence), the epidemic is not detected
by routine surveillance. The patterns of the distribution of these
disease-undetected times (Fig. 4) are similar for the situations
where both mosquitos species are present and where Aedes sp.
and thus, transovarial transmission are absent. The empirical
interepidemic periods observed in Kenya from 2004 to 2013 (58)
are shown for comparison. The similarity of the patterns suggests
a strong impact of external drivers and variation in immunity in
livestock populations compared with the impact of the mosquito
species. Both distributions are multimodal (Fig. 4), with several
peaks occurring; interestingly, several small peaks occur over
long time periods (> 10 y). This shows that RVFV can circu-
late in the system at very low, undetectable levels, emerging
unexpectedly after very long time periods. For a lower level of
threshold (SI Appendix, Fig. S29), the probability of observing
long interepidemic periods is smaller. This further highlights the
importance of including stochasticity in the diagnostic (the detec-
tion threshold). As discussed above, demographic stochasticity
allows for the extinction of the infection, and other factors, such
as spatial immigration, would allow reemergence. Incorporating
this mechanism would likely have a detectable impact on patterns
of the interepidemic periods.

Discussion
We identified the range of seasonally varying temperatures and
water-body extent leading either to extinction of mosquito pop-
ulations and/or RVFV or to established mosquito populations
and endemicity of the infection. These results allow prediction
of future geographic distribution of RVFV due to changes in
environmental and climatic conditions across the globe.

To achieve this, we developed a process-based mathemati-
cal model, which unifies environmental factors, the ecology of
mosquitos, and the epidemiology of RVFV.

A Unified Framework for the Dynamics of VBDs. A key advantage
of this model is its conceptual simplicity, with the undeniable
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Fig. 2. During the simulation (32 y), the mean surface area of water bod-
ies and mean temperature are cyclic changing according to paths A and B
illustrated in Fig. 1C. For path A, during the first year, the mean surface
area of water bodies increases according to a stepwise function in a 4-mo
interval (SI Appendix, Fig. S27) from 6,500 to 7,500 m2, and the mean tem-
perature is constant at 30 ◦C; this is followed by a second year with constant
mean surface area of water bodies at 7,500 m2, while the mean tempera-
ture is decreasing according to a stepwise function in a 2-mo interval from
30 ◦C to 25 ◦C. During the third year, the mean surface area of water bodies
decreases according to a stepwise function in a 4-mo interval from 7,500 to
6,500 m2, and the mean temperature is constant at 25 ◦C; this is followed
by a fourth year, when the mean temperature is increasing according to a
stepwise function in a 2-mo interval from 25 ◦C to 30 ◦C and the mean sur-
face area of water bodies is constant at 6,500 m2. For path B, the dynamics
is the same as for path A, but the range of the mean surface area of water
bodies is between 3,000 and 4,000 m2 and the range for mean tempera-
ture is between 18 ◦C and 22 ◦C. (A) Dynamics of mosquitos population and
RVFV infection in livestock when mean temperature and mean surface area

complexity of the system reduced to a few fundamental fac-
tors: surface area of water bodies governing mosquito oviposition
rates, temperature affecting mosquito developmental rates, and
their survival and biting rates as well as the extrinsic incubation
period of RVFV. The impact of these parameters cascades on
the dynamics of the mosquito population and thus, RVFV. The
seasonality of mosquito abundance and infection prevalence is
largely governed by the seasonality in water-body surface area
and temperature. The resulting patterns, however, are not trivial
due to the nonlinearity of the system; even in a theoretical system
represented by simple sinusoidal variation of water-body sur-
face area and temperature, the different combinations of these
result in qualitatively different regimens, including one or both
mosquitos becoming extinct, an RVFV-free scenario but with
established mosquito populations, or sustained oscillations of
mosquito abundance and RVFV prevalence (in mosquitos and
livestock) with one or more annual peaks. The modular nature of
the model facilitates its calibration and validation. For example,
the mosquito model can be tested in an RVFV-free situation,
only subsequently including the effects of the disease.

