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ABSTRACT

Objective: Deep learning has become a promising approach for automated support for clinical diagnosis. When

medical data samples are limited, collaboration among multiple institutions is necessary to achieve high algorithm

performance. However, sharing patient data often has limitations due to technical, legal, or ethical concerns. In this

study, we propose methods of distributing deep learning models as an attractive alternative to sharing patient data.

Methods: We simulate the distribution of deep learning models across 4 institutions using various training heu-

ristics and compare the results with a deep learning model trained on centrally hosted patient data. The training

heuristics investigated include ensembling single institution models, single weight transfer, and cyclical weight

transfer. We evaluated these approaches for image classification in 3 independent image collections (retinal

fundus photos, mammography, and ImageNet).

Results: We find that cyclical weight transfer resulted in a performance that was comparable to that of centrally

hosted patient data. We also found that there is an improvement in the performance of cyclical weight transfer

heuristic with a high frequency of weight transfer.

Conclusions: We show that distributing deep learning models is an effective alternative to sharing patient data.

This finding has implications for any collaborative deep learning study.
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INTRODUCTION

With the advent of powerful graphics processing units, deep learning

has brought about major breakthroughs in tasks such as image classi-

fication, speech recognition, and natural language processing.1–3 Due

to the proficiency of neural networks at pattern recognition tasks,

deep learning has created practical solutions to the challenging prob-

lem of automated support for clinical diagnosis. Recent studies have

shown the potential of deep learning in detecting diabetic retinopa-

thy, classifying dermatological lesions, predicting mutations in gli-

oma, and assessing medical records.4–7 Deep learning models take

raw data as input and apply many layers of transformations to calcu-
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late a classification label of interest. The high dimensionality of these

transformations allows these algorithms to learn complex patterns

with a high level of abstraction.8

A requirement for the application of deep learning within the

medical domain is a large quantity of training data, especially when

the difference between imaging phenotypes is subtle or if there is

large heterogeneity within the population. However, patient sample

sizes are often small, especially for rarer diseases.9 Small sample sizes

may result in a neural network model with low generalizability.

A possible solution to the foregoing challenges is to perform a

multicenter study, which can significantly increase the sample size as

well as sample diversity. Ideally, patient data is shared to a central lo-

cation where the algorithm can then be trained on all the patient data.

However, there are challenges to this approach. First, if the patient

data takes up a large amount of storage space (such as very high-

resolution images), it may be cumbersome to share these data. Second,

there are often legal or ethical barriers to sharing patient data, making

dispersal of some or all of the data not possible.9 Third, patient data

is valuable, so institutions might simply prefer not to share data.10

In such cases, instead of sharing patient data directly, distribut-

ing the trained deep learning model may be a more appealing alter-

native. The model itself has much lower storage requirements than

the patient data and does not contain any individually-identifiable

patient information. Thus, distribution of deep learning models

across institutions can overcome the weaknesses of distributing the

patient data. However, the optimal method of performing such a

task has not yet, to our knowledge, been studied.

There are several existing approaches to distributed training. In

model averaging, separate models are trained for each split of the data

and the weights of the model are averaged every few mini-batches.11

In asynchronous stochastic gradient descent, separate models are

trained for each split of the data and the gradients of each separate

model are transferred to a central model.12 However, these methods

were developed with the intention of optimizing training speed.

Although applying such data parallel training methods in a multi-

institution study in which data is not exchanged between institutions is

possible, they also represent a significant logistical challenge. Specifi-

cally, training would have to take place in parallel across all institu-

tions. This would be especially challenging if institutions have

drastically different network connection speeds or deep learning hard-

ware. While nonparallel methods of distributed training may be slower

than parallel methods, they would avoid the logistical challenges.

In this study, we simulate the distribution of deep learning mod-

els across institutions using various nonparallel training heuristics.

We compare the results with a deep learning model trained on cen-

trally hosted patient data. We demonstrate these simulations on 3

datasets: retinal fundus photos, mammography, and ImageNet. We

aim to assess (1) the performance of distributing deep learning mod-

els compared to sharing patient data, (2) whether the performance

distributing deep learning models is compromised when variability

is introduced to an institution, and (3) if distributing deep learning

models can achieve high performance on a large scale (i.e., when

there are many institutions).

