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Abstract

Objective: To identify pre-operative clinical and computerized spiral analysis characteristics that 

may help ascertain which patients with Essential Tremor (ET) will exhibit ‘early tolerance’ to 

ventral intermediate nucleus of thalamus (Vim) deep brain stimulation (DBS).

Methods: Identification of comparative characteristics of defined cases of ‘early tolerance’ 

versus patients with sustained satisfactory response treated with Vim DBS surgery for medically-

refractory ET, based on retrospective chart review by a clinician blinded to the findings of 

computerized spiral analysis.

Results: Statistically significant differences in two spiral analysis indices, SWVI and DoS, were 

found in the dominant upper limbs of patients who developed ‘early tolerance’, whereas the 

clinical characteristics were not significantly different.

Conclusion: Objective measurements of upper limb kinematics using graphonomic tests like 

spiral analysis should be considered in the pre-operative evaluation for DBS, especially in the 

setting of moderate-severe predominantly action and proximal postural tremors.

Significance: Ours is the first investigation looking into the pre-operative clinical and objective 

physiologic characteristics of the patients who develop ‘early tolerance’ to Vim DBS for the 

treatment of essential tremor. The study has significant implications for pre-operative evaluation 

and potential surgical target selection for the treatment of tremors.
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1. Introduction

Essential tremor (ET), is the most common cause of adult onset tremors. The diagnosis is 

made clinically on the basis of chronic, disabling action tremors. The phenotype is variable 

and heterogeneous; some patients experience a gradual increase in severity and disability 

over the years, others developed generalized tremors, including legs, head, and voice; and 

some individuals evolve into a pancerebellar syndrome that includes limb dysmetria and gait 

ataxia. In accordance with the varied clinical presentation, the tremor may be generated by 

different pathophysiologic mechanisms, with important therapeutic and prognostic 

implications (Louis et al., 1998; Bain et al., 2000; Deuschl and Elble, 2000; Louis et al., 

2000; Deuschl and Elble, 2009), and differing response to medication treatment and 

neurosurgical intervention (Gorman et al., 1986; Koller et al., 2000; Blomstedt et al., 2011).

Current pharmacologic treatment is helpful in only about half of the ET cases, and this may 

relate to different physiologic subtypes (Sabra and Hallett, 1984; Deuschl et al., 1987; Koller 

et al., 2000; Deuschl et al., 2011). Deep brain stimulation (DBS) of the ventral intermediate 

nucleus of the thalamus (Vim) is an effective treatment for ET, particularly for medication-

resistant disabling cases (Blomstedt et al., 2007; Baizabal-Carvallo et al., 2014). DBS has 

been shown to remain effective in long term follow-up studies; however, there may be loss 

of benefit over a long period of time in a subset of patients. Possible explanations for this 

include (i) disease progression and (ii) habituation to DBS, or tolerance, despite the absence 

of clinical progression, and repeated, optimal DBS programming (Springer et al., 2006; 

Barbe et al., 2011; Favilla et al., 2012). We have encountered recurrent tremor within weeks 

after DBS surgery, where excellent targeting and tremor control were noted intra-operatively. 

We have hypothesized that tremor recurrence/habituation may be predictable on the basis of 

pre-operative clinical and kinematic characteristics. In this study, we sought to identify and 

characterize if any pre-operative clinical and spiral drawing characteristics may help 

ascertain which ET patients will exhibit loss of efficacy or ‘early tolerance’ to Vim DBS.

2. Materials and methods

We reviewed all available charts of patients who had undergone thalamic Vim DBS surgery 

for ET over the last 15 years at Columbia University Medical Center and who had pre-

operative computerized spiral analysis testing. Inclusion was based on availability of 

detailed pre-operative clinical, intra-operative, demographic, pre-operative spiral analysis 

and follow-up clinical and programming data at least for the first two years after DBS 

surgery. The study was conducted in accordance with the Institutional Review Board (IRB) 

of Columbia University Medical Center. Patients who were noted to have the clinical 

phenomenon of developing ‘early tolerance’ and those with sustained good response were 

identified by a movement disorder neurologist (BF) blinded to the spiral analysis findings. 