Environmental Conditions Allowing Established Mosquito Popula-
tions and Viral Persistence. The abundance of mosquito eggs is
ultimately constrained by the maximum density of eggs (i.e.,
number of eggs per unit surface area) and the surface area of
water bodies, resulting in a carrying capacity that results in a sta-
ble mosquito population irrespective of initial conditions. In the
realistic scenarios, this was shown numerically; in the theoretical
systems, we proved the stability of the system by using Floquet
analysis. This showed a lower threshold in mean water-body sur-
face areas, below which the mosquito populations will go extinct;
otherwise, it will result in sustained oscillation. The value of this
threshold depends nonmonotonically on the mean temperature,
and it is confined between lower and upper values, reflecting
the fact that mosquitos do not survive in very cold or very dry
hot temperatures. The analysis also showed the importance of
the frequency of fluctuations in water-body dynamics, especially
for Aedes sp. Similar thresholds in temperature and water bod-
ies occur for the persistence of RVFV in livestock, reflecting
the geographic distribution of the disease. Here, livestock num-
bers were also critical. The biophysical interpretation of stability
analysis is extremely important. For example, stable oscillations
in the mosquito population imply that, unless there is a perma-
nent change in the drivers (e.g., average surface area of water
bodies), any temporary measure aiming to reduce the mosquito
population (e.g., chemical control) will not result in a perma-
nent solution, as mosquito abundance is expected to return to the
original values after application of control measures stops. Sim-
ilarly, if mosquitos are imported into a region with temperature
and water-body parameters that are in the persistent regimen,
then they will become established in this new environment.

Intermittent Nature of RVFV and the Problem of Predictability. Epi-
demics of RVFV are intermittent and typically are not very
predictable (43, 54). Severe epidemics are provoked by flooding
after protracted periods of drought. Transovarial transmission
in Aedes mosquitos is a mechanism of RVFV persistence (61)

of water bodies change according to path A for two different initial condi-
tions. In scenario 1, exposed and removed livestock and all mosquitos stages
are set to zero, except for the susceptible and infected livestock SL = 495
and IL = 5, respectively, and mosquitos eggs OC = 100, OI = 100. Scenario 2
is like scenario 1 but with SL = 480 and IL = 20, respectively, and mosquitos
eggs OC = 100, OI = 100. The asymptotic behavior is the same in both sce-
narios. B is the same as A, but the mean temperature and mean surface
area of water bodies change according to path B. The asymptotic behavior
is different for the different scenarios.
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Fig. 3. Assessing the impact of transovarial transmission. Dynamics of Culex
sp. population and RVFV infection in livestock in the absence of Aedes sp.
population for the realistic model. The theoretical case is exemplified in SI
Appendix, Fig. S19B.

and a possible explanation for the intermittent nature of RVFV
epidemics, as presumably infected Aedes sp. eggs can survive for
several years. Another explanation is that RVFV is always cir-
culating in the population, perhaps in a cryptic reservoir (14,
15, 62), at very low level and is not detected. This is sup-
ported by evidence of interepidemic RVFV seropositivity among
humans and animals (63, 64) and the indication of subclinical
infection in livestock (65). Our model suggests that transovar-
ial transmission is not necessary for interepidemic persistence
of RVFV and that the infection may continuously circulate at
low and largely undetectable levels in between irregular epi-
demics; change in immunity in livestock populations is playing an
important role in the irregularity of the infection patterns. This
result is strictly valid, however, when all animals and mosquitos
are well-connected (e.g., through animal movement), as our
deterministic model is based on the assumption of uniform
mixing. Our theoretical model shows that, after the initial num-
ber of livestock is fixed, the solution is stable, and long-term
behavior can be accurately predicted even if the initial con-
ditions, such as the exact number of infected animals or the
abundance of mosquitos at a given time, are not known. If
the number of livestock, however, is perturbed, the solutions
are qualitatively and quantitatively different even if all other
conditions are kept identical. Thus, for reliable predictions, accu-
rate information on the demography of livestock is necessary
(the impact of the livestock size on infection is discussed in SI
Appendix, SI Text). In some situations, however, this is not suffi-
cient. The mean surface areas of water bodies and temperatures
can change (as in Kenya, where mean surface area of water bod-
ies decreased during 2003− 2007) (SI Appendix, Fig. S4) and
transit from the persistent to nonpersistent regimen and vice
versa. In such situations, the system becomes highly sensitive to
the initial values of infection prevalence, a situation that resem-
bles chaotic behavior. Thus, the irregularity of the system can
arise even from small variations in the infection prevalence due
to, for example, immigration of a few infected livestock. Varia-
tions in the demography of livestock [such as occurs in festivals

