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Extensive development of micro/nano-
electromechanical systems (MEMS/NEMS) has
resulted in technologies that exhibit excellent
performance over a wide range of applications
in both applied (e.g. sensing, imaging, timing and
signal processing) and fundamental sciences (e.g.
quantum-level problems). Many of these outstanding
applications benefit from resonance phenomena by
employing micro/nanoscale mechanical resonators
often fabricated into a beam-, membrane- or plate-
type structure. During the early development
stage, one of the vibrational modes (typically the
fundamental mode) of a resonator is considered in the
design and application. In the past decade, however,
there has been a growing interest in using more than
one vibrational mode for the enhanced functionality
of MEMS/NEMS. In this paper, we review recent
research efforts to investigate the nonlinear coupling
and energy transfers between multiple modes
in micro/nano-mechanical resonators, focusing
especially on intermodal coupling, internal resonance
and synchronization.

This article is part of the theme issue ‘Nonlinear
energy transfer in dynamical and acoustical systems’.

1. Introduction
Advances in micro-scale fabrication techniques have
led to the extensive development of micro/nano-
electromechanical systems (MEMS/NEMS) by enabling
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the integration of sophisticated mechanical and electrical elements into miniaturized devices.
Their compact dimensions, immense flexibility in materials and designs, and inherent
multiphysical nature allow these devices to exhibit remarkable attributes for various applications
with ultralow power consumption. Their performance largely depends on the functionality of
the mechanical components, which are often designed to exhibit mechanical motion at or near
their resonant frequencies. The high structural quality combined with the reduced effective
mass allows such mechanical resonators to operate at very high resonant frequencies and with
extremely high Q factors (i.e. low damping). These beneficial characteristics provide a basis
for exceptional performance in resonator-based MEMS/NEMS applications. Examples include
extremely sensitive sensors, mechanical energy harvesters [1], high-frequency radio-frequency
(RF) electronic components [2,3], micro/nano-relays [4,5] and field effect transistors [6,7].

For most micro/nano-mechanical resonators, one of the vibrational modes is used to fulfil
their design purpose in their applications. For instance, MEMS/NEMS resonant sensors monitor
the changes in frequency or amplitude of one of the resonant modes caused by an external
mass/force perturbation to the resonator. In this case, the actuated resonant mode is modelled
as a single degree of freedom (SDOF) harmonic oscillator either by considering a lumped model
or by applying model reduction to a continuous system equation (e.g. Euler–Bernoulli beam). In
the past decades, however, there has been a growing interest in exploiting rich dynamic features
for use in practical MEMS/NEMS applications because the matured fabrication technology
and transduction schemes allow considerable opportunities to realize, tailor and exploit their
rich dynamic behaviour. One of the main areas of interest is exploiting the nonlinear features
originating from various sources in MEMS/NEMS devices. These include geometric nonlinearity,
nonlinear external potential, nonlinear damping and inertial nonlinearity, all of which are well
explained in previous reviews [8–12].

More recently, there has been an increasing interest in exploring multiple modes via modal
coupling. Multimodal functionality of MEMS/NEMS can be achieved either by coupling two
or more mechanical resonators via electrostatic, optical and mechanical forces or by nonlinearly
coupling two or more vibrational modes within a unitary resonator. In a linear context, coupling
two mechanical resonators via an elastic spring has been common in the designs of MEMS
filters [13–16] and inertial sensors [17–19] from the early development stage. For mass sensing,
multimode measurements of a resonator or coupled resonators have become a new paradigm
to improve sensitivity and accuracy [20–23]. As a turning point, in the early 2000s, complex
nonlinear dynamics characterized in an electrostatically coupled microbeam array [24] and
intrinsic mode localization observed in a microcantilever array mechanically coupled via a
common overhang [25,26] have drawn attention and motivated theoretical and experimental
works in the field. To achieve a coherent response from these micro/nano-array systems,
investigation of the synchronization of mechanical oscillators has also been initiated. Hence,
modal coupling has become an important issue in the design and analysis of MEMS/NEMS,
where appropriate engineering of the modal coupling mechanisms leads to unprecedented rich
nonlinear features that open up new windows to deal with fundamental quantum, transduction
and design problems. At the same time, internal resonance, achieved by enforcing an integral
frequency ratio between the coupled modes, has also attracted significant interest as a mechanism
to promote stronger coupling and energy transfer.

