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Abstract

Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of pro-
tein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a
fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of
coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction
of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for
coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric
state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction
performance, validation methods and software utility. All the independent testing data sets are available at http://light-
ning.med.monash.edu/coiledcoil/. In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-
related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly
variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting.
Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this compre-
hensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools,
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and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state
prediction.
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Introduction

First described in 1953 by Pauling and Crick [1], the proliferation
of studies of coiled-coil domains (CCDs) in proteins has driven
continued computational prediction in the past few decades.
CCDs can be summarized as at least two or more helices that
wrap around each other, which can be defined as a repeat Xn of
residues, where X can be denoted as (a-b-c-d-e-f-g) and n can be
described as the number of helices. It is estimated that nearly
10% of eukaryotic proteins harbour CCDs [2, 3]. Depending on the
value of n, CCDs can be categorized into several groups, including
antiparallel dimer, parallel dimer, trimer and tetramer (Figure 1).
The colour scheme in Figure 1 is based on the B-factor values
using PyMOL. CCDs exhibit a preference for hydrophobic residues
at positions a and d, charged residues at positions e and g and
hydrophilic residues at positions b, c and f [8, 9], which serve to
stabilize helix oligomerization according to the ‘Peptide Velcro’
hypothesis [10]. This repeating Xn motif enables the prediction of
CCDs and their oligomeric states based on protein sequences.

Experimental studies have confirmed that CCDs play a fun-
damental role in subcellular infrastructure and controlling traf-
ficking of eukaryotic cells [11, 12]. The relatively high stability of
CCDs has led to their promising use as delivery systems for a
range of molecules. For example, cartilage oligomeric matrix
protein (COMP) [13, 14] and right-handed protein [15] from
Staphylothermus marinus have been used as drug delivery sys-
tems in anticancer therapies [3, 16, 17]. The five a-helix CCDs in
COMP are capable of binding and carrying some important sig-
nalling molecules, including vitamins A and D3. Other success-
ful applications of CCDs, peptides and motifs used in drug
delivery systems have also been reported [18–22].

Sequence and structural analysis of CCDs have enabled the
development of computational approaches for the prediction of
CCDs from sequence alone [8–10, 23]. For example, Vincent et al.
performed coiled-coil prediction for proteins from tenascins
and thrombospondins families, analysed the motif conserva-
tion of different coiled-coil oligomeric states and revealed that
sequence conservation allows trimers and pentamers of CCDs
to be distinguished, providing useful insights for future coiled-
coil prediction [23]. However, the rapid growth in prediction
approaches since the last comprehensive comparison, which

was reported almost a decade ago [24], creates an urgent need
to critically assess and compare the now-large and diverse pre-
diction methods. In this article, therefore, we present a compre-
hensive review of 12 sequence-based methods for coiled-coil
prediction, offering insights into the nature of different pre-
dictors and facilitating potential improvement of CCD predic-
tion. All predictors are critically reviewed in terms of input,
model construction and outcome (i.e. prediction performance)
[25, 26]. To evaluate the performance of coiled-coil predictors,
independent tests were conducted with new test data sets
(http://lightning.med.monash.edu/coiledcoil/) carefully col-
lected and curated from different resources. Finally, as CCDs
have been extensively found in disease-associated human poly-
glutamine (PolyQ) proteins [27], we applied various predictors to
a data set of nine human proteins containing PolyQ repeats and
discussed our findings.

Materials and methods
Predictors reviewed in this study

Table 1 summarizes the details of the tools of coiled-coil and its
oligomeric state prediction that are evaluated in this article.
These are COILS [28], PCOILS [29], Paircoil2 [30], SOSUIcoil [31],
MARCOIL [32], CCHMM_PROF [33], SpiriCoil [34], SCORER 2.0 [35],
LOGICOIL [36], PrOCoil [37], RFCoil [38] and Multicoil2 [39].

Model input

The training data set is used to build a computational model to
learn potential patterns hidden in the data set. Before model
construction, data collection and preprocessing of the training
data set were performed. Data sets with too much noise or
imbalanced distribution may lead to unsatisfactory prediction
performance of the model. There are two main ways to collect
the CCD data to build the model. In some studies, the CCDs
were extracted with SCOP [40] and SOCKET [41], while other
studies extracted the data directly from a publicly available
database regarding experimentally verified CCDs, for example,
CCþ [42]. The CCDs in the CCþ database were annotated manu-
ally and with SOCKET, which has been widely used to extract

Figure 1. Examples of coiled-coil oligomeric states. (A) Antiparallel dimer (PDB Accession: 1I49 [4]). (B) Parallel dimer (PDB Accession: 1D7M [5]). (C) Trimer (PDB

Accession: 1HTM [6]). (D) Tetramer (PDB Accession: 1TXP [7]). A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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reliable CCDs from protein structures. A cut-off value of 7.0Å
was usually used for extracting coiled-coils from protein struc-
tures. Removal of sequence redundancy, an important step be-
fore model construction, was performed using CD-HIT [43].

