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Proteolysis targeting chimeras (PROTACs) are heterobifunctional
small molecules that simultaneously bind to a target protein and
an E3 ligase, thereby leading to ubiquitination and subsequent
degradation of the target. They present an exciting opportunity to
modulate proteins in a manner independent of enzymatic or
signaling activity. As such, they have recently emerged as an
attractive mechanism to explore previously “undruggable” targets.
Despite this interest, fundamental questions remain regarding the
parameters most critical for achieving potency and selectivity. Here
we employ a series of biochemical and cellular techniques to in-
vestigate requirements for efficient knockdown of Bruton’s tyro-
sine kinase (BTK), a nonreceptor tyrosine kinase essential for B cell
maturation. Members of an 11-compound PROTAC library were
investigated for their ability to form binary and ternary complexes
with BTK and cereblon (CRBN, an E3 ligase component). Results
were extended to measure effects on BTK–CRBN cooperative interac-
tions as well as in vitro and in vivo BTK degradation. Our data show
that alleviation of steric clashes between BTK and CRBN by modulat-
ing PROTAC linker length within this chemical series allows potent
BTK degradation in the absence of thermodynamic cooperativity.
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Proteolysis targeting chimeras (PROTACs) (1) are bivalent
ligands that recruit an E3 ligase to a target protein thus fa-

cilitating polyubiquitination and subsequent target degradation
(2–4). A powerful technology, first introduced in 2001 (1),
PROTACs remained largely dormant for close to a decade due
to physicochemical property limitations of chemical matter and
poor cellular penetration. Notable breakthroughs, particularly
the departure from poorly cell-penetrant peptides to small-
molecule–based ligands, have led to enhanced drug uptake and
efficacy both in cultured cells and, most recently, in vivo (5, 6).
As such, numerous proteins ranging from gene regulatory pro-
teins [AR (3, 7), ERα (7, 8), ERRα (6), and BRD2/3/4 (5, 9–11)],
retinoic acid-binding proteins [CRABPI/II (12, 13) and RAR
(7)], to enzymes [prolyl isomerase FKBP12 (5), kinases BCR-
ABL/c-ABL (14), and RIPK2 (6)] have successfully been de-
graded by small-molecule PROTACs. This breadth has led to
tremendous excitement in the drug development field, particu-
larly with regard to targeting the “undruggable” proteome (15).
There are thousands of predicted protein–protein interactions
(PPIs) (16) where long, shallow interfaces are, in theory, suffi-
cient to engage a moderate-affinity PROTAC and potentially
mediate the target protein’s degradation. The task of choosing
the optimal target–ligase pair that would lead to efficacious
target degradation seems daunting given the sheer number of
possible targets and ligases (600+) (17) available. Selection could
be funneled for target–ligase pairs that colocalize in similar

cellular compartments and for targets that have Lys residues
accessible for ubiquitination. A second selection criterion en route
to efficacious and selective target degradation could be de novo
rational design of PROTACs. In a recent report, Gadd et al. (18)
describe an elegant model of PROTAC-facilitated target–ligase
interactions as the foundation for target selectivity of BRD4 over
closely related family members BRD2 and BRD3, suggesting that
stabilizing target–ligase PPIs may be a powerful strategy when de-
signing efficient PROTACs.
Here we assess the requirement of cooperativity in PROTAC-

mediated degradation of Bruton’s tyrosine kinase (BTK). BTK is
a nonreceptor tyrosine kinase that belongs to the tyrosine kinase
expressed in hepatocellular carcinoma (Tec) family of kinases
and is crucial in normal B cell development (19). Mutations in
Btk cause X-linked agammaglobulinemia (20), whereas aberrant
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regulation of BTK signaling has been linked to numerous B cell
malignancies including chronic lymphocytic leukemia (CLL),
mantle cell lymphoma, and diffuse large B cell lymphoma (20–
22). Ibrutinib is a selective and potent irreversible (covalent)
inhibitor of BTK that has affected the treatment landscape for B
cell malignancies, particularly CLL (21, 23). What confers ibru-
tinib its selectivity is the scarcity in other kinases of a Cys residue
homologous to C481 in BTK, which forms the covalent adduct
(24, 25). However, recent reports on patient relapses as a result
of acquired resistance mutations in BTK (C481S) following
Ibrutinib treatment have raised the need for new avenues for
therapeutic intervention (26).
Targeted degradation of BTK is explored as a modality and