Hence, we aim to provide a review of previous and ongoing research efforts related to
nonlinear interactions between resonance modes in micro- and nano-mechanical resonators. The
nonlinear nature of mode coupling induces various interesting phenomena, and this review
mainly focuses on (i) nonlinear intermodal coupling within a mechanical resonator, (ii) internal
resonance and its applications and (iii) phase synchronization in mechanical oscillators.

2. Nonlinear intermodal coupling
While a micro/nano-mechanical resonator is often modelled as a SDOF oscillator when one of the
modes is driven, there theoretically exist an infinite number of vibrational modes in a continuous
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system. When two or more of these modes are excited simultaneously in a nonlinear resonator,
the single resonator system should be modelled as multi-DOF (MDOF) oscillators coupled with
each other while the engaged modes are internally coupled; this is called (nonlinear) intermodal
coupling. The most common type of micro/nanostructures that have been used to study nonlinear
intermodal interactions are beams, tubes, membranes and discs with all boundaries fixed to an
anchor. These devices are suitable to trigger nonlinear intermodal interactions between two or
more vibrational modes via the displacement-induced tension in the structure. This mechanism is
similar to the tension-induced hardening behaviours commonly modelled by a Duffing equation
for a SDOF system. Even in an inextensional structure such as a cantilever with one free end, the
nonlinear modal interaction can still originate from curvature and inertia nonlinearities [27,28].
Dissipative coupling is another mechanism that has been suggested to couple vibrational modes
in a fixed–fixed beam incorporating a nanoscale beam attachment [29,30]. In all these cases, the
intermodal interaction modifies the damping and/or stiffness of the modal response. The coupled
equations of motion to describe a mechanical resonator eliciting two modal responses can be
generalized as follows:

ü1 +
(

ω1

Q1
+ Γ1(u1, u2)

)
u̇1 + (ω2

1 + Λ1(u1, u2, u̇1, u̇2, ü1, ü2))u1 + γ12u2 = F1(u1, u2, u̇1, u̇2, t),

ü2 +
(

ω2

Q2
+ Γ2(u1, u2)

)
u̇2 + (ω2

2 + Λ2(u1, u2, u̇1, u̇2, ü1, ü2))u2 + γ21u1 = F2(u1, u2, u̇1, u̇2, t),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(2.1)

where ui is modal coordinate; ωi and Qi are linear resonant frequency and quality factor,
describing the linear dynamic aspects of each mode; Γi and Λi are the terms manifesting
nonlinearity in the global dynamic response by modulating the modal damping, stiffness and
inertia with respect to the dynamic motions of elicited modes, whereas γ 12 and γ 21 are the
linear coupling coefficients. Note that the functions of Γi and Λi can induce nonlinearity by the
amplitude and velocity of both their own mode and another mode when coupled. For example,
Λ1 = αu2

1 + βu2
2 brings about cubic nonlinear stiffness and coupling terms (i.e. αu3

1 + βu2
2u1) in

the first modal equation in (2.1). The geometry, material, boundary conditions and transduction
schemes should determine the types of these functions and coupling coefficients to alter the global
nonlinear dynamics of the resonator with nonlinear intermodal interactions. Generally, when two
vibrational modes are actuated simultaneously, the nonlinear modal interaction should affect the
modal resonant behaviour by altering the resonance frequency and/or Q factor.

Baskaran et al. [31] reported one of the earliest works experimentally observing modal coupling
in a torsional oscillator in 2003. The device showed non-degenerate parametric coupling between
the torsional modes as it was electrostatically excited at the sum of the first and second modes.
For the directly excited intermodal coupling, Westra et al. [32] reported the detailed experimental
characterization of intermodal coupling in a microresonator in 2010. A single-crystalline silicon
beam with both ends fixed, shown in figure 1a, was driven at two frequencies near the first and
third flexural mode, and its dynamics were monitored at each mode. Figure 1b,c show that the
resonance frequency of the third mode increases with respect to the amplitude of the first modes.
By using the modal interaction, the second mode resonance can be detected by monitoring the
frequency shift in the first resonance frequency as shown in figure 1d. Such a resonance detection
scheme exploiting the intermodal interaction has also been used in later works [33–35]. In these
works, the intermodal coupling was used as a tool to obtain the spectrum of a mechanical
structure by monitoring the first mode frequency shift using a phase-locked loop, while an
auxiliary drive signal scanned for other (higher) modes. This mechanism was also suggested to
fulfil a quantum nondemolition measurement of the excitation level by measuring the phase shift
of the ancilla oscillation that is internally coupled to the excitation mode [36].