METHODS

Initial Image Collection
Preprocessing

We obtained 35 126 color digital retinal fundus (interior surface of

the eye) photos from the Kaggle Diabetic Retinopathy competi-

tion.13 Each image was rated for disease severity by a licensed clini-

cian on a scale of 0–4 (absent, mild, moderate, severe, and

proliferative retinopathy, respectively). The images came from

17 563 patients of multiple primary care sites throughout California

and elsewhere. The acquisition conditions were varied, with a range

of camera models, levels of focus, and exposures. In addition, the

resolutions ranged from 433�289 pixels to 5184�3456 pixels.14

The images were preprocessed via the method detailed in the compe-

tition report by the winner, Ben Graham.15 To summarize his

method, the OpenCV Python package was used to rescale images to

a radius of 300, followed by local color averaging and image clip-

ping. The images were then resized to 256�256 to reduce the mem-

ory requirements for training the neural network. To simplify

training of the network, the labels were binarized to Healthy (scale

0) and Diseased (scale 2, 3, or 4). Furthermore, mild diabetic reti-

nopathy images (scale 1, n¼2443 images), which represent a middle

ground between Healthy and Diseased, were not used for our

experiments. It is also known that there is a correlation between the

disease status of the left eye and the status of the right eye. To re-

move this as a confounding factor in our study, only images from

left eye were utilized.

Convolutional neural network

We utilized the 34-layer residual network (ResNet34) architecture

(Figure 1A).16 Our implementation was based on the Keras package

with Theano backend.17,18 The convolutional neural networks were

run on a NVIDIA Tesla P100 Graphics Processing Unit. During

training, the probability of samples belonging to Healthy or Dis-

eased class was computed with a sigmoid classifier. The weights of

the network were optimized via a stochastic gradient descent algo-

rithm with a mini-batch size of 32. The objective function used was

binary cross-entropy. The learning rate was set to 0.0005 and mo-

mentum coefficient of 0.9. The learning rate was multiplied by 0.25

when the same training images were used to train the neural net-

work 20 times with no improvement of the validation loss. The

learning rate was decayed a total of 3 times (Training Phases A–D,

Figure 1C). Biases were initialized using the Glorot uniform initial-

izer.19 To prevent overfitting and to improve learning, we aug-

mented the data in real-time by introducing random rotations (0–

360 degrees) and flips (50% change of horizontal or vertical) of the

images at every epoch. The final model was evaluated by calculating

the accuracy on the unseen testing cohort.

Model training heuristics with 4 institutions

The dataset was randomly sampled, with equal class distributions,

into 4 “institutions,” each institution having n¼1500 patients. In

addition, the dataset was sampled to create a single validation co-

hort (n¼3000 patients) and a single testing (n¼3000 patients) co-

hort, again with equal class probabilities (Figure 1B). Sampling was

without replacement such that there are no overlapping patients in

any of the cohorts. The image intensity was normalized within each

channel across all patients within each cohort. Because model

performance plateaus as the number of training patient samples

increases, the number of patients per institution was limited to

1500 to prevent saturation of learning for models trained in single

institutions.

We tested several different training heuristics (Figure 2) and

compared the results. The first heuristic is training a neural network

for each institution individually, assuming there is no collaboration

between the institutions. The second heuristic is collaboration

through pooling of all patient data into a shared dataset (centrally
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Figure 1 (A) ResNet-34 architecture was utilized for the Diabetic Retinopathy dataset. (B) The dataset was randomly divided into 4 institutions along with a valida-

tion and testing set. (C) The learning rate decayed to 0.25 of its value when the same input samples were inputted into the network 20 times at a given learning

rate without an improvement of the validation loss.