serves as a model system to further understand the biochemical
underpinnings of efficient, targeted protein degradation. A li-
brary of 11 PROTACs of varying linker lengths that engage BTK
on one end and cereblon [CRBN, a substrate-binding member of
the Cul4 E3 ligase family (27, 28)] on the other are initially used
to assess BTK degradation efficacy. Through in vitro, cellular,
and in vivo experiments, rapid, efficient, prolonged, and selective
BTK degradation is demonstrated. Degradation of BTK is de-
pendent on ternary complex formation but does not rely on
energetically cooperative BTK–CRBN interactions. On the
contrary, negative BTK–CRBN cooperativity is observed with
PROTACs of shorter linkers, and relief of steric clashes is de-
termined to describe the transition between ineffective and potent
BTK degradation within this system. We thus describe a case where
robust thermodynamic cooperativity appears unnecessary for
efficient degradation.

Results
PROTACs Facilitate BTK Degradation in Cultured Cells. To achieve
targeted protein degradation of BTK, an 11-compound library of
heterobifunctional ligands was prepared in which a BTK binding
scaffold was joined to a CRBN ligand by PEG-linkers of various
lengths (Fig. 1A). The BTK binding core is a noncovalent analog
derived from a previously disclosed covalent phenyl-pyrazole
series (29) (Fig. 1A and SI Appendix, Fig. S1), and we use
pomalidomide as the CRBN ligand (30). An initial study of
PROTAC (9) (the primary analog of this set) in cultured Ramos
cells shows time-dependent depletion of BTK levels as assessed
by Western blot using Wes assay plates (Fig. 1B and SI Appen-
dix). The exponential decrease in BTK over time begins as early
as 1 h and plateaus after 24 h, at which point BTK levels are
reduced to 16 ± 4% of the initial value. Furthermore, knock-
down after 24 h is dependent on compound concentration (Fig.
1C), with BTK levels showing a U-shaped dose dependence, with
maximal knockdown achieved at 1 μM concentration (DC50 =
5.9 ± 0.5 nM at 24 h; Fig. 1C and SI Appendix, Figs. S2A and S3).
This U-shaped dose–response has been previously observed for
PROTACs (6, 9, 11), and the reduced potency at higher drug
concentrations is a consequence of competitive formation of
binary complexes {BTK–PROTAC} and {PROTAC–CRBN} vs.
the required ternary complex {BTK–PROTAC–CRBN}. In
further support of this mechanism of action, efficacy is markedly
reduced by competition with a monofunctional BTK binder, a
monofunctional CRBN binder (pomalidomide), or both, sug-
gesting that simultaneous engagement of both BTK and CRBN
by the PROTAC is required for BTK degradation (Fig. 1D). It is
also confirmed that the monofunctional BTK ligand alone does
not significantly affect levels of BTK (SI Appendix, Fig. S3E).
Sustained knockdown is also dependent on continued compound
exposure because washout leads to recovery of BTK levels within
24 h (19, 31) (Fig. 1E).

Longer Linkers Promote Ternary Complex Formation and Predict
PROTAC Efficacy. Previous work on the mechanism of PROTAC-
mediated degradation suggests that PROTACs facilitate formation