The simplest modelling approach has been proposed in [37], with a solely linear coupling
term where DC bias voltage is used to couple two orthogonal in-plane and out-of-plane modes
of a silicon nitride string. The authors further studied diabatic to adiabatic transitions between
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Figure 1. Modal interaction in a doubly clamped microbeam [32]. (a) Experimental set-up, with a coloured SEM image of the
resonator beam. (b) Larger amplitude oscillations in the first mode (A1) increase the resonant frequency of mode 3. (c) The
resonance frequency of mode 3 is increased by an increase in the first mode amplitude (A1). (d) The resonance of the second
mode can be detected by monitoring the shift in the first resonance frequency. (Online version in colour.)
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Figure 2. Modal interaction in a carbon nanotube resonator [28]. (a) The resonant frequency of mode A shifts to lower
frequencies when the RF signal of the second generator hits the resonance frequency of mode B. (b) At slightly higher gate
voltage, the trend changes and modal interaction increases the resonant frequency of mode A. (c) Depending on the gate
voltage, the intermodal coupling can induce either stiffness-softening or stiffness-hardening effect. (Online version in colour.)

the two modes in the region of strong coupling. In Truitt et al. [38], the mechanism of linear and
nonlinear coupling was investigated in a clamped–clamped nanobeam driven electrostatically.
Here, the nonlinear coupling was again induced by the displacement-dependent tension to result
in a frequency shift. The authors also found that the electrostatic tuning enabled the degenerate
modes elicited with linear coupling, which led to natural frequency veering (i.e. an avoided
crossing of the resonant frequencies). Quadratic coupling can also arise in circular membrane
resonators [39,40] or when there is a static deflection in the system [41]. To characterize the
accurate intermodal coupling experimentally, Matheny et al. [42] proposed an experimental
protocol enforcing a highly linear transduction scheme.

In later works by Castellanos-Gomez et al. [28], it was shown that the mechanism of the
intermodal interaction can be different in a carbon nanotube (CNT) resonator. Compared to the
silicon systems in which modal coupling is dominated by displacement-induced tension and
results in stiffness-hardening effects only, the single-electron tunnelling in a CNT provides a
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Figure 3. Cooling the fundamental mode through a phonon cavity [46]. (a) Energy in the first mode can be transferred to the
phonon cavity by pumping energy in the anti-Stokes sideband frequency. (b) Higher level of pumping drains more energy from
the first mode. (c=d) At higher anti-Stokes pumping levels, almost all the displacement energy is transferred to the phonon
cavity, resulting in the quality fraction Q1 and temperature T of the first mode reducing. (Online version in colour.)

coupling between the modes six orders of magnitude stronger. Hence, by controlling an external
gate voltage, the coupling can be tailored to be stiffness softening or stiffness hardening, as shown
in figure 2. Moreover, the high-frequency tunability and capacity to sustain the large strains
achievable in CNT and graphene resonators make them ideal for investigating the nonlinear
phenomena related to tunable intermodal coupling [40,41,43]. Modal coupling has also been
reported to exist between planar and whirling modes in a fixed–fixed CNT [44] and between
flexural modes in a fixed–free CNT [45]. The coupled mode can confine the amplitude of the
self-resonating oscillator via the mechanism of modal energy transfer.

Intermodal coupling is also exploited as a mechanism to tune the dissipation of mechanical
modes [27,40,43,46–48]. In these works, the internally coupled secondary mode is considered to
be a mechanical (phonon) cavity as a counterpart of a photon cavity in cavity optomechanics [49].
Just as is achieved in cavity optomechanical systems, the mechanical sideband excitation enables
control of the Q factor and the achievement of a mechanically induced transparency, as illustrated
in figure 3.
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3. Internal resonance
The nonlinear coupling and associated nonlinear energy transfer become stronger when the
engaged modes are commensurate or nearly commensurate with an integer frequency ratio
[50], which is called internal resonance or autoparametric resonance. When internally coupled
modes operate at well-separated and non-commensurate frequencies, the effect of coupling is
rather modest compared with the case of internal resonance, in which the global dynamics
and resonance curve can be completely altered. One of the interesting features enabled by
internal resonance is the amplitude saturation phenomenon: above a threshold force triggering
strong nonlinear modal coupling, the energy pumped in the driven mode is transferred into the
undriven, internally resonated mode, and then the amplitude of the driven mode is saturated to
be constant.