We defined those patients with ‘early tolerance’ as those who experienced (i) near-complete 
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intra-operative tremor suppression (equivalent to a clinical score of 1 or less on a 5-point 

severity scale from 0 to 4 where 0 = normal, 1 = slight, intermittent, 2 = moderate amplitude, 

intermittent, 3 = marked amplitude and 4 = severe amplitude based on the Fahn-Tolosa-

Marin (FTM) tremor rating scale as noted in the upper limbs with action and postural 

holding, and (ii) sub-optimal response post-operatively within the first two years 

characterized by the inability to maintain satisfactory tremor control in the performance of 

ADLs without experiencing adverse effects (paresthesias, disabling dysarthria or gait ataxia) 

from DBS programming.

General pre-operative characteristics of all cases were noted, including handedness, gender, 

age at time of surgery, presence or absence of limb dysmetria or gait ataxia prior to DBS 

surgery, head tremor, vocal tremor, presence of tremor with kinetic actions or posture-

holding, clinical tremor rating score, and whether the DBS implant was unilateral or 

bilateral. The presence of ataxia was noted on the basis of clinical documentation of tandem 

gait difficulties, signs of cerebellar dysmetria or dysdiadochokinesia.

Implanted pulse generator programming data included changes in programming parameters: 

DBS lead voltage, frequency and pulse width. The changes in active lead configuration were 

also recorded.

Computerized spiral analysis testing involved drawing 10 spirals from each hand inside a 10 

× 10 cm square box on 8.5 × 11-in. paper with a wireless inked pen placed on a graphics 

tablet (Intuos 2–4, Wacom Technology Corp, Vancouver, WA). Subjects were allowed to 

draw freely without any constraints, attachments, or traceable templates, and collection was 

standardized across all subjects. The tablet had a resolution of 2540 points/inch (accuracy of 

0.005 in.), with 256 levels of measurable pressure acquiring data at 100 Hz. Quantification 

of handwritten spirals was as previously described and involved acquisition of data series 

consisting of time, x, y, and pressure axis values to unravel the spiral. Using these data 

points from kinematic, dynamic, and spatial attributes of spiral execution spiral indices were 

computed (Pullman, 1998; Rudzinska et al., 2007; Haubenberger et al., 2011; Hess and 

Pullman, 2012). All trials were performed in one session lasting about 15 min.

Two computerized spiral analysis indices were used as primary outcome measures in this 

study: (i) a measure of spiral loop-to-loop width variability index (SWVI) and (ii) an overall 

spiral degree of severity score (DoS). The means of 8 of the 10 trials (with the highest and 

lowest values removed) are used to calculate SWVI and DoS. SWVI is a unitless measure 

that highlights the fluctuations in spiral execution seen in patients with cerebellar 

dysfunction (Hess and Pullman, 2012). It is calculated as the coefficient of variation (ratio of 

the standard deviation to the mean) of the medians of spiral loop widths per angle over the 

360° of each spiral loop and is independent of tremor. Higher SWVI scores are associated 

with greater degree of intention tremor and ataxia (Louis et al., 2012). DoS is a unitless 

continuous measure of overall spiral execution and spatial irregularity, derived from indices 

mostly related to drawing smoothness. DoS was designed as the computerized spiral 

analysis equivalent of the standard five-point (0–4) FTM clinical rating scale. The DoS 

index correlates with the neurologic exam and has been validated with clinical tremor scales 

(Elble et al., 2006; Saunders-Pullman et al., 2008; Louis et al., 2012). DoS was shown to 
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have high sensitivity and specificity discerning early Parkinson disease (PD) subjects from 

normal controls, as well as being more revealing than the clinical exam elucidating pre-

clinical spiral changes on clinically unaffected sides in PD (San Luciano et al., 2016).

3. Statistical analysis

Mann-Whitney test was used for comparing continuous data, and Fisher’s exact test for 

categorical data between Groups 1 and 2. Non-parametric tests were chosen considering the 

small sample size and the lack of normal distribution of the data collected. Statistical 

analysis was performed using GraphPad Prism version 7.0. A probability value of <0.05 was 

considered to be statistically significant. Since all unilaterally operated cases were 

performed to improve the function of the dominant limb, spiral analysis data only from the 

dominant limb of patients were included in the final analysis. SWVI sensitivity and 

specificity calculations were performed using a cut-off value = 0.40, the median normal 

SWVI determined in a previous study investigating cerebellar dysfunction in ET (Louis et 

al., 2012).

