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INTRODUCTION

The extracellular matrix (ECM) in animal cells is a vital extra-
cellular scaffold that is composed of various protein compo-
nents, such as fibronectin, laminin, collagen, proteoglycans, and 
other soluble molecules [1]. The constituent macromolecules of 
the ECM have structural and chemical properties that are func-
tionally suited to their native functions in their respective tis-
sues [2]. These multimolecular structures are interconnected 
with each other and build a complex 3-dimensional (3D) ma-

trix network [3]. The ECM is a dynamic network that provides 
support and biomechanical cues to cells and is involved in sig-
naling, homeostasis, differentiation, migration, and repair of a 
variety of tissues [4,5]. Both in physiological conditions and dur-
ing disease development, the processes, structures, and proper-
ties of ECMs are remodeled in multiple ways [3,6,7].
  Based on their source, ECMs can be classified as native ECMs, 
which are isolated from cells, tissues, or organs, and artificial 
ECMs, which are fabricated by mimicking the natural process of 
fibrillogenesis. In recent years, numerous studies on the role of 
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Native and artificial extracellular matrices (ECMs) have been widely applied in biomedical fields as one of the most effective 
components in tissue regeneration. In particular, ECM-based drugs are expected to be applied to treat diseases in organs rele-
vant to urology, because tissue regeneration is particularly important for preventing the recurrence of these diseases. Native 
ECMs provide a complex in vivo architecture and native physical and mechanical properties that support high biocompatibili-
ty. However, the applications of native ECMs are limited due to their tissue-specificity and chemical complexity. Artificial 
ECMs have been fabricated in an attempt to create a broadly applicable scaffold by using controllable components and a uni-
form formulation. On the other hands, artificial ECMs fail to mimic the properties of a native ECM; consequently, their appli-
cations in tissues are also limited. For that reason, the design of a versatile, hybrid ECM that can be universally applied to vari-
ous tissues is an emerging area of interest in the biomedical field.
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native ECMs in biomedicine have been published, showing that 
native ECMs support 3D tissue culturing, promote wound heal-
ing, trigger stem cell differentiation, and have applications as 
drug screening tools. In particular, ECMs are expected to be ap-
plied to urology-related organs (i.e., the kidneys, adrenal glands, 
and reproductive organs) [7-14]. Native ECMs trigger stem cell 
differentiation and wound healing by seeding specific cells onto 
native tissues or cells [15-17]. The advantages of native ECMs lie 
in their ability to provide the necessary environmental cues to 
stimulate cell-based repair pathways and to promote adaptive re-
modeling toward functional recovery [18]. In addition, native 
ECMs can also be used as drug screening tools that support re-
search into the molecular mechanisms of cancer cells by clinical-
ly and naturally mimicking the tumors’ microenvironments. Na-
tive ECMs have many applications because of their high biocom-
patibility, ability to replicate complex in vivo architectures, and 
native physical and mechanical properties. Nonetheless, the ap-
plications of native ECMs remain limited due to their tissue-

specificity, multiple and heterogeneous components, and com-
plex nonuniform structure [8,19-21]. The qualitative and quanti-
tative chemical composition of a native ECM determines its vis-
coelastic character, mechanical properties, and native function 
[22,23]. Current studies are emphasizing the synthesis of scaf-
folds that mimic the chemical complexity and architecture of na-
tive ECMs in efforts to overcome their limitations.
  In previous studies, artificial scaffolds were successfully fabri-
cated by adopting the processes of fibrillogenesis and morpho-
genesis that occur in the human body [7,24,25]. Current artifi-
cial ECMs that mimic native ECMs are composed of artificial 
polymers or selected components, such as elastin, collagen, lam-
inin, and fibronectin. Such artificial scaffolds have a wide range 
of applications due to the controllability of their components, 
the useful properties of their various components, and their uni-
form formulations. However, artificial ECMs often have the dis-
advantage of failing to have the highly variable biochemical 
properties and architecture of the native ECM of each tissue. 