(24)] and transitions across persistent and nonpersistent regi-
mens are additional causes of the intermittent patterns in the
epidemics of RVFV.

A Program for Future Work. This work identified important chal-
lenges that could be addressed by further theoretical work and
model-guided fieldwork. Fieldwork can be designed to test well-
defined hypotheses that emerge from the model, such as the
predicted larger abundance of Aedes sp. in regions where water
bodies are fluctuating more frequently and the existence of
thresholds in surface area of water bodies and temperature con-
fining the domain of the persistent regimens for mosquito species
and RVFV infection. Further experiments to gauge the impact
of livestock density on mosquito oviposition and biting rates (66)
are crucial, as this will have an important effect on the mosquito
population and on patterns of RVFV infection (SI Appendix, SI
Text). In most cases, we focus on one host only. Copresence of
multiple hosts can dilute or amplify the disease. Further inves-
tigations on host feeding preference (67) and the relationship
between mosquito abundance and host population size are crit-
ical to estimate this effect (68). A challenging point is the large
uncertainty associated with many parameter values; in particular,
the life history parameters of mosquitos stage are often based
on laboratory conditions and inferred for different species of
mosquitos. Theoretical works like this can steer future fieldwork
and experimentation to reduce the knowledge gaps that emerged
from the model.

The potential impacts of multiple hosts, including wildlife
hosts (e.g., buffalo), also need to be investigated. We assumed
uniform mixing between mosquitos and livestock. As a result, the
predicted patterns of infection in Aedes sp., Culex sp., and live-
stock are qualitatively similar. The model should be generalized
to incorporate heterogeneity occurring in nature. Furthermore,
the model needs to be refined to incorporate the impact of veg-
etation and natural predators on the ecology of mosquitos. This
could be done, for example, by allowing the birth and mortality

Fig. 4. Assessing the intermittent nature of RVFV. The histograms represent
the distribution of duration of interepidemic periods for empirical data, for
the model where Aedes spp. is absent (origin due only to undetected cases)
and where both mosquitos species are present (origin due to undetected
cases and transovarial transmission).
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rates to depend on such factors and calibrating the model accord-
ingly. The presence of livestock and other animals might attract
mosquitos from neighbor areas via CO2 emission, resulting in
a density-dependent vector-to-host ratio relationships (68). In
general, climate change is expected to cause an increase in not
only the average temperature but also, rainfall intensity and fre-
quency. Climate projections can be readily incorporated into the
model for a more accurate analysis of the impact of climate
change on the ecology of mosquitos and the epidemiology of
RVFV. The impact of animal movement is another crucial driver
of RVFV (ref. 34 and discussion in ref. 69). Future research
should address, for instance, how the epidemiology of RVFV
changes in the presence of livestock immigration and how this is
affected by the size of these imports and the number of infected
animals in each batch.