4. Results

A total of 19 ET patients were identified as satisfying all inclusion criteria and were used in 

this study. Ten patients met the defined criteria for ‘early tolerance’ (Group 1) while 9 

patients had a sustained good response at least for the first two years after surgery (Group 2).

4.1. Patient demographics and clinical characteristics

No significant differences were noted in patient age and sex at the time of DBS surgery 

between the two groups. 40% of Group 1 patients had unilateral DBS compared to 22% in 

Group 2. All unilateral DBS were implanted to improve the tremors in the dominant limb. 

All patients in both groups were initially programmed using single monopolar setting. Of the 

10 patients in Group 1, 7 needed switches to double monopolar within the first year and 2 

patients were also attempted to be programmed using Interleaved setting. Of the 9 patients in 

Group 2 only 2 needed switch to double monopolar setting and none were interleaved. The 

trends of voltage requirements were suggestive of higher effective outputs required for 

Group 1; however, due to lack of a standardized conversion algorithm for effective voltage 

outputs and the fields thereof, upon conversion from single monopolar to double monopolar 

and interleaving, a fair comparison could not be performed. Baseline demographic, clinical 

and spiral analysis characteristics of patients developing ‘early tolerance’ (Table 1) and 

those with sustained good response (Table 2) are shown.

Of note, 70% of the patients in Group 1 had clinical documentation of ataxia and 80% had 

head tremor. For Group 2, 33% of the patients had clinical documentation of ataxia and 55% 

were noted to have head tremor. The differences in the clinical characteristics noted between 

the 2 groups were not significant. Differences in the worse clinical tremor scores for both the 

dominant and non-dominant upper limbs noted with action and postural holding as per FTM 

rating scale between the two groups were also not significant.
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4.2. Spiral analysis

DoS for the dominant limb in Group 1 was significantly higher compared to Group 2. 

Dominant limb SWVI or the loop width variability indices were also significantly worse in 

Group 1; the median was noted to be almost double. Comparative details of the spiral 

analysis indices and clinical data are summarized in Table 3 and spiral analysis DoS and 

SWVI between group differences noted in Fig. 1. Using SWVI = 0.40 as a cut-off value, the 

sensitivity of spiral analysis to predict ‘early tolerance’ was 100% and the specifi was found 

to be 89%.

5. Discussion

Loss of DBS efficacy and the re-emergence of tremor after initial good control in ET 

patients is a problem, the reasons for which are poorly understood. Most studies evaluating 

the loss of DBS benefit for tremor control over time have focused on the limitations of the 

intervention, i.e. habituation to stimulation over long term and sub-optimal lead placement. 

Studies thus far have focused on disease progression for loss of efficacy over time (Hariz et 

al., 1999; Papavassiliou et al., 2004; Springer et al., 2006; Hsu et al., 2009; Barbe et al., 

2011; Favilla et al., 2012; Patel et al., 2014), but the literature on suboptimal/loss of benefit 

early in the disease remains scarce. In this investigation, we were looking into the pre-

operative clinical characteristics of the patients who developed this phenomenon, for which 

we use the term ‘early tolerance’.

To our knowledge, this is the first study to use objectively quantifiable characteristics of 

upper limb kinematics from an easy to administer graphonomic test to help predict, with 

high sensitivity and specificity, which patients would get a suboptimal response to Vim DBS 

implantation over time. The criteria we used to identify these cases of ‘early tolerance’ were 

similar to previously described studies identifying resistant cases (Pilitsis et al., 2008). We 

use a timeline of two years to identify these cases in the suggested definition to ensure that 

the patients with sustained good responses were clearly differentiated; almost all patients in 

Group 1 developed ‘early tolerance’ within the first year or shortly thereafter. There are 

likely numerous reasons for patients to develop ‘early tolerance’ to Vim DBS, and following 

possibilities may elucidate some causes of this phenomenon.