Fig. 1. Hybrid extracellular matrix (ECM)-architecture for next-generation tissue engineering. The hybrid ECM, which can be broad-
ly applied to all tissues and organs, is a strategy for adopting the advantages of native ECMs and artificial ECMs.
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The simple architectures of artificial ECMs cause limited bio-
compatibility in tissue applications (Fig. 1). The challenges in 
achieving the high variability of native ECM for specific tissues 
have led to efforts to develop hybrid ECM architectures that can 
be applied to all tissues and organs. However, the lack of re-
search characterizing the chemical complexity and components 
of the native ECM in each tissue has limited the development of 
hybrid ECMs. In this review, in order to highlight the crucial 
components for hybrid ECMs, we focus on the main differences 
between native and artificial ECMs in terms of chemical com-
plexity, structure, synthesis, and purification. Although studies 
have yet to be conducted with the goal of designing versatile, 
hybrid ECM architectures, we are confident that attempts at re-
search in this area will be made in the near future.

NATIVE AND ARTIFICIAL ECMs AND THEIR 
APPLICATIONS IN TISSUE ENGINEERING

Chemical Complexity and Tissue Variation of Native ECM
Native ECM represents a biomaterial scaffold that is generated 
from tissues or typical cells, such as fibroblasts, endothelial cells, 
keratinocytes, and mesenchymal stem cells, and is then purified. 
Recently, some studies have reported that both cancer cell lines 
and stromal cells deposited ECMs. The major constituents are fi-
brous proteins, such as collagen, fibronectin, laminin, and elas-
tin, and nonfibrous proteins, such as proteoglycans and glycos-
aminoglycans, which are connected to each other to build a 
complex 3D matrix network [3,26]. Even though these compo-
nents form the basic structure of native ECMs, the proportion of 
each component varies considerably across tissue types and can 
change considerably due to pathological conditions. In particu-
lar, the biosynthesis and structure of collagen are modified dur-
ing remodeling of the ECM in several pathologies, including tu-
morigenesis. A further example of variability is furnished by the 
distribution of laminin isoforms, which vary greatly from tissue 
to tissue, suggesting that laminin has tissue-specific functions [8].
  The ECM forms a tissue or an organ that has an enormous di-
versity of shapes and functions. Cell- and tissue-derived ECMs 
are present in various tissues in the human body, such as skin, 
cartilage, bones, teeth, and the extracellular space. More specifi-
cally, the structure, viscoelastic character, mechanical properties, 
and native functionality of an ECM are determined by its chemi-
cal complexity [22,23]. An ECM derived from a specific tissue, 
however, consists of a large variety of macromolecules, with not 
only a precise tissue-specific composition but also a particular 