To implement internal resonance in a device, a careful structural design is typically required
to enforce an integral ratio between mode frequencies. In micro/nano-systems, however, the
attributes of frequency tunability, highly nonlinear coupling and low damping make achievement
of internal resonance relatively feasible. For example, Younis & Nayfeh analytically investigated
the possibility of activating a 3 : 1 internal resonance in an electrostatically driven microbeam
resonator as the mode frequencies are varied by the applied DC voltage [51]. In a recent study by
Li et al. [52], the internal resonance in a similar system was more thoroughly investigated based
on the method of multiple scales to describe the resonance curves, nonlinear energy transfer and
vibration profile curves. The authors also performed Hopf bifurcation analysis to determine the
effect of frequency detuning and electrostatic force level on the strength of the modal coupling.
Motivated by the experimental study of the aforementioned microarrays, nonlinear internal
resonance of a microbeam array was also studied analytically [53–55]. Another analytical study
was conducted by Vyas et al. [56–59], and the authors suggested a unique T-beam structure to
explore the characteristic features of internal resonance for MEMS applications. This approach
was extended to a hyperelastic plate with material nonlinearity [60]. More recent analytical
investigations of internal resonance are found in [61–64].

While many theoretical investigations about internal resonance thrived in the 2000s,
experimental realization and applications matured starting in the early 2010s. To the best of the
authors’ knowledge, Antonio et al. [65] first reported on the internal resonance encountered in
a beam resonator, in which the third mode frequency happened to be near three times the first
mode frequency. Given the nonlinear energy transfer via internal coupling between these two
modes, the authors exploited internal resonance as a mechanism to stabilize the frequency in a
MEMS oscillator, as illustrated in figure 4. The hardening nonlinear resonance curve of the first
mode in figure 4b shows a sharp dip at the frequency of f ir, where the internal resonance occurs.
At this internal resonance condition, the higher-frequency mode drains mechanical energy from
the first mode to drop its modal amplitude while generating a higher-frequency peak at 3f ir.
By using the nonlinear energy mechanism, the output frequency of a MEMS oscillator based on
this resonator was stabilized within the range over which the internal resonance condition was
satisfied (cf figure 4c). In another work by Kirkendall et al. in 2013 [66], a similar sharp dip in
the resonance response of a quartz crystal was observed due to 1 : 1 modal coupling. In a more
recent work from the same group [63], rich multistability and dynamic bifurcations were observed
in experimentally measured reflection parameters in an electroelastic crystal plate due to a 1 : 3
internal resonance. The authors investigated the effect of frequency sweep rate on the resulting
nonlinear dynamics, and interestingly, their experiments were able to capture drastic changes of
response with respect to the sweep rate.

At about the same time and thereafter, internal resonance was also observed in nano-
mechanical systems based on novel nanomaterials such as CNT [41], graphene [40] and MoS2
[67]. Because the mode frequency of nanomaterials is highly tunable, the internal resonance
condition of an integer frequency ratio between modes is more possibly satisfied within the
tunable frequency range, as seen in figure 5a–c. While the resonance frequency was tuned
from 62 to 84 MHz by varying the gate voltage, the M-shape of frequency response, which is
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characteristic for internal resonance, was observed around 70 MHz. In micro-scale devices, a
careful optimization to satisfy the commensurate condition was applied to design an H-shape
resonator incorporating 1 : 2 internal resonance [68,69]. The experimental characterization of these
systems has clearly shown the characteristic dynamic features due to internal resonance, exotic
M-shaped resonance curve, nonlinear energy transfer and amplitude saturation, as illustrated in
figure 5d–f. Autoparametric amplification was also reported in a micromechanical disc resonator
due to internal resonance between the degenerate vibrational modes, when the frequencies of
these modes are electrostatically tuned to match perfectly [70].