Figure 2 Model training heuristics investigated include (A) centrally hosted, (B) ensemble single institution models, (C) single weight transfer, and (D) cyclical

weight transfer.
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hosted data, Figure 2A). The third heuristic was averaging the

output of the 4 models trained on the institutions individually (en-

semble single institution models, Figure 2B). The fourth heuristic

was training a model at a single institution until reaching a plateau

of validation loss and then transferring the model to the next institu-

tion (single weight transfer, Figure 2C). Under the single weight

transfer training heuristic, the model is transferred to each institu-

tion exactly once. The last heuristic was training a model at each in-

stitution for a predetermined number of epochs (weight transfer

frequency) before transferring the model to the next institution

(cyclical weight transfer, Figure 2D). Under the cyclical weight

transfer training heuristic, the model is transferred to each institu-

tion more than once. The frequencies of weight transfer we studied

were every 20 epochs, 10 epochs, 5 epochs, 4 epochs, 2 epochs, and

every epoch.

Introduction of an institution with variability

In our initial division of the different institutions, we assumed that

each institution had the same number of patients, ratio of healthy to

diseased patients, and image quality. However, in a real scenario,

there will likely be variability within institutions that may compro-

mise the predictive performance of the model. To simulate this pos-

sibility, we introduced variability into one of the 4 institutions and

assessed the performance of the different training heuristics. We sim-

ulated two scenarios: In the first, we decreased the resolution of the

images by a factor of 16. In the second, we significantly decreased

the number of patients (from n¼1500 to n¼150) and introduced

class imbalance (ratio of healthy to diseased was 9:1). We assessed

the performance of centrally hosted data, ensembling single institu-

tion models, single weight transfer, and cyclical weight transfer with

weight transfer at every epoch. For single weight transfer, we experi-

mented with ordering of the institutions, specifically whether the

variable institution was Institution 1, 2, 3, or 4. For cyclical weight

transfer, we assessed the performance of not skipping vs skipping

the variable institution entirely.

Cyclical weight transfer with 20 institutions

We next addressed whether cyclical weight transfer can improve

model performance when the performance of any individual institu-

tion is no better than random classification. To do this, we divided

6000 patient samples from the Kaggle Diabetic Retinopathy dataset

into 20 institutions (n¼300 per institution) with equal class distri-

butions. As with our previous experiments, we also sampled a single

validation cohort (n¼3000 patient samples) and a single testing co-

hort (n¼3000 patient samples) with equal class probabilities. We

then performed experiments with different numbers of collaborating

institutions, starting with 1 and increasing to all 20 institutions. We

utilized the cyclical weight transfer training heuristic with a weight

transfer frequency of 1 epoch. We evaluated model performance via

testing cohort accuracy. We compared testing accuracies with that

of random classification and with the testing accuracy of a model

trained with all 6000 patient samples centrally hosted. A summary

of all experiments performed with the Kaggle Retinopathy Dataset

is summarized in Table 1.

Repetition of Experiment in a Second Image Collection
To demonstrate the reproducibility of our results, we repeated our

experiment on model training heuristics with 4 institutions on the

Curated Breast Imaging Subset of the Digital Database for Screening

Mammography (DDSM) dataset, an open source labeled dataset of

mammograms.20 Details of the dataset and neural network training

can be found in the Supplementary Materials section.

Repetition of Experiment in a Nonmedical Image

Collection
We further demonstrate the reproducibility of our results by repeat-

ing our experiment on model training heuristics with 4 institutions

on the ImageNet dataset.21 Details of the dataset and neural net-

work training can be found in the Supplementary Materials section.

We evaluated our models by assessing both the top-1 and top-5 ac-

curacies. Top-1 accuracy is calculated by comparing the ground

truth label with the top predicted class. Top-5 accuracy is calculated

by comparing the ground truth label with the top 5 predicted

classes.

RESULTS

Retinal Fundus Dataset
Single institution training

The models trained on single institutions had poor performance

(Figure 3A–D). The average testing accuracies for the single institu-

tion models was 56.3% (Table 2). The highest testing accuracy for a

network trained on a single institution was 59.0%.

Centrally hosted training

When patient data from all institutions were pooled together, the

collective size of the dataset was 6000. A network trained on the

combined dataset had a high performance with a testing accuracy of

78.7% (Figure 3E and Table 3).