Our analysis was done using a deterministic model, but envi-
ronmental stochasticity and external periodic drivers (e.g., sea-
sonality in temperature and surface area of water bodies) can
resonate with the natural frequencies of the ecosystem (70), with
large effects on the ecology of mosquitos and the epidemiology
of RVFV. Furthermore, patterns of the interepidemic periods
should be assessed by taking into account stochastic variability in
demography and diagnostics at different spatial settings. These
are crucial questions to consider in future research. Extension
of the model to include spatial variability is the natural pro-
gression of this work. By using high spatiotemporal resolution
of water bodies (71), temperature (56), type of vegetation data,
and animal census, the model could be carefully calibrated to
assess whether the environmental variables are within the per-
sistent regimens. Then, the approach could be used to generate
a map of potentially endemic regions for RVFV or other VBDs
to plan interventions more effectively (e.g., aiming at long-term
control of environmental conditions, such as reducing the size of
water bodies, in endemic areas and short-term measures, such
as limiting animal movement, in nonendemic areas). If the envi-
ronmental variables are at the interface between persistent and
nonpersistent regimens, then more robust uncertainty and sen-
sitivity analysis are required, exploring not only the space of
parameters but also, the plausible distribution of the initial con-
ditions, such as livestock population and its infection prevalence.
This also raises important practical and theoretical questions on
the reliability of statistical models based on presence/absence of
cases when the epidemiology is subject to chaotic behavior.

Materials and Methods
The model combines an ecological, stage-structured population dynamics
model for the Aedes sp. and Culex sp. with an epidemiological susceptible–
exposed–infectious–recovered compartmental model for the livestock and
a susceptible–exposed–infectious model for the two mosquito populations.
For simplicity, we assume only one host, although the model can be
readily extended to include multiple heterogeneous hosts (e.g., goats, cat-
tle, sheep). The stage-structured population dynamics of the mosquitos is
largely based on the model of Otero et al. (72), which includes the effect of
temperature on the development rate of the mosquitos. Important addi-
tions to the model of Otero et al. (72) are (i) the dependence of the
oviposition process on the water bodies’ surface, (ii) the separation of Aedes
sp. eggs into mature and immature eggs, and (iii) the dependency of the
number of eggs per batch on the density of livestock. Below, we empha-
size aspects of the model, while a detailed formulation of the framework is
presented in SI Appendix, SI Text.

Ecoepidemiological Model. The Culex sp. populations consist of eggs (OC ),
larvae (LC ), pupae (PC ), nulliparous females [i.e., female adults not hav-
ing laid eggs (C1)], flyers (FC ), and female adults having laid eggs (C2);
the Aedes sp. consists of immature and mature eggs (OI and OM, respec-
tively), larvae (LA), pupae (PA), nulliparous females (A1), flyers (FA), and
female adults having laid eggs (A2). Adult male mosquitos are not explic-
itly included, and only one-half of the emerging adults are females. After
the first gonotrophic cycle (i.e., feeding on blood meal and laying of eggs)
ends, the nulliparous female becomes a flyer (FC and FA) in search of breed-

ing sites followed by a series of cyclic transitions regulated by the second
gonotrophic cycle to the adult stage (C2 and A2) and back to the flyer status
(FC and FA).

Temperature-dependent development rates for the gonotrophic cycles, in
the limit of infinitely available blood meal, were based on parametrization
presented in the literature (42); the other stages were modeled according
to the simplification by Schoolfield et al. (73) of the model by Sharpe and
DeMichele for poikilotherm development based on data from ref. 74 (SI
Appendix, SI Text and Table S6). Life stage-specific mortality rates for Culex
quinquefasciatus and Aedes aegypti were extracted from data collected
under standard laboratory conditions from ref. 74. Ordinary least squares
regression models were fitted with mortality rate as the response variable
and temperature (15 ◦C to 34 ◦C) as the explanatory variable (SI Appendix,
SI Text and Figs. S17 and S18). Other than the daily mortality in the pupal
stage, there is an additional mortality associated with the emergence of the
adult (72).