architecture. Therefore, it is important to summarize and com-
pare the chemical complexities of and variations in the ECMs in 
many different tissues. For example, as described in Table 1, the 
ECM of adipose tissue is mainly composed of collagen IV, while 
the ECMs of bone and teeth tissues are composed of calcified 
ECM compounds (Table 1). Collagen IV is specific to the ECM 
of human adipocytes, which controls the pathology of obesity-
related diseases [27]. The ratio between elastin and collagen in 
the ECM derived from human adipocyte tissue determines its 
biomechanical properties [28]. Bones and teeth are composed of 
calcified ECM (Table 1), which undergo mineralization to sup-
port the structure. In contrast, the ECM in ligaments or tendons 
is mostly composed of collagen (75%–85% of dry tissue weight). 
Collagen forms a fibrous architecture that confers outstanding 
mechanical strength to tendons. Furthermore, collagen has been 
found to be the most abundant chemical in the ECM derived 
from human skin. Collagens I and III are major components of 
the interstitial matrix, while collagen IV is the major component 
of the basement membrane. A defect in fibrillogenesis can lead 
to abnormal collagen fibers, which, in turn, alter the properties 
of the skin, clinically manifesting as skin disease [29].
  The chemical complexity of a native ECM also determines 
the native function of the tissue. In human mesenchymal stem 
cells, the ECM supports stemness and enhances cell prolifera-
tion [30]. In particular, fibronectin plays the role of a mechano-
regulator, translating the microenvironmental signals that regu-
late stem-cell differentiation [31]. In particular, fibronectin and 
collagen can be utilized as valuable markers of tumor develop-
ment in urology-related organs, such as the bladder [32,33]. 
Similarly, hyaluronan and matricellular proteins are important 
constituents of metastatic niches in patients with breast cancer. 
Moreover, specific ECM molecules and their receptors or enzy-
matic modifiers play important roles in therapeutic resistance 
[34]. In human corneal tissue, the composition of the ECM in-
fluences fibroblast migration. Laminin-5- and laminin-10-me-
diated cell migration occurs through the binding of integrin 
α3β1 in corneal epithelial cells [35]. Fibronectin and chondroi-
tin sulfate significantly increase migration; however, collagens 
V and VI serve as poor substrates for cell attachment, which is 
important for cell migration [35]. Dysregulation of the struc-
ture and chemical composition of the ECM leads to disease. 
For instance, urinary fibronectin concentrations were found to 
be significantly higher in patients with bladder cancer and lithi-
asis than in healthy individuals [36].
  In the fabrication of a native ECM from cell- and tissue-de-
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rived ECMs, decellularization is an important process for re-
moving cells from the scaffold without disturbing the chemical 
complexity and the mechanical structure of the matrix, includ-
ing its microstructure and stiffness. Decellularized ECM scaf-
folds have broad applications in tissue engineering, wound heal-
ing, and disease modeling [9,16,18,37-40]. The characteristics of 
those decellularized ECM scaffolds, such as their good biocom-
patibility, nontoxic catabolites, and microinflammatory charac-
teristics, as well as their regenerative ability, hold great potential 
for tissue engineering and wound healing [40]. The decellular-
ization of sterilized porcine bladder and urologic ECM as a ma-
terial for bladder scaffolding and lower urinary tract reconstruc-
tion has shown promising results [41]. Therefore, it has potential 
applications in general tissue engineering, and especially in the 
treatment of stress urinary incontinence [42]. Furthermore, a 
decellularized ECM can favorably support 3D cell culture setups 
that mimic the microenvironment of cancer, with potential ap-
plications in cancer modeling for drug screening [38]. 

Artificial ECM as a Broadly Applicable Scaffold 
Currently, in the field of tissue engineering, increasing interest is 
emerging in artificial ECMs for remodeling, regenerating, or re-
placing damaged tissues and organs. Artificial ECMs that are ap-
propriately prepared can physically mimic native ECMs and can 
functionally support cell growth and maintain homeostasis [13]. 
Many different types of ECM scaffolds have been constructed us-
ing a variety of materials, ranging from tissue- and cell-derived 
materials to synthetic biomaterials [9]. Artificial ECMs have 
many advantages in terms of reproducibility and cost compared 
to native ECMs. However, compared to tissue- or cell-derived 
ECMs, artificial ECMs may not be fully biocompatible and bio-
functional [43,44]. Therefore, artificial ECMs should be designed 
by adopting the real chemical complexity and structure (scaffold) 
of a native ECM. In nature, native ECMs are fundamentally made 
by a process known fibrillogenesis, suggesting that it is possible, 
in principle, to synthesize complex ECM architectures using these 
biochemical reactions.
  Previous studies, in fact, revealed that artificial ECMs could 
be constructed using a fibrillogenesis-mimicking reaction and 
could successfully support cardiomyocytes and neonatal neu-
rons [24,25]. Roy et al. [45], by directly coupling the open hepa-
rin-binding fibronectin III1 fragment (FNIII1H) to the integrin-
binding domain (FNIII8–10), developed a fibronectin matrix 
mimetic that had regulatory effects similar to those of ECM fi-
bronectin on cell function. This matrix supported cell spreading, 