Ensembling single institution models

Averaging the sigmoid probability of the single institution models

resulted in a testing accuracy of 60.0% (Table 3). Notably, the

ensembled model outperformed any network trained on a single in-

stitution in terms of validation and testing accuracy.

Table 1 A Summary of all Experiments Performed with the Kaggle Retinopathy Dataset

Experiment Summary

Model training heuristics

with 4 institutions

In this experiment, there are 4 equivalent institutions. We evaluate the performance of model ensembling, single

weight transfer, and cyclical weight transfer compared to centrally hosted patient data

Introduction of an institution

with variability

In this experiment, there are 4 institutions but one of the institutions has a mode of variability introduced

(either low-resolution images or a low number of patients with class imbalance). We evaluate the effectiveness of

model ensembling, single weight transfer, and cyclical weight transfer compared to centrally hosted patient data

Cyclical weight transfer

with 20 institutions

In this experiment, there are 20 institutions. The number of patients at each institution is such that a model trained

on patients from a single institution is no better than random classification. We evaluate the performance of cyclical

weight transfer as the number of collaborating institutions increase from 1 to all 20
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Single weight transfer

Using the single weight transfer heuristic, the model was trained at

each institution until the plateau of validation loss was reached, fol-

lowed by transferring of the model to the next institution. The result-

ing model had a testing accuracy of 68.1% (Figure 3F and Table 3).

Cyclical weight transfer

In our initial experiment, we trained the network for 20 epochs at

each institution before transferring the weights to the next institu-

tion. The average testing accuracy after repeating this experiment 3

times was 76.1% (Figure 4A and Table 4).

Figure 3 Performance of a neural network when trained on (A) Institution 1, (B) Institution 2, (C) Institution 3, and (D) Institution 4 for the Diabetic Retinopathy data-

set. The training and validation accuracies for a model trained with the centrally hosted training and single weight transfer training heuristics are shown in (E)

and (F), respectively.

Table 2 Training, Validation, and Testing Accuracy of the Neural Network When Trained on Single Institutions for the Diabetic Retinopathy,

DDSM, and ImageNet Datasets

Diabetic retinopathy Training accuracy Validation accuracy Testing accuracy

(n¼ 1500, %) (n¼ 3000, %) (n¼ 3000, %)

Institution 1 68.1 59.6 59.0

Institution 2 66.8 54.9 53.8

Institution 3 64.3 53.3 54.3

Institution 4 69.5 58.8 58.2

DDSM Training accuracy Validation accuracy Testing accuracy

(n¼ 257–270, %) (n¼ 229, %) (n¼ 229, %)

Institution 1 59.1 55.5 55.0

Institution 2 56.1 57.2 52.8

Institution 3 59.0 52.8 60.3

Institution 4 61.6 56.3 54.6

ImageNet Training accuracy Validation accuracy Testing accuracy

(n¼ 1500, %) (n¼ 3000, %) (n¼ 3000, %)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Institution 1 62.1 93.5 30.4 71.4 31.0 71.2

Institution 2 66.1 95.0 31.1 70.0 32.4 71.5

Institution 3 64.5 94.3 31.5 71.3 32.4 71.1

Institution 4 66.8 94.5 31.6 70.8 32.1 71.6

Abbreviation: DDSM: Digital Database for Screening Mammography.
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We also investigated whether having a higher frequency of

weight transfer can improve the testing accuracy. We experimented

with weight transfer frequencies of 10, 5, 4, 2, and every epoch, re-

peating each experiment 3 times (Figure 4 and Table 4). The average

testing accuracy of lower frequency weight transfer (every 20, 10, or

5 epochs) was 76.1% while the average testing accuracy of higher

frequency weight transfer (every 4, 2, or 1 epoch) was 77.5% (2-

sample t-test P< .001). Thus, a higher frequency weight transfer

had a statistically significant increase in testing accuracy. The aver-

age training testing accuracy for all cyclical weight transfer experi-

ments was 76.8% (Figure 5A).