The population dynamics of eggs is regulated by the availability and
dynamics of suitable breeding sites [i.e., temporary water bodies (dambos)
(SI Appendix, Figs. S13 and S14) typically formed by heavy rainfall]. In con-
trast with Culex sp., Aedes sp. lay their eggs in the moist soils above mean
high water surrounding the water body (SI Appendix, Fig. S14). According
to ref. 75, the average time for egg deposition is tdep = 0.229 d in labora-
tory conditions, which are assumed to be ideal conditions; at field scale,
the mosquitos need to search for a suitable breeding site, reducing the
oviposition rate (i.e., the number of times that a flyer lays a batch of eggs
per time unit). Thus, the oviposition rate is modeled as ηCulex = ηAedes≈∑

P SP(t)/(Atdep), where A (assumed to be the same for both species of
mosquito) corresponds to the typical size of the terrain scanned by a flyer
to detect suitable breeding sites and SP(t) is the overall surface at time t of
the breeding sites dispersed in a region of area A. This region is estimated
as A≈ 1E6− 2E6 m2 based on some indication that the spatial range of
the activity of mosquitos would be up to 1,500 m to the nearest suitable
water body (76); the time-varying surface SP(t) was obtained by satellite
images (71). For simplicity, the contribution of small artificial containers
with water, such as tires, flower pots, tin cans, clogged rain gutters, etc.,
is not included. This is justified by the fact that common species of the
genus Aedes involved in the transmission of RVFV, such as Aedes mcintoshi,
Aedes circumluteolus, and Aedes ochraceus, breed in temporary grassland
depressions (dambos) (17). Breeding sites already occupied by eggs prevent
further ovipositions; we, therefore, introduced a carrying capacity in the
egg load rates (i.e., the number of eggs laid by all flyers per time unit)

as ξCulex = b̃Cη
Culex

(
1− OCulex

KC

)
and ξAedes = b̃Aη

Aedes
(

1− OAedes
KA

)
, where

OCulex and OAedes are the total numbers of Culex sp. and Aedes sp. eggs
already laid. In the first case, OCulex = OC , and in the second case, it is the sum
of mature and immature eggs irrespective of their infected status. b̃C and
b̃A are the numbers of eggs per batch, and the carrying capacities KC and KA

take into account that the maximum number of eggs that can be laid over
a water body is limited by its surface SP(t), namely KC ≈

∑
P ρCκ

CulexSP(t)
and KA≈

∑
P ρAκ

AedesSP(t), where ρC and ρA are the densities of eggs per
surface unit (either water for Culex sp. or soil for Aedes sp.). κCulexSP(t)
and κAedesSP(t) represent the fractions of the breeding site suitable for
eggs deposition and survival; for Culex sp., this corresponds to an inner
area around the edge of the water body, and for Aedes sp., it is the outer
moist soil around the water body (here, we assumed that both surface areas
are proportional to the total surface area of the water bodies). In addi-
tion, mosquitos cannot produce eggs without ingesting blood meals; thus,
following the same argument presented in ref. 66 for triatomines, the num-
bers of Culex sp. and Aedes sp. eggs per batch, b̃C and b̃A, respectively,
are rescaled by factors bC/(1 + mC/q) and bA/(1 + mA/q), where bC and bA

are the maximum numbers of Culex sp. and Aedes sp. eggs produced per
batch in the limit of infinite resources, respectively. mC and mA are the cal-
culated vector-to-host ratios (here assumed to be 1% of the total number
of mosquitos divided the number of livestock) (SI Appendix, SI Text), and q
is the particular vector-to-host ratio for which vector fecundity is divided by
two (but if both mosquitos species are present, then we consider the total
vector-to-host ratio to be mC + mA). Based on the same argument (66), the
rates of gonotrophic cycles, which are assumed to be the same as the biting
rates, were rescaled in the same manner. Accordingly, in the absence of host
(i.e., no blood meal), the number of eggs per batch and the biting rate drop
to zero.

Aedes sp. eggs require a minimum desiccation period Td ; after this
period, they are ready to hatch provided that they are submerged in
water, although 19.7% of newly embryonated Aedes sp. eggs hatch spon-
taneously without flooding (59); Aedes sp. eggs can survive desiccation for
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several years. Therefore, we distinguish two egg stages OI and Om, with
development time of newly laid eggs OI conditioned to

1

θAedes
O1

≈max

(
Td ,

1

θAedes
O [T(t)]