growth, migration, and contraction through a FNIII1H-depen-
dent mechanism to a greater extent than cellular fibronectin 
[46]. A similar result was reported by Dubey and Mequanint 
[47], who conjugated fibronectin onto highly porous 3D poly 
(carbonate) urethane scaffolds through grafted poly (acrylic 
acid) spacers on the urethane backbone; this modified scaffold 
promoted coronary artery smooth muscle cells better than a 
scaffold without fibronectin conjugation. Adding fibronectin to 
elastin-like protein also enhanced endothelial cell and mesen-
chymal stem cell compatibility through increased cell adsorp-
tion and viability [48]. Moreover, fibronectin and hydroxyapatite 
coatings increased the efficiency of fibroblast attachment and 
cellular activities [49]. A fibronectin-based artificial matrix was 
also successfully constructed on a titanium surface using an 
electro-dropping technique. This engineered matrix significant-
ly promoted preosteoblast proliferation and had potential bone 
regeneration applications [50]. In injured bladders, fibronectin 
showed higher adherence, proving that it exerted a protective ef-
fect in hybrid urologic tissue engineering applications [51,52]. 
The ability of fibronectin to incorporate a myriad of substrates 
and to direct cell proliferation makes it a favorable candidate for 
use as a bioactive material in cell culture and tissue regeneration.
  Laminin-derived peptides and laminin-peptide-conjugated 
scaffolds are also considered to be promising materials for tissue 
engineering [11,30,53]. Because laminin exists in various types 
of isoforms in each tissue, incorporating an integrated laminin 
isoform into the scaffold has been considered as a strategy for 
overcoming the variability of the artificial matrix. Incorporating 
laminin into the scaffold could reduce inflammation and foster 
re-epithelialization, differentiation, angiogenesis, and cell migra-
tion [54,55]. Laminin absorbed into micropattern surface poly 
(L-lactic acid) nanofibers enhanced neuron viability [56]. The 
coupled laminin and other chemical cues exerted synergistic ef-
fects to enhance directional neurite outgrowth. Another strategy 
for producing an artificial cell-mimicking basement membrane 
for a cell-derived ECM involves isolating a number of laminin-
derived peptides and coating them with chitosan and alginate 
[57]. The laminin-coated scaffold improved the infiltration of 
human-induced pluripotent stem cells, promoting the recovery 
and differentiation of neurons [58,59]. 
  Collagen type I is a component that is commonly used to con-
struct ECM-mimicking scaffolds in tissue engineering. Yuan et 
al. [60] designed a scaffold of collagen type I hydrogel that had 
fewer immunogenicity effects on engineered cartilage based on 
chondrocytes, thus making it a potential biomaterial for use in 
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tissue engineering. Collagen-based collagen fiber and bioglass 
show good biocompatibility and promote the spread, as well as 
the proliferation, of bone marrow cells; thus, they are considered 
to form an ideal scaffold for bone tissue engineering [61]. A col-
lagen-in-hydroxyapatite scaffold complex that increased cell at-
tachment was reported by Villa et al. [62]. Nanosilver-embedded 
collagen scaffolds coated with either laminin or laminin and fi-
bronectin have also been reported to be effective in promoting 
axonal regeneration and recovery [63]. The growth rates of Ger-
man Landrace urothelial cells and smooth muscle cells were sig-
nificantly higher on collagen-composed scaffolds. This growth 
behavior showed that these collagen scaffolds were adequate for 
urologic tissue regeneration [64,65].
  Artificial biopolymers and composites, such as chitosan, al-
ginate, silk, fibrin and hydrogels, are promising biomaterials 
that promote wound healing due to their appropriate properties 
for tissue regeneration. Chitosan, in a scaffold combination, is 
one of the most widely used materials that support the recon-
nection of cultured Schwann cells. Cells seeded on chitosan 
scaffolds produced higher amounts of laminin and collagen IV 
than those grown on a plane, thereby creating favorable condi-
tions for nerve regeneration [60,66]. Moreover, a chitosan scaf-
fold with incorporated collagen I has been proposed as a poten-
tial material for wound healing [67]. Another scaffold that has 
been widely used in tissue engineering is silk fibroin, which has 
been used clinically in surgical silk sutures for years. However, 
the nanofibrous structure of ECMs remains a challenge to fab-
ricate [68]. As a solution to this problem, chitosan and silk fi-
broin have been merged to yield better cell-culture performance 
[69]. A chitosan hybrid ECM was developed to improve adhe-
sion capacity in comparison with alginate (polysaccharide iso-
lated from seaweed) polymer fibers [70]. Another biomaterial 
scaffold was derived from gelatin in a collagen scaffold; that 
scaffold was found to have better physical properties than a 
scaffold of collagen only [71]. Furthermore, fibrin is another 
biopolymer with characteristics suggesting that it may have the 
potential to mimic a functional ECM; furthermore, it is associ-
ated with other ECM components [72,73].
  Overall, artificial ECMs have broader applications, such as 
3D bio-inks, cell sheets, scaffolds, and multicomposites, owing 
to the controllability of their components and their uniform 
formulation. However, when an artificial ECM fails to adopt 
the highly variable biochemical characteristics and architecture 
of native ECM in each tissue, it has limited biocompatibility in 
tissue applications (Fig. 1).