Introduction of an institution with variability

We next addressed what would happen if variability was introduced

into one of the institutions. The modes of variability were either an

institution with low-resolution images or an institution with few

patients and class-imbalance. Among the various model-sharing

Table 3 Training, Validation, and Testing Accuracy of Centrally Hosted Training, Ensembling Single Institution Model Outputs, and Single

Weight Transfer for Diabetic Retinopathy, Digital Database for Screening Mammography, and ImageNet Datasets

Diabetic retinopathy Training accuracy Validation accuracy Testing accuracy

(n¼ 6000, %) (n¼ 3000, %) (n¼ 3000, %)

Centrally hosted 89.4 78.6 78.7

Ensemble models 63.2 60.9 60.0

Single weight transfer 70.4 68.3 68.1

Digital Database for

Screening Mammography

Training accuracy Validation accuracy Testing accuracy

(n¼ 1050, %) (n¼ 229, %) (n¼ 229, %)

Centrally hosted 77.0 71.6 70.7

Ensemble models 63.7 56.3 61.1

Single weight transfer 61.3 6 0.9 61.2 6 0.8 61.1 6 1.8

ImageNet Training accuracy Validation accuracy Testing accuracy

(n¼ 6000, %) (n¼ 3000, %) (n¼ 3000, %)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Centrally hosted 82.9 98.4 49.5 83.4 48.9 83.8

Ensemble models 50.2 88.6 37.0 76.5 38.6 77.0

Single weight transfer 45.5 84.5 36.0 76.2 37.9 75.5

Figure 4 Training and validation accuracies during training on the Diabetic Retinopathy dataset with cyclical weight transfer with weight transfer frequencies of

every (A) 20 epochs, (B) 10 epochs, (C) 5 epochs, (D) 4 epochs, (E) 2 epochs, or (F) every epoch.
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training heuristics that was trained on all 4 institutions, cyclical

weight transfer had the highest testing performance (Table 5), with

a testing accuracy of 72.7% in experiments with an institution with

low-resolution images and 73.3% in experiments with an institution

with a small number of patients with class-imbalance. This is of

comparable performance to that of centrally hosted data, which had

testing accuracies of 72.2% and 75.4%, respectively. It is interesting

to note that the performance of single weight transfer was dependent

on the ordering of the institutions (i.e., whether the variable institu-

tion was institution 1, 2, 3, or 4). We also assessed performance of

Table 4 Training, Validation, and Testing Accuracy for Cyclical Weight Transfer for Diabetic Retinopathy, Digital Database for Screening

Mammography, and ImageNet Datasets.

Diabetic retinopathy Training accuracy Validation accuracy Testing accuracy

(n¼ 6000, %) (n¼ 3000, %) (n¼ 3000, %)

Cyclical weight transfer, every:

20 Epochs 85.8 6 0.9 76.0 6 0.6 76.1 6 1.0

10 Epochs 87.9 6 1.6 75.6 6 2.0 75.9 6 1.2

5 Epochs 86.8 6 0.9 76.1 6 0.6 76.1 6 0.8

4 Epochs 88.9 6 1.1 76.6 6 0.1 77.4 6 0.2

2 Epochs 89.1 6 1.7 77.3 6 0.5 77.8 6 0.3

Epoch 89.4 6 2.3 77.3 6 1.3 77.3 6 0.9

Digital Database for

Screening Mammography

Training accuracy Validation accuracy Testing accuracy

(n¼ 1050, %) (n¼ 229, %) (n¼ 229, %)

Cyclical weight transfer, every:

20 Epochs 72.7 6 1.3 66.5 6 3.5 65.4 6 1.1

10 Epochs 70.5 6 4.7 68.9 6 0.9 68.1 6 3.6

5 Epochs 71.5 6 3.0 69.1 6 0.2 68.1 6 1.2

4 Epochs 71.7 6 1.9 65.9 6 1.8 68.7 6 2.4

2 Epochs 71.9 6 1.5 69.3 6 2.4 69.9 6 2.7

Epoch 74.8 6 2.0 68.9 6 1.3 69.1 6 2.9

ImageNet Training accuracy Validation accuracy Testing accuracy

(n¼ 6000, %) (n¼ 3000, %) (n¼ 3000, %)