of a {target–PROTAC–ligase} ternary complex, enabling sub-
sequent target polyubiquitination and proteasomal degradation
(Fig. 2A). This requisite ternary complex formation of PROTACs
is governed by a well-described equilibrium (32) that predicts a
bell-shaped dependence of ternary complex concentration {BTK–
PROTAC–CRBN} on the concentration of PROTAC (Fig. 2B).
Therefore, it is hypothesized that maximizing PROTAC efficacy is
associated with maximizing ternary complex formation.
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Fig. 1. PROTACs facilitate BTK degradation in cultured cells. (A) Sche-
matic of BTK and CRBN parent molecules (Top) from which 11 PROTACs
of varying linker lengths were generated (Bottom). (B) Western blot
analysis of time-dependent degradation of BTK in the presence of 0.1 μM
PROTAC (9) in cultured Ramos cells. Degradation is observed in as little as
1 h with steady-state BTK degradation reached at 24 h. (C ) BTK degra-
dation is responsive to PROTAC (9) concentrations. U-shaped dose–response
curve is indicative of the involvement of a ternary complex formation in
BTK degradation. Ramos cells were incubated with (9) for 24 h at the in-
dicated concentrations. (D) PROTAC (9) requires simultaneous engage-
ment of BTK and CRBN to effectively degrade BTK. Out-competition of
(9) with parent molecules or lack of the linker between them does not
affect BTK levels. Ramos cells were incubated with compound for 24 h at
the indicated concentrations. (E ) BTK degradation is dependent on (9) as
compound washout restores BTK levels. After incubation of Ramos cells
with 0.1 μM PROTAC (9), cells were washed 3× with PBS and resuspended
in fresh media. BTK levels were monitored at the indicated time points.
All lysates were analyzed by Western blotting using the ProteinSimple
Wes system.
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As a first step, we sought to understand the determinants of
PROTAC efficacy in cultured cells by using the 11-compound
PROTAC library of varied linker lengths (Fig. 2C and SI Ap-
pendix, Fig. S3). Whereas PROTACs of longer linker lengths (6–
11) potently degrade BTK (DCmax = 1 μM and DC50 = 1–40 nM
at 24 h), shorter PROTACs (1–4) are largely ineffective (Fig.
2C). Between these extremes lies an intermediate compound,
PROTAC (5), which demonstrates modest knockdown. BTK
knockdown appears to depend on choice of E3 because PRO-
TACs of similar length are less effective when engaging the li-
gases von Hippel–Lindau protein [VHL, which serves as a
substrate recognition domain in Cul2-based E3 ligases (33–35)]
or inhibitor of apoptosis [IAP, which serves as an E3 ubiquitin
ligase (36)], despite all species appearing to colocalize in shared
cellular compartments (SI Appendix, Fig. S2 B–D)
To explore whether PROTAC linker length affected the

{target–PROTAC–ligase} ternary complex formation and cel-
lular efficacy, an in vitro time-resolved fluorescence resonance
energy transfer (TR-FRET) assay was developed. Lumi4-Tb–
labeling of BTK and XLA665-labeling of CRBN provide an
appropriately matched pair of fluorophores to allow a FRET
signal to be detected when BTK and CRBN are brought into
proximity. Although unable to provide absolute quantitation,

comparison of relative heights and inflection points suggests two
distinct classes of PROTACs. These classes agree with results
from cellular knockdown in the sense that longer PROTACs (6–
11) that yield readily detectable ternary complex by FRET also
demonstrate potent cellular knockdown, whereas shorter PRO-
TACs (1–4) that yield only weak/no FRET signal appear in-
effective in cells. PROTAC (5) again shows an intermediate
behavior (Fig. 2D). Parallel efforts using a computational mod-
eling approach to evaluate linear linkers using a steric scoring
scheme also suggest that longer linkers formed more numbers of
lower-energy ternary complexes (Fig. 2E and SI Appendix, Fig.
S4 A–E). This method was also extended to another ligase, VHL:
BTK and VHL were also predicted to engage in a sterically fa-
vorable ternary complex mediated by PROTACs (12, 13) (SI
Appendix, Fig. S4F).

Ternary Complex Formation Lacks Positive Cooperativity. Surface
plasmon resonance (SPR) is used to generate binary binding af-
finities of PROTACs to BTK and CRBN (Fig. 3 A and B and SI
Appendix, Fig. S5). Based on previous reports, affinities of pomali-
domide/lenalidomide for CRBN span a range of <1 to >10 μM and
highlight that care must be taken when comparing values measured
under different conditions (37, 38). To minimize variation, we
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performed independent matched measurements for all compounds
in the library. Using the monofunctional BTK and CRBN binders
as benchmarks for unhindered BTK (KD = 70 nM) or CRBN
(KD = 1.8 μM) binding, it is observed that similar binding affinities
are maintained for the longest PROTACs (6–11) bound to BTK
(KD = 70 nM–140 nM) and CRBN (KD = 2.5 μM–3.6 μM), whereas
binding is impaired for the shortest PROTACs by up to ∼20× (Fig.
3B and SI Appendix, Fig. S5). This decrease in potency may be due
to binary steric clashes between the shortest PROTAC linkers and
BTK/CRBN. To further explore this hypothesis, an adaptation of a
recently described three-body mathematical model is used to
compare experimental with simulated ternary complex formation
data for each PROTAC (32) (SI Appendix). For the shortest
PROTACs (1–4), simulations based on binary KD values are unable
to reproduce the relative height and shape of experimental curves.
However, model fit is improved when solving for cooperativity
factor α (Fig. 3C and SI Appendix, Fig. S6A). PROTACs (1–4) (α <
1) and PROTACs (6–11) (α ∼ 1) show negative and non-