5.1. Inherent tremor characteristics

The group of patients noted to develop early tolerance had significantly higher SWVI likely 

signifying more cerebellar dysfunction (Pilitsis et al., 2008; Louis et al., 2012). Group 1 

patients had more severe cerebellar signs (e.g., intention tremor, tandem gait missteps). 

Patients with higher SWVI scores also had more severe kinetic tremors, which are notably 

more resistant to treatment (Gorman et al., 1986; Louis et al., 2012).

In this study, ET cases that developed ‘early tolerance’ after DBS had predominantly kinetic 

tremors, with associated proximal postural tremors that were uniquely disabling but not well 

represented by clinical rating scales, especially when moderate-to-severe, explaining the 

similar clinical tremor scores between the two groups (Sabra and Hallett, 1984). In long-

term [>2 years] follow-up, several of these individuals evolved into a pancerebellar 
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syndrome that included dysarthria (even with the DBS device temporarily turned off) and 

ataxia that required walking aids. None of these individuals developed parkinsonism.

Astute clinical examination is needed to detect ataxia or subtle deficits in coordination in 

patients with ET, which are common clinical findings. Ataxia was noted in a higher number 

of patients developing ‘early tolerance’, which corroborated with higher pre-operative SWVI 

scores. Additionally, the SWVI scores in patients developing ‘early tolerance’ were similar 

to those noted in patients with cerebellar ataxia and higher than those commonly noted in ET 

patients (Elble et al., 2006; Hsu et al., 2009; Louis et al., 2012). SWVI scores in patients 

developing early tolerance to DBS were also significantly higher compared to the subgroup 

with sustained good response in the current cohort. Objective measures and quantitative 

assessments of kinematic parameters using spiral analysis provide useful and reproducible 

information to detect cerebellar outflow pathology in ET and may predict treatment outcome 

(Pullman, 1998; Hsu et al., 2009; Louis et al., 2012). More detailed assessment using other 

tremor analysis methods such as with accelerometers and EMG could be used to further 

supplement clinical decision-making regarding treatment of these complex and disabling 

tremors (Hess and Pullman, 2012).

5.2. Relative role of tolerance

It is known that loss of response over time to stimulation plays a role in decreasing long term 

DBS efficacy. Several studies have demonstrated that patients may need incremental voltage 

requirements over time to maintain a satisfactory response (Hariz et al., 1999; Kumar et al., 

2003; Hsu et al., 2009; Barbe et al., 2011; Favilla et al., 2012) and this may be greater in 

patients with the electrophysiological characteristics we have identified in this study.

In general, the rate of increase in IPG amplitude for optimal control of ET seems to be 

higher compared to PD or post-stroke tremor (Pilitsis et al., 2008; Barbe et al., 2011). Our 

cases of ‘early tolerance’ share many or all of these characteristics and are notably distinct 

from the patients who maintained a good response at relatively lower voltages. DBS may 

work by disrupting ‘tremorogenic’ pacemaker cells by altering the neural activity needed for 

tremor production and spread, by inhibiting the afferent tremor signals or altering the 

excitability of thalamic neurons (Yamamoto et al., 2004; Bhalsing et al., 2013; Coenen et al., 

2014, Buijink et al., 2015). Higher SWVI values implicate ataxia, which may be secondary 

to underlying cerebellar involvement in ET and could be reflective of greater resistance to 

altering the afferent tremor signals likely involving cerebello-thalamic circuitry (Raethjen 

and Deuschl, 2012).

5.3. Suboptimal lead placement vs suboptimal target

It may be that the Vim target is suboptimal for this phenotype of more severe tremors, 

considering a different pathophysiologic basis proposed for these treatment resistant 

tremors. The more caudal zona Incerta (cZI) or the posterior Subthalamic Region are targets 

that may be more advantageous for the control of more proximal and complex tremors 

(Blomstedt et al., 2011; Louis et al., 2012).