Internal resonance has also been exploited in a microcantilever design to achieve
multifrequency atomic force microscopy (AFM) [71–76]. Various schemes of multifrequency AFM
have been developed to characterize a sample beyond topography [22]. For bimodal AFM, one of
the representative multifrequency techniques, two modes of a microcantilever are excited and
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Figure 5. (a–c) Internal resonance in a carbon nanotube (CNT) resonator [41]. (a) The coloured SEM image of the suspended
CNT with the schematic side view of the system on the bottom. (b) Contour map of the resonant frequency as a function of gate
voltage reaveals high-frequency tunability of CNT. (c) Frequency response plots at increasing gate voltages from left to right
while AC voltages in gate and source electrodes are kept constant. The characteristic M-shaped resonance is observed when
internal resonance is activated (symbol◦). (d–g) 2 : 1 internal resonance in an H-shaped resonator [68]. (d) SEM image of the H-
shaped resonator with actuation and detection electrodes. (e) Experimental internal resonance curve at increasing forcing level.
(f ) Simulation results show the energy transfer between the two coordinate displacements, X and Y, due to internal resonance.
(g) Amplitude saturation in the driven mode when internal resonance is triggered. (Online version in colour.)

detected to measure the topography and material compositional map simultaneously [77,78].
Recent works, however, have shown that a microcantilever specifically designed to realize
internal resonance can trigger two modes even with single-frequency excitation. Specifically,
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Figure 6. Multi-frequency atomic force microscopy realized by a new micro-cantilever design using internal resonance. (a)
The inner paddle attached to the base cantilever is designed to exhibit 1 : 3 internal resonance with nonlinear tip–sample
interaction. (b)The third harmonic signal amplified by internal resonance is sensitive to material stiffness. (c) Experimental
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with the first harmonic [73,75]. (Online version in colour.)

in [73–76], a microcantilever was designed with an inner paddle, as shown in figure 6, so that
the linearized frequencies of the leading bending modes of the base cantilever and the inner
paddle are in a 1 : n rational relationship. When nonlinearity is included in the dynamics through
the strong non-smooth nonlinear tip–sample interactions generated during the AFM tapping
operation, a strong nth harmonic component is passively triggered in the response of the paddle
via the internal resonance mechanism. Through detailed experimental and theoretical study, the
efficacy of the cantilever design was demonstrated to show that the nth harmonic signal amplified
through internal resonance provides stronger sensitivity to material composition compared with
the first harmonic signal.

Even more interestingly, the mechanism of internal resonance provides a unique pathway to
transfer the energy internally between the modes, which potentially suggests novel dissipation
engineering strategies. In the work of Chen et al. [79], the coherent energy transfer was
demonstrated in a clamped–clamped beam with 1 : 3 mode coupling as illustrated in figure 7.
When the input energy to the lower mode of the system is switched off, the higher mode
coherently transfers the energy back to the lower mode, instead of dissipating it to the
environment, so that the amplitude of the lower mode remains constant for a period of time
until the energy of the higher mode is exhausted. This occurs because the rate of energy exchange
between the nonlinearly coupled modes is orders of magnitude faster than the energy exchange
from extrinsic sources. In the same context, it was theoretically shown in [80] that the decay of
vibrational modes becomes strongly non-exponential and depends on the vibration amplitude,
whereas the higher mode acts as a thermal reservoir to the lower mode.

4. Synchronization
Synchronization is defined as self-tuning rhythms of oscillation patterns in the wake of weak
coupling between oscillators, and it is sometimes used interchangeably with frequency locking
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Figure 7. Coherent energy transfer between coupled mechanical modes by internal resonance [79]: the ring down response is
shown when the external drive is turned off at time equals 0, when the internal resonance condition is unsatisfied in (a,b) and
satisfied (c,d). The oscillation amplitude of the in-planemode and its temporal frequency response are plotted in (a,c) and (b,d),
respectively. Through the mechanism of internal resonance in (c,d), the coherent energy transfer happens for approximately
108 ms after the ring down starts to maintain the envelope of the oscillation constant. (Online version in colour.)

or phase locking. Exploitation of this behaviour is suggested for a number of applications,
such as signal processing, timing, computing and networking, because a coherent response
can be enforced in multiple oscillators. One of the early research interests in synchronization
in MEMS/NEMS is Hoppensteadt [81], in which the possibility of using networks of coupled
oscillators as data storage systems was theoretically investigated. Later works by Cross et al.
[82,83] also analytically modelled synchronization induced by nonlinear frequency pulling in
a system with reactive coupling to study the onset of synchronization and regions where full
synchronization occurs. Other works subsequently investigated enhanced frequency precision
achieved by synchronization [84]. Sahai et al. [85] employed dome-shaped oscillators as a specific
example to study the design parameters in which synchronization is implemented in two slightly
detuned oscillators. Most of the research conducted in the 2000s explored the analytical aspects
of the synchronization phenomena.
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In an experimental context, Shim et al. [86] reported one of the earliest experimental
works in the MEMS/NEMS field, achieving synchronization in a system of two microbeams
mechanically coupled by an elastic spring (cf. figure 8a). They excited one of two beams at
different subharmonic and superharmonic frequencies of the resonant mode and monitored the
frequency content of the second beam. The multiple regions of frequency entrainment were
represented graphically by characteristic Arnold’s tongues and devil’s staircase at different
subharmonics of the fundamental frequency. Agrawal et al. [90,91] investigated the mutual
synchronization in electrically coupled oscillators based on the double-end tuning forks resonator
and discussed the dependence of the locking range on system parameters such as amplitude,
cubic nonlinearity and coupling strength. Their experimental results showed a clear enhancement
of synchronization range with an increase in feedback voltage, which was related to amplitude–
frequency dependence with cubic nonlinearity. Such enhancement of synchronization by
nonlinearity was also confirmed in other works [87,92,93]. One of the obvious beneficial features
of the synchronized state is the improvement of frequency stability and reduction of phase
noise, commonly reported in most of these synchronized systems. More examples are found
in [94–96].