cooperativity within a ternary complex. PROTAC (5) yields modest
apparent positive cooperativity, but remains inferior to compounds
with longer linkers.
It is important to note that because FRET signal is dependent

on both distance and conformation, potential differences in
ternary complex ensembles or structure could affect the ability to
compare signal across this library. In an effort to independently
test cooperativity, we selected our most potent cellular PRO-
TAC, compound (10), and performed SPR in which we mea-
sured affinity for CRBN either alone (1.3 ± 0.7 μM) or while in
complex with BTK (2.2 ± 1.4 μM) (SI Appendix, Fig. S6B).
Binding affinity is not enhanced in the presence of BTK, con-
sistent with a low-/no-cooperativity system.
Solution-phase hydrogen/deuterium exchange coupled with

mass spectrometry (HDX–MS) analysis is used as an independent
assessment of possible long-lived or stable protein–protein interac-
tions within the {BTK–PROTAC–CRBN} ternary complex. HDX–
MS uses time-dependent, differential deuterium uptake of a protein
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in the absence or presence of binding partners, to report on pro-
tein–ligand or protein–protein interactions. HDX–MS is thus ideally
suited to report on de novo (whether direct or allosteric) contacts,
should potent and specific interactions occur. In an effort to ensure
a significant population of the ternary complex, concentrations of
BTK–PROTAC–CRBN of 10 μM–10 μM–15 μM are used (based
on FRET results above, as well as the need for robust signal de-
tection by HDX). The presence of ternary complex was in-
dependently confirmed under related concentrations using native
state mass spectrometry. This experiment has the added benefit of
permitting direct quantitation of ternary complex formed, yielding
values consistent with a noncooperative system (SI Appendix,
Fig. S6C).
HDX–MS efforts are focused on BTK as our reporter—with a

core set of 21 BTK peptides selected from a robust 90% BTK
sequence coverage dataset (SI Appendix, Fig. S7A)—to report on
differential deuterium uptake of BTK when engaged in various
interactions. Although CRBN is present in this experiment and
yields a high degree of sequence coverage by mass spectrometry
(94%; SI Appendix, Fig. S7B), we did not observe statistically
significant protection by any ligands, likely owing to the reduced
potency of the CRBN–ligand interaction as well as the small
pomalidomide-binding pocket which provides only a single
backbone H-bond donor. In the case of BTK, PROTAC (9)
leads to as much as 23% protection of deuterium exchange in
reporter peptides compared with the apo state of the protein
(Fig. 3D). This change maps to the ATP site of BTK where the

parent scaffold is known to bind (SI Appendix, Fig. S7C). Mon-
itoring the protection pattern on BTK demonstrates that the
presence of CRBN, both alone and in the presence of PRO-
TACs, has no significant effect on the BTK deuterium uptake
profile suggesting that there is no single highly populated in-
terface between BTK and CRBN alone or within a PROTAC
ternary complex (Fig. 3 D and E). Similar behavior is observed
for both PROTAC (9) and (10) with no significant difference in
protection when the two profiles are compared (Fig. 3F).