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Cyclical weight transfer, every:

20 Epochs 77.2 6 3.2 97.7 6 0.8 46.9 6 0.8 82.8 6 0.7 46.6 6 0.9 83.2 6 0.9

10 Epochs 78.5 6 1.2 98.0 6 0.4 47.8 6 0.9 82.9 6 0.4 47.3 6 0.6 83.8 6 0.1

5 Epochs 77.7 6 2.6 97.7 6 0.4 47.7 6 0.7 83.0 6 0.1 47.5 6 1.4 83.3 6 0.5

4 Epochs 78.5 6 3.5 97.9 6 0.6 47.2 6 0.9 83.2 6 0.5 48.1 6 0.6 83.6 6 0.2

2 Epochs 79.0 6 3.2 97.8 6 0.9 47.9 6 0.0 82.8 6 0.4 47.6 6 1.1 84.1 6 0.4

Epoch 83.2 6 3.5 98.6 6 0.6 49.2 6 0.3 83.9 6 0.7 49.3 6 1.0 84.7 6 0.1

Weight transfer frequencies investigated include every 20 epochs, 10 epochs, 5 epochs, 4 epochs, 2 epochs, and 1 epoch. The accuracies for cyclical weight

transfer are shown as mean 6 standard deviation for 3 repetitions.

Figure 5 (A) Testing accuracies of centrally hosted training, ensembling models, single weight transfer, and cyclical weight transfer for our 4 “institution” experi-

ment on the Diabetic Retinopathy dataset. Cyclical weight transfer had the performance that was on par with centrally hosted training. (B) To show distributed com-

putation on a larger scale, we performed a 20 “institution” experiment with n¼ 300 patients per institution. The plot shown is the testing accuracy as a function of

the number of collaborating institutions. All models were trained using the cyclical weight transfer training heuristic with a weight exchange frequency of 1. For ref-

erence, testing accuracy expected from random classification (bottom dotted line) and centrally hosted data (n¼6000 patients, top dotted line) are shown.
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cyclical weight transfer when the variable institution was skipped.

The resulting testing accuracy was 74.4%, which is comparable to

cyclical weight transfer that included the variable institution.

Cyclical weight transfer with 20 institutions

We next addressed whether cyclical weight transfer can improve

model performance when the performance of any individual institu-

tion is no better than random classification. To do this, we divided

6000 patient samples into 20 institutions, each with n¼300

patients. We trained models with increasing numbers of collaborat-

ing institutions, from 1 to 20. We utilized the cyclical weight trans-

fer training heuristic with the weight transfer frequency of 1. As we

increased the number of collaborating institutions, the testing accu-

racy increased (Figure 5B). The testing accuracy for a single institu-

tion was 49.8%, which is equivalent to random classification as

there are equal numbers of healthy and diseased patients. The testing

accuracy for 20 collaborating institutions was 78.7%, which is on

par with the performance of centrally hosted data with all 6000 pa-

tient samples.

Mammography Dataset
When we repeated the experiments on the DDSM dataset, the aver-

age testing accuracy was 55.7% for single institution models (Table

2 and Supplementary Figure S1A–D), only slightly better than a ma-

jority classifier. A model trained on centrally hosted data had a test-

ing accuracy of 70.7% (Table 3 and Supplementary Figure S1E).

Ensembling single institution models resulted in a testing accuracy

of 61.1% and the single weight transfer training heuristic also

resulted in an average testing accuracy of 61.1% (Table 3 and Sup-

plementary Figure 1F). Cyclical weight transfer resulted in an aver-

age testing accuracy of 67.2% for low frequencies of weight transfer

(every 20, 10, or 5 epochs), which was lower than the average test-

ing accuracy of 69.2% for high frequency of weight transfer (every

4, 2, or 1 epoch, P< .05) (Supplementary Figure S2 and Table 4).