)
, [1]

where θAedes
O [T(t)] is the temperature dependency of development rate of

the eggs (72) (SI Appendix, Eqs. S14 and S21 and Table S6).
Aedes sp. eggs will hatch at the time of the first flood [e.g., at time t

when SP(t)− SP(t−∆t)> 0], Thus, during a small time ∆t, the variation in
the number of mature eggs due to hatching can be modeled as

OM(t)−OM(t−∆t)≈

−

Number of submerged eggs︷ ︸︸ ︷
max

[
ρA(t)

(
κ

AedesSP(t)−κAedesSP(t−∆t)
)
, 0
]

[2]

(i.e., if the water body is shrinking, no eggs will be submerged, and thus, no
eggs will hatch). This leads to

OM(t)−OM(t−∆t) =−max


(

SP(t)− SP(t−∆t)
)

SP(t)
, 0

OM(t), [3]

where the superficial density of eggs at time t was estimated as ρA(t)≈
OM(t)/(κAedesSP(t)). The continuous counterpart of the above equation
leads to

τ
Aedes
O = max

(
1

SP(t)

dSP(t)

dt
, 0

)
, [4]

where the term dSP (t)
dt represents the rate of change of the surface area of a

water body.

Combined Mosquito and Livestock Population Model in the Presence of
Infection. RVFV transmission in Aedes mosquitos can be transovarial or
horizontal, while only horizontal transmission, mediated by biting infec-
tious hosts, is possible for Culex sp. Both adult Culex sp. and Aedes sp.
can become infected after feeding on infectious livestock IL. More pre-
cisely, for Culex sp., the movements out from the susceptible categories,
C1 and C2, are θ̃Culex

C1 C1 and θ̃Culex
C2 C2, respectively; of these, λL→C1 C1 and

λL→C2
C2 mosquitos move to the exposed flyer category, FExp

C . The remain-

ing (θ̃Culex
C1 −λL→C1 )C1 and (θ̃Culex

C2 −λL→C2
)C2 move to the susceptible flyer

category, FC . Similar arguments apply to Aedes sp., but in this case, there
is an additional infectious category for nulliparous mosquitos, AInf

1 , emerg-
ing out of infectious eggs due to transovarial transmission. The exposed
categories then transit to the adult infectious categories (CInf

1 and CInf
2 for

Culex and AInf
1 and AInf

2 for Aedes) with rates εC and εA, respectively. The

exposed and infectious populations will lead to the exposed and infec-
tious flyer populations (FExp

C and FInf
C for Culex sp. and FExp

A and FInf
A for

Aedes sp.) followed by cyclic transitions to the corresponding exposed
and infectious adult stages and back to the exposed and infectious flyer
stages. Furthermore, infected Aedes sp. flyers [i.e., either exposed (FExp

A )
or infectious (FInf

A )] will deposit infectious eggs OInf
I , which will turn into

infectious larvae LInf
A , infectious pupae PInf

A , infectious nulliparous adults
AInf

1 , etc. The explicit set of differential equations is presented in SI
Appendix, SI Text. Parameters are based on data presented in the liter-
ature (refs. 40, 42, and 72 and references therein) (SI Appendix, Tables
S3–S5) and adapted to the Kenya situation [e.g., temperature (56) and water
bodies (71)].

Stability Analysis for Seasonal Systems: Floquet Theory. Floquet analysis is
a well-established tool suitable to study the stability of seasonal systems
(77, 78). In the simplest scenarios, temperature and water bodies can be
approximated by the periodic functions

SP(t) = SP
m + SP

A cos (ωSt +φS) [5]

T(t) = Tm + TA cos (ωT t +φT ), [6]

where ωS and ωT are the frequencies of oscillations in surface areas of water
bodies and temperature; the terms SP

m and Tm represent the mean surface
area of water bodies and mean temperature during periods 2π/ωS and
2π/ωT , respectively; SP

A and TA are the maximum amplitudes in the oscil-
lations; and φS and φT are the respective phases. Then, we ran the model
and calculated the corresponding Floquet multipliers for a range of frequen-
cies, mean surface areas of water bodies, and mean temperatures to explore
which of these parameters lead to stable solutions. More details are in SI
Appendix, SI Text.
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