PROTACs Degrade BTK with High Specificity both in Cultured Cells and
in Vivo. We sought to address the extent of PROTAC specificity
by monitoring whole cellular proteome by mass spectrometric
(MS) analysis after 24 h treatment of Ramos cells with either
DMSO, 1 μM PROTAC (10), or 1 μM BTK parent molecule.
Experiments were run in triplicate, compared with DMSO con-
trols (Fig. 4 A–C), and blotted for BTK to confirm knockdown
(Fig. 4D). Quantitative proteomics employing tandem mass tags
(TMT) chemical labeling coupled with nano-liquid chromatog-
raphy (LC)/MS/MS enabled the detection of >80,000 unique
peptides corresponding to ∼8,000 unique proteins.
PROTAC (10) (Fig. 4 A and C) and also PROTAC (9) (SI

Appendix, Fig. S8 A and C) specifically degrade BTK, whereas
the BTK ligand alone (Fig. 4 B and C) or Ibrutinib (SI Appendix,
Fig. S8 B and C) do not. TEC, a closely related protein to BTK
that potently binds BTK PROTACs (SI Appendix, Fig. S8F), is
degraded by PROTAC (9) as well (SI Appendix, Fig. S8 A and
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C), despite having >100× lower expression in Ramos cells rela-
tive to BTK (SI Appendix, Fig. S8E) [TEC is not detected in
proteomic study with PROTAC (10) possibly due to its low
cellular expression] (Fig. 4 A and C). Lymphoid transcription
factors ZFP91, IKZF1, and IKZF3—but not the closely related
IKZF2—are specifically degraded in samples treated with
PROTAC (9) or (10) (Fig. 4 A and C and SI Appendix, Fig. S8
A and C). However, no degradation is observed when cells
were treated with BTK ligand or Ibrutinib (Fig. 4 B and C and
SI Appendix, Fig. S8 B and C), suggesting that immunomod-
ulatory imide drugs (IMiD)-based CRBN reprogramming
(39–41) is preserved within BTK PROTACs. In addition, a
target is identified, ZNF827, that exhibits essential hallmarks
of an IMiD substrate (Fig. 4E) and is specifically degraded by
pomalidomide containing PROTACs (9) and (10) but not by
either BTK ligand alone or Ibrutinib (Fig. 4 A–C and SI Ap-
pendix, Fig. S8 A–C).
BTK levels were also monitored in spleen and lungs of rats s.c.

dosed with PROTAC (10) (Fig. 5 A–C). Increasing concentra-
tions of PROTAC (10) track with efficient BTK knockdown in
spleen but not in lungs (Fig. 5 A–C and SI Appendix, Fig. S9B)
despite similar tissue uptake and plasma availability of com-
pound across different concentrations (Fig. 5 D and E). A second
band, confirmed to be BTK by MS, also tracks with degradation
of BTK of the right molecular weight (SI Appendix, Figs. S9A
and S10). Altogether, these data show that PROTAC (10) is
successfully delivered to tissues and can specifically degrade
BTK in vivo, in a dose-dependent and tissue-biased manner.

Discussion
As PROTAC technology has matured, early proof-of-concept
experiments have spawned mechanistic-based questions related
to PROTAC optimization for therapeutic use. Of critical im-
portance is the need to understand the parameters that govern
both potency and selectivity. Within the PROTAC mechanism of
action, the design and optimization of the linker is a unique
feature that must be explored. We illustrate an example of
these parameters with BTK/CRBN as a test case with the
observations below.
First, rapid, efficient, potent, and prolonged knockdown of

BTK is achieved by PROTACs (Figs. 1 and 2 and SI Appendix,
Fig. S3) and follows the hallmarks of described three-body in-
teractions (32). This library of compounds fall into two classes:
short PROTACs (1–4) that are largely ineffective in cellular and
in vitro assays and longer PROTACs (6–11) that are both ef-
fective and potent (Fig. 2C and SI Appendix, Fig. S3). The
transition occurs at compound (5), which appears to lie in in-
termediate space. Surprisingly, these classes of compounds cor-
relate with ternary complex sterics: shorter PROTACs appear
unable to support simultaneous binding of BTK and CRBN (Fig.
2 and SI Appendix, Figs. S4 and S6). In agreement with this
model is a recent report of a BTK-specific PROTAC based on a
shorter linker but connected to a BTK-binding scaffold that is
considerably longer and protruding farther out of the ligand-
binding pocket than our BTK binder, thereby possibly pro-
viding an initial relief of steric hindrance (42). Although the
ternary complex assay allows us to properly bin our compounds
into active and inactive groups, it is not sufficient for strict rank
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Fig. 5. PROTACs selectively degrade BTK in rats. (A) Ten rats were randomly distributed into five groups (n = 2 per group) and s.c. dosed with either 0, 0.35,
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ordering of potency. Whereas compounds (9) and (11) appear to
yield the greatest peak height and most potent complex forma-
tion, respectively, it is compound (10) that gives the most potent
cellular knockdown of BTK. This may reflect limitations of the
FRET assay discussed above or may reflect subtle differences in
physical properties or cell permeability, which are implicit factors
in the cellular assays.
Proteomic experiments confirm knockdown of BTK and re-