ImageNet Dataset
When these experiments were repeated for the ImageNet dataset,

the average testing top-1 accuracy was 32.0% (top-5 accu-

racy¼71.4%) for single institution models (Table 2 and Supplemen-

tary Figure S3A–D). In comparison, a model trained on centrally

hosted data had a testing top-1 accuracy of 48.9% (top-5 accu-

racy¼83.8%) (Table 3 and Supplementary Figure S3E). Ensembling

single institution models resulted in a testing top-1 accuracy of

38.6% (top-5 accuracy¼77.0%), while the single weight transfer

training heuristic resulted in a testing top-1 accuracy of 37.9% (top-

5 accuracy¼75.5%) (Table 3 and Supplementary Figure S3F). Cy-

clical weight transfer resulted in an average testing top-1 accuracy of

47.1% (top-5 accuracy¼83.4%) for low frequencies of weight

transfer (every 20, 10, or 5 epochs), which was lower than the aver-

age testing top-1 accuracy (48.3%, top-5 accuracy¼84.1%) for

high frequency of weight transfer (every 4, 2, or 1 epoch, P< .01)

(Table 4 and Supplementary Figure S4).

DISCUSSION

All training heuristics, either data sharing or model distribution,

outperformed models trained only on one institution in terms of

testing accuracy. This shows the benefits of collaboration among

multiple institutions in the context of deep learning. Unsurprisingly,

a model trained on centrally hosted data had the highest testing ac-

curacy, serving as a benchmark for the performance of our various

model sharing heuristics. In this study, we investigate if a model

sharing heuristic can replace having the data be centrally hosted.

To overcome limitations in data-sharing, we tried several

approaches—ensembling of single institution models, single weight

transfer, and cyclical weight transfer. Ensembling of neural net-

works trained to perform the same task is a common approach to

significantly improve the generalization performance.22 In compari-

son, the concept of single weight transfer is very similar to that of

transfer learning, which is derived from that idea that a model can

solve new problems faster by using knowledge learned from solving

previous problems in other domains.23,24 In practice, this involves

training a model on one institution’s dataset and fine-tuning the

model on a different dataset. If we consider each institution as a sep-

arate dataset, the model is trained on institution 1 and fine-tuned on

institutions 2, 3, and 4. Both ensembling single institution models

and single weight transfer resulted in higher testing accuracies than

any single institution model for Kaggle Diabetic Retinopathy,

DDSM, and ImageNet datasets. Single weight transfer outperformed

ensembling models for the Kaggle Diabetic Retinopathy dataset

while ensembling models and single weight transfer had the same

testing performance for the DDSM dataset. For the ImageNet data-

set, ensembling models outperformed single weight transfer.

The highest testing accuracies among training heuristics involved

cyclical weight transfer. On average, the testing accuracy of models

trained with cyclical weight transfer was 1.9%, 2.5%, and 1.2%

less than that of a model trained on centrally hosted data for the

Kaggle Diabetic Retinopathy, DDSM, and ImageNet datasets,

Table 5 The Testing Accuracy of the Various Training Heuristics With the Various Training Heuristics when Variability (Low-resolution

Images or Few Patients with Class-imbalance) was Introduced into One of the Institutions

Training Heuristic

Variable institution: Variable institution:

low-resolution small and imbalanced

Testing accuracy Testing accuracy

(n¼ 3000, %) (n¼ 3000, %)

Centrally hosted 72.2 75.4

Ensembling models 57.8 58.9

Single weight transfer (variable institution as Institution 1) 55.2 54.7

Single weight transfer (variable institution as Institution 2) 64.6 67.6

Single weight transfer (variable institution as Institution 3) 57.4 67.2

Single weight transfer (variable institution as Institution 4) 50.4 64.3

Cyclical weight transfer, every epoch 72.7 73.3

Cyclical weight transfer, every epoch (skipping variable institution) 74.4
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respectively. This means nonparallel distributed training produced