Two neural circuits may be relevant: 1) the cerebello-thalamo-cortical-cerebellar loop and 2) 

the cortico-thalamo-cortical loop. The first one is thought to be associated with tremor 
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generation and the second loop with acceleration of the tremor (Boecker et al., 2010; Fasano 

et al., 2010; Taira, 2012). A part of the cerebello-thalamo-cortical network, the cerebello-

thalamic tract, might be an interconnecting pathway. It has been proposed that targeting this 

pathway using tractography might help target both the loops proposed in the tremor 

generation since it includes an important hub connecting both these loops at the thalamic 

level. Additionally, the cerebello-thalamic tract has been shown to be closely connected and 

pass through or in close proximity to the three traditionally targeted regions for DBS in 

tremor control, the Vim, cZI and posterior subthalamic region. Accurately targeting this tract 

might help better control of these cases which are shown to be resistant to the traditional 

targets (Coenen et al., 2011; Coenen et al., 2014).

Limitations of this study include the small sample size; however, we were still able to 

identify significant differences between the two patient groups using spiral analysis 

measures with high sensitivity and specificity. Though the differences in clinical 

characteristics noted were not significantly different, there were trends that suggested these 

groups were different clinically which could be evaluated in a larger prospective study. A 

prospective study with appropriate power to detect potential differences based on clinical 

rating scales will further validate the spiral analysis measures. We note that a higher 

proportion of patients in Group 1 had unilateral DBS, which may have had an impact on the 

responses. There is no established definition of ‘early tolerance’, but the criteria used to 

identify these cases are similar to the previously reported literature (Schlaier et al., 2015). To 

address this, we used both physician and patient input to further elucidate ‘early tolerance’. 

The physician was involved in the intra-operative assessment of tremor suppression and 

subsequent post-operative programming where significantly higher stimulator outputs were 

noted to achieve a meaningful tremor suppression with associated early stimulation related 

side-effects. The patients determined if the tremor suppression was satisfactory and 

meaningful enough to help improve their ADLs, without significant stimulation related side 

effects. This retrospective study could be confounded by biases in patient selection and 

inconsistent documentation. However, we addressed this by having the same clinician 

document all clinical characteristics while blinded to the details of spiral analysis data when 

identifying the patient groups. We did not have the precise mapping of the lead co-ordinates 

based on post-operative imaging; however, the intra-operative clinical response and the post-

operative imaging studies were not remarkably different between the groups. Though 

suboptimal lead placement could still be a contributing factor, the distinct clinical 

characteristics of these patients seem to be a more likely explanation for the poor response 

noted.

We conclude that while ‘early tolerance’ to Vim DBS in ET is not fully understood, it occurs 

more in patients with severe action tremors with marked proximal postural components and 

ataxia. Importantly, we found objective measurements based on spiral drawing can predict 

which patients will show this phenomenon. In their aggregate, we believe these are the 

considerations that will influence prognosis, DBS target selection, and post-operative 

management.
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HIGHLIGHTS

• Spiral analysis identified differences in ET patients developing tolerance to 

DBS.

• Potential tolerance to Vim DBS in ET can be predicted pre-operatively.

• Objective kinematic testing can aid in pre-operative assessment of complex 

tremors.
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Fig. 1. 
Comparative Box and Whisker plots for Spiral analysis measures DoS and SWVI between 

patients with ‘early tolerance’ (Group1) compared to patients with satisfactory outcomes >2 

years (Group 2); DoS: Degree of severity, SWVI: Spiral width variability index, D: 

dominant hand, ND: non-dominant hand, G1: Group 1, G2: Group 2.
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Table 3

Differences between patients with ‘early tolerance’ (Group1) compared to patients with satisfactory outcomes 

> 2 years (Group 2).

Group 1 N = 10 Group 2 N = 9 p-value

Age* (median; 25–75 quartiles) 67.5; 65–77 67; 65–71
0.80

a

Gender (M/F) 3/7 6/3
0.15

b

DBS placement

 Unilateral 40% 22%
0.63

b

 Ataxic symptoms 70% 33%
0.18

b

 Head tremor 80% 55%
0.35

b

Clinical tremor scores (median)

 Dominant 3 3
0.12

a

 Non-dominant 3 4
0.50

a

DoS (median; 25–75 quartiles)

 Dominant 3.90; 3.56–3.98 3.24; 2.13–3.60
0.0107

a

SWVI (median; 25–75 quartiles)

 Dominant 0.652; 0.455–1.465 0.35; 0.28–0.43
0.0021

a

*
Age at the time of surgery.

a
Mann-Whitney test.

b
Fisher’s Exact test.
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