veal that the related kinase, TEC, is also degraded. Because TEC
is a potent off-target of this BTK scaffold (SI Appendix, Fig.
S8F), it is likely that TEC degradation is occurring by the
PROTAC mechanism as well. Although TEC is detected in only
one of two proteomic experiments [PROTAC (9) but not
PROTAC (10)], it is likely that TEC is degraded in both in-
stances, but the low abundance of TEC relative to BTK results in
more challenging mass spectrometry-based detection. Close in-
spection reveals a set of nonkinase IMiD targets [IKZF1, IKZF3,
and ZFP91 (39–41)] that are also degraded in the proteomic
studies, suggesting that the neosubstrate nature of the poma-
lidomide moiety is not abolished by the presence of linker and
BTK scaffold. In addition, ZNF827 is degraded by both
PROTAC (9) and (10) (Fig. 4 A and C and SI Appendix, Fig.
S8 A and C). ZNF827 is a zinc-finger protein of partially
unknown function (43) but appears to retain a consensus
motif found in IKZF1, IKZF3, and ZFP91 (Fig. 4E). As such,
we propose that ZNF827 likely represents an additional
IMiD-catalyzed degradation substrate.
Although PROTACs (6–11) appear potent, we did not detect

appreciable positive cooperativity within the ternary complex.
This is true from both mathematical modeling (comparing curve
shape and inflections of simulation and experiment) and SPR, in
which the affinity of CRBN for PROTAC (10) is similar in both
the presence and absence of BTK (Figs. 2 and 3 and SI Appendix,
Fig. S6). In addition, the steep nature of the cellular hook effect
is consistent with a low-cooperativity system because it demon-
strates the ability of binary interactions to efficiently compete
with ternary interactions (32). The significant improvement in
potency for relatively long (6–11) vs. short PROTACs (1–4),
appears primarily due to the relief of negative cooperativity that
is achieved as linkers are extended. In an extreme test of this
hypothesis, a considerably longer PROTAC (16), which contains
a 29-atom linker, was shown to still retain potent BTK knock-
down (SI Appendix, Fig. S3D).
In a recent report describing targeted degradation of BRD4

using the ligase VHL, the authors reveal an elegant mechanism
by which novel protein–protein interactions between the target
and E3 are promoted in the ternary complex (18). These new
interactions result in substantial positive cooperativity (α up to
17.6), which leads to a high degree of both potency and selec-
tivity in knockdown among BRD family members (18). Although
positive cooperativity has the potential to affect multiple as-
pects of PROTAC function (including increased activity, broad-
ening the hook effect, and potentially selectivity), the present
work on BTK suggests that it is not fundamentally required to
achieve potency.
It is important to note that a lack of positive cooperativity does

not require or imply that target and E3 ligase do not interact
within a ternary complex. Indeed, it is possible that such inter-
actions occur but that the energy gained through protein–protein
contacts is offset by the entropic cost of reduced ligand flexibility.
Such energetic compensation points to a limitation in what can
be inferred from cooperativity measurements in that they may
not directly inform on structure. In our case, HDX experiments
suggest that our PROTACs are unlikely to lead to a single,
stable, rigid ternary conformation, although BTK and CRBN
may still interact within the ternary complex, perhaps with a
limited ensemble of poses.