model performance comparable to centrally hosted model perfor-

mance, and parallel distributed training was not required to achieve

this performance. Additionally, it important to note that even

though the model is transferred to each institution more than once

in cyclical weight transfer, overfitting did not occur, as evidenced by

the high testing accuracy. Furthermore, we find that a higher fre-

quency of weight transfer had a higher testing accuracy than a lower

frequency of weight transfer. For the Kaggle Diabetic Retinopathy

dataset, the higher frequency of weight transfer had, on average, a

1.4% increase in testing accuracy compared to lower frequency of

weight transfer. Similarly, for the DDSM dataset, a higher frequency

of weight transfer had, on average, a 2.0% increase in testing accu-

racy compared to lower frequency of weight transfer. Finally, for

the ImageNet dataset, a higher frequency of weight transfer had, on

average, a 1.1% increase in testing accuracy compared to lower fre-

quency of weight transfer. The disadvantage of having a higher fre-

quency of weight transfer, however, is that it may be more

logistically challenging and may add to the total model training

time. In these cases, a lower frequency of weight transfer would still

produce results that are comparable to that of a model trained on

centrally hosted data. Lastly, we show that cyclical weight transfer

is robust even when there was an institution with variability (either

low-resolution images or few patients with class-imbalance), simu-

lating a real-world scenario. We show that cyclical weight transfer

performs similarly when the variable institution was introduced

compared to when the variable institution is skipped entirely in

terms of testing accuracy. In other words, variability did not signifi-

cantly compromise the performance of the model with the cyclical

weight transfer training heuristic.

In our experiments with 4 institutions, we show that we are able

to achieve high model performance without having the data cen-

trally hosted. We next investigated whether high model performance

can be achieved when the performance of any single institution is no

better than random classification. We divided 6000 patient samples

from the Diabetic Retinopathy dataset into 20 institutions, each

with 300 patient samples. Indeed, when we trained a model using

data from one institution, the performance was no better than ran-

dom classification. As we increased the number of collaborating

institutions (using cyclical weight transfer), we observed an increase

in testing accuracy. With all 20 institutions, cyclical weight transfer

achieved a testing accuracy on par with centrally hosted data with

all 6000 patient samples. This simulates a scenario where patient

data are dispersed sparsely across many different institutions, and it

is impossible to build a predictive model with data from any single

institution. There are many situations (especially with rarer patient

conditions) where no single institution has much patient data. In

such cases, model distribution can effectively utilize data from many

institutions as long as the institutions are willing to distribute the

model. In other words, if all institutions participate, they can, in es-

sence, build a model capable of performing as if they had open ac-

cess to all the data.

One limitation is that our “institutions” were sampled from a

single dataset (such as Kaggle Diabetic Retinopathy dataset) and

thus, do not display much variability from one institution to the

next. To address the possibility of variability, we performed experi-

ments in which we altered one institution to either have low-

resolution images or low numbers of patients with class imbalance.

Future studies can explore the scenario where there is variability in

multiple institutions such as the case where there is class imbalance

in multiple institutions or the case where each institution is derived

from a unique patient population. Furthermore, for the Diabetic

Retinopathy and DDSM datasets, the neural networks were trained

to perform a binary classification problem. In practice, multi-label

problems are commonplace, but our work does not address how the

added complexity would impact the various training heuristics. Fu-

ture work can investigate the performance of distributed training

heuristics in scenarios with multiple labels and more narrow deci-

sion boundaries. Also, we only investigated distributed learning in

the context of a convolutional neural network. Distribution of mod-

els across institutions for other forms of deep learning, such as

autoencoders, generative adversarial networks, and recurrent neural

networks, warrant further study. Lastly, parallel distributed training

methods could be explored as an option for cases when faster train-

ing is required. Future work will be on developing an open-source

platform for distributed training. One key feature that is needed

within this platform for cyclical weight transfer is that training at a

given institute only begins after the training at the previous institute

is completed.

CONCLUSION

In this study, we address the question of how to train a deep learning

model without sharing patient data. We found that cyclical weight

transfer performed comparably to centrally hosted data, suggesting

that sharing patient data may not always be necessary to build these

models. This finding has applications for any collaborative deep

learning study.
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