CONCLUSION AND FUTURE PERSPECTIVES

A number of strategies that rely on different targets of the dis-
ease have been pursued to prevent and kill cancer cells. Most 
anticancer drug candidates fail to be approved for clinical appli-
cations because of inadequacies in the study of the molecular 
mechanism of cancer progression, identification of therapeutic 
targets, and tests of drug candidates using tissue culture models 
that cannot precisely mimic the native microenvironment. 
Drug candidates often reveal in vitro cytotoxicity with a loss of 
in vivo activity, and in many cases, this results from a poor un-
derstanding of the effects of chemoresistance in the environ-
ment of cancer [74]. A 2-dimensional (2D) cell culture cannot 
mimic the real environment in which cancer cells grow and 
proliferate. Therefore, constructing an appropriate cell culture 
system, similar to the actual microenvironment, is important if 
the gap between in vitro and in vivo experiments in preclinical 
trials is to be removed. Three-dimensional cell cultures are 
more natively and clinically similar to the native environment 
of cancer cells than 2D models. Even though the idea of 3D cul-
turing is not novel, some difficulties in mimicking a native 
ECM biophysically and biochemically still remain [75,76].
  Biomaterial scaffolds have been applied for wound healing, 
restoration and reconstruction. These biomaterial scaffolds have 
good biocompatibility, nontoxic catabolites, microinflammatory 
characteristics, and regenerative ability, which give them great 
potential for use in tissue repair [39]. Both natural polymers and 
ECMs exhibit the ability to regenerate cells. Native ECMs de-
rived from adipocyte stem cells have been reported to exert a re-
generative effect on chronic wounds [16]. Cell-derived, native 
ECMs are also regularly used in tissue engineering applications 
because they have the advantages of allowing pathogen-control-
lable ECM harvesting and providing the same geometries and 
porosities without the limitation of poor cell penetration. Other 
advantages of cell-derived ECMs include the possibility for them 
to be anchored with ECMs from other cells and to be prepared 
from autologous cells [77,78]. Native ECMs have been shown to 
support adhesion, to promote cell proliferation and differentia-
tion, and to facilitate tissue regeneration in cartilage and in 
esophageal and skin cells [15,79,80]. The challenge in tissue re-
generation is that tissues must match between the recipient and 
the donor in order to avoid immune rejection [12,81,82]. There-
fore, methods have been developed to decellularize tissue and 
whole organs, leaving the native ECM to create tissue and whole-
organ scaffolds that can be reseeded with host cells. 
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  Recently, artificial ECMs composed of artificial polymers or 
selected controllable components and with uniform and homog-
enous formulations have been fabricated and shown to have pos-
sible applications in various tissues. Even with these advances, it 
is difficult to mimic native ECMs, which have complex chemical 
and architectural structures that are tissue-specific. In particular, 
ECM-based tissue engineering is promising in the field of urolo-
gy, in response to the need to regenerate anatomic and functional 
tissues, and we believe that these approaches will provide alter-
native cures to millions of people suffering from urologic incon-
tinence or cancers [83-85]. The advantages and limitations of 
each system provide a direction for new research. If an artificial 
ECM can be fabricated with a precise and diverse combination 
of components, the native ECM can provide a complex structure. 
The combination of these 2 systems is predicted to yield a new 
versatile, hybrid ECM system. Understanding the structures and 
functions of ECMs in each tissue, controlling the fibrillogenesis 
mechanism using individual ECM components, and the recent 
development of new tools for bio-printing and imaging will 
greatly help to implement such a hybrid ECM in tissue engineer-
ing in the near future.
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