Strikingly, potency is intimately related to the identity of the
E3 ligase recruited because CRBN PROTACs are remarkably
efficient in degrading BTK, whereas VHL PROTACs lead to no
degradation, all other variables remaining constant (inhibitor
warhead, linker length and composition, and target–ligase cel-
lular colocalization). This is despite the fact that BTK and VHL
are expected to form a sterically allowed ternary complex with
our tested PROTACs (12, 13) (SI Appendix, Figs. S2B and S4F)
and highlights the observation that additional factors are likely
involved in appropriate E3–target pairing. Indeed, recent studies
using PROTACS derived from promiscuous kinase binders
have revealed similar examples of unexpected degradation
selectivity and point to additional learnings aside from simple
sterics (42, 44).
Consistent with previous reports on BRD4 (5, 9, 10) and Abl/

Bcr-Abl (14), BTK now represents a third example of CRBN’s
distinctive breadth in targeted degradation as opposed to VHL’s
specificity. A possible explanation, first put forth in a recent
review by Lai and Crews (45), could be the greater torsional and
rotational flexibility of the CRBN-associated E3 ligase scaffold
(45–48). This flexibility would not only allow for nestling of di-
verse substrates within the E3 ligase core but would also provide
access to a wider range of surface Lys to E2 active sites that are
in large part responsible for substrate degradation (49). Such
valuable spatial sampling may be constrained in VHL E3 ligase
complexes, which lack the β-propeller domains of CRBN-bound
CRL4 E3 ligases (50). XIAP is a noncullin E3 RING ligase (51)
that may emulate VHL with regard to limited spatial sampling
relative to CRBN.
Although not strictly linked to positive cooperativity, PRO-

TAC potency remains context-dependent as Ramos cells appear
more sensitive to our PROTACs than THP-1s (SI Appendix, Fig.
S3). Comparison with a primary cell line (PBMC) shows an in-
termediate sensitivity between Ramos and THP-1 but is much
closer to Ramos (SI Appendix, Fig. S2A). Extension to in vivo
data reveals a similar puzzle: upon s.c. dosing of PROTAC (10)
in rats, dose-dependent knockdown of BTK is observed in spleen
but not lung (Fig. 5 A and B). This apparent selectivity occurs
despite the fact that compound reaches similar levels of exposure
between these two tissues (Fig. 5D). The reasons for these dif-
ferences are not known but may derive from differences in ex-
pression of target or E3, differences in deubiquitinase activity, or
a host of as yet unknown determinants. An in-depth study of
these determinants will prove critical to better understand and
predict differential potency across tissues, which will be impor-
tant for understanding the efficacy and safety profiles of targeted
protein degraders.

Materials and Methods
Expanded methods are available within SI Appendix.

Cell Culture and Immunoblotting. Ramos and THP-1 cells (ATCC) for dose-
dependent studies were cultured in 12-well plates at 37 °C in the presence
of compound for 24 h. After lysis, 5 μL of 0.2 μg/μL total protein lysate was
loaded onto a 12- to 230-kDa Wes assay plate (ProteinSimple) where 400 nL
sample was withdrawn through a capillary, subjected to electrophoretic
separation of proteins by size, and followed by HRP-based detection of
proteins of interest using an HRP-conjugated secondary antibody.

Ternary Complex Assay. Biotinylated BTK was labeled with 80 nM
Streptavidin-tagged Terbium Cryptate Lumi4-Tb (610SATLB; Cisbio),
whereas 2,000 nM (4×) biotinylated CRBN was labeled with 1,000 nM (4×)
Streptavidin-tagged XLA665 (610SAXLB; Cisbio). Dose–response curves
were obtained by adding increasing concentrations of PROTACs to donor–
BTK ([BTK]final = 200 nM, 5 μL per well) and acceptor–CRBN ([CRBN]final =
500 nM, 5 μL per well) conjugates in 20 μL final assay volume in a 384-well
low-volume plate.
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Biophysical Binding Studies. On a Biacore SA Chip, BAP–BTK was immobilized
on flow cells Fc2 and Fc3 at 4,300 resonance units (RUs) and 4,000 RU, re-
spectively, whereas Fc4 was used as reference. Similarly, in a duplicate set of
experiments, BAP–CRBN was immobilized on Fc2 and Fc3 at 4,600 RU and
4,200 RU, respectively. The highest concentration of each compound tested
was 90 μM (for CRBN-binding studies) or 10 μM (for BTK-binding studies).
Analysis was performed using Scrubber 2.0 (BioLogic Software).

Computational Modeling. A computational workflow was developed that,
given a target, E3 ligase, and PROTAC, will generate an ensemble of multiple
possible ternary complexes that is likely to be ubiquitinated. A simple count of

the number of possible solutions obtained was then prioritized over other
comparable systems that had fewer or no possible solution. Additional
modeling details are included in SI Appendix.
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