Synchronization has also been suggested to improve the performance of gyroscopes [70,88].
Experiments were performed on a silicon disc oscillator and its phase synchronization was
demonstrated. The lower mode frequency was controlled by the internally resonated higher mode
as illustrated in figure 8b. The measurements showed that synchronization range increases as
the first mode amplitude increases, but the reverse occurs when the second mode amplitude
goes up. The authors also characterized three different operational schemes of synchronization to
investigate its impact on the performance of gyroscopes and concluded that frequency stability is
enhanced at the expense of amplitude fluctuations. The authors also studied a silicon quad-mass
resonator excited and characterized using capacitive forcing and sensing [97]. They measured
the frequency responses at different bias voltages and observed hardening (with third-order
nonlinearity), hardening-to-softening transition (combined third- and fifth-order nonlinearity)
and softening (with fifth-order nonlinearity) as bias voltage increased. Accordingly, monolithic
increase in synchronization range was observed when the response was purely hardening or
softening, but in the transition response, the synchronization range first decreased and then
started to increase.

Optomechanical oscillators are a broad research area where coupling through the concept of
optomechanics offers advantages such as achieving strong, controllable coupling with less optical
loss, and the possibility of implementing to different complex geometries and physical sizes.
While this area itself is not highly correlated to the subject of this review, mainly considering
mechanical oscillators, it is worth noting that the optical coupling between mechanical oscillators
is another mechanism to induce synchronization. Optically coupled optomechanical oscillators (cf
figure 8c) in which coupling is achieved through an optical cavity radiation field have been shown
to be a unique platform to study synchronization of mechanical oscillators [89,98]. The onset
of synchronization between two mechanical oscillators or oscillator arrays was experimentally
realized by varying the laser pump power. Furthermore, it was shown that the phase noise in
synchronized signals can drop below the thermomechanical noise limit of a single oscillator.
Synchronization enabled by optical cavity coupling has been also applied in other geometries,
such as a pair of microbeams [99] and nano-membranes [100].

5. Conclusion
Exploring the rich dynamics and energy transfers uniquely enabled by nonlinearity has been a
long-time research and engineering topic over a broad spectrum of scientific and technological
areas. MEMS/NEMS have realized various types of nonlinear behaviours, either intentionally
or inadvertently. Given the liberal flexibility in the fabrication and materials, micro/nano-
mechanical resonators have also presented an ideal testbed to study the fundamental aspect
of nonlinear resonance and quantum-level problems. At the same time, the explored nonlinear
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dynamic features can be widely implemented in resonator-based MEMS/NEMS applications to
expand functionality and improve performance.

While the understanding and exploitation of the primary hardening/softening resonance
and parametric resonance in micro/nano-systems has matured over the last three decades, the
nonlinear energy transfers in micro/nano-mechanical resonators with modal coupling are in
the early stage of exploration for potential MEMS/NEMS applications. This is largely because
primary nonlinear and parametric resonance has been routinely observed in MEMS/NEMS
due to geometric nonlinearity and time-varying electrostatic forces, whereas the multimodal
operation requires a careful design of systems and experiments. Regardless of nonlinear
resonance types, the constructive utilization of nonlinear phenomena and energy transfers
can provide diverse pathways to develop new applications and technologies related to
MEMS/NEMS, as reviewed in this paper. With the ability to tailor and optimize targeted
nonlinear behaviour based on a firm fundamental understanding of nonlinear systems,
MEMS/NEMS will continue to revolutionize science and technology.
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