Models construction and development

Relatively simple classification methods predict whether a pro-
tein sequence contains a CCD. More sophisticated predictors
perform multiclass classifications that categorize coiled-coil re-
gions into different forms of a-helical assembly, such as dimer,
trimer and tetramer. We discuss below the different algorithms
used in the predictors (Table 1).

COILS, the first reported algorithm for CCD prediction, is a
statistically controlled predictor based on the amino-acid pro-
file-based method. The similarity of a protein sequence with a
structurally known protein is computed using a sliding window.
The recommended window length for COILS is 28 to help re-
move false positives. PCOILS is an updated version of COILS
that predicts coiled-coils through comparing pairwise protein
evolution profiles based on user-provided multiple sequence
alignment or PSI-BLAST [44]. Paircoil2 is the latest development
of PAIRCOIL [45]. These predictors use pairwise residue correl-
ations or probabilities to detect the coiled-coil motif in a protein
sequence. The training data set of Paircoil2 is larger than that
used for training PAIRCOIL because of the dramatically
increased number of known coiled-coil sequences. SOSUIcoil
uses amino acid physical properties to help determine an ap-
propriate heptad register, followed by canonical discriminant
analysis to discriminate coiled-coils.

Hidden Markov Models (HMM) has been used in a number of
coiled-coil predictors. These include MARCOIL, CCHMM_PROF
and SpiriCoil. CCHMM_PROF is an improved version of CCHMM
[46], which used multiple sequence alignments instead of single
sequence-based HMM. MARCOIL also uses single sequence-
based HMMs, whereas SpiriCoil uses a large library of HMMs to
predict coiled-coils that fall into known superfamilies. The ap-
plication of SpiriCoil is limited to sequences that have reason-
ably high similarity to known families because of the use of the
training data set for constructing SpiriCoil. On the other hand,
MARCOIL, which uses explicit knowledge of existing coiled-coils
to train a single HMM, possesses a more complicated algorithm
to efficiently search for a variable length subsequence of high
probability for coiled-coil formation. According to the HMM par-
ameter t, MARCOIL model has two variations, MARCOIL-L
(t¼ 0.001) and MARCOIL-H (t¼ 0.01).

MultiCoil [47], a predictor developed based on the PAIRCOIL
algorithm, extends the dimeric coiled-coil prediction in
PAIRCOIL to trimeric coiled-coils, using a multidimensional
scoring approach. Multicoil2 further extends the algorithm to
include pairwise correlations with HMM in a Markov Random
Field. Multicoil2 also contains eight sequence-based features
(including dimer probability, trimer probability, non-coiled
probability, dimer correlations at distance 1–7, trimer correl-
ations at distance 1–7, non-coiled correlations at distance 1–7,
the hydrophobicity at the a and d positions) that are used to
train the model (pairwise correlation HMM). The resulting algo-
rithm integrated the sequence features and the pairwise inter-
actions into a multinomial logistic regression to formulate an
optimized scoring function for the classification of coiled-coil
oligomeric state.

SCORER [48] uses a log-odd-based scoring system for the
classification of coiled-coil sequences into parallel dimeric and
trimeric coiled-coils. SCORER 2.0 combines an expanded and

updated training set and a Bayes factor method, which takes
into consideration the possible uncertainty in the profile tables.
LOGICOIL is a predictor based on the combined and concurrent
application of Bayesian variable selection and multinomial pro-
bit regression. The application of Bayesian paradigm can pro-
vide informative posterior distributions on the selected
parameters, as well as offering a framework to apply this useful
information based on biological data and expert knowledge.
Traditional machine learning techniques, including support
vector machine (SVM) [49] and random forest [50], have also
been applied to coiled-coil oligomeric state prediction. For ex-
ample, PrOCoil adopts an SVM based on identified rules con-
verted into weighted amino-acid patterns. In addition to
PrOCoil, PrOCoil-BA (PrOCoil-Balanced Accuracy) is an alterna-
tive model, which is optimized for balanced accuracy, i.e. the
average of sensitivity and specificity. RFCoil uses random forest
combined with effective amino-acid indices selected by Gini (a
decision tree split function) decrease [51] and Kendall rank cor-
relation coefficient [52].

Model evaluation

A variety of methods were used to assess the prediction per-
formance of coiled-coil predictors listed in Table 1, including
cross-validation, leave-one-out cross-validation, leave-family-
out cross-validation, independent test and case study.
Normally, cross-validation can avoid over-fitting caused by the
training data set. The nature of cross-validation is to split the
data set into N folds and combine N� 1 folds as the training
data set, leaving the remaining fold as the test data set. Leave-
one-out cross-validation and leave-family-out cross-validation
are variations of cross-validation. Given a data set with D data
samples, leave-one-out cross-validation combines D� 1 sam-
ples as the training data set and leaves the remaining one sam-
ple as the test sample. In this cross-validation, all samples in
the data set are treated as a test sample once. If the data set is
collected from different species/families, each subset from the
same species/family is regarded as test data sets once, and
other subsets from other families/species will be combined to
form the training data set. The final performance for cross-val-
idation is often averaged from the results of different combin-
ations of the training data sets. The independent test is another
method to assess the performance of bioinformatics tools. To
test the performance of an algorithm on a new data set with a
different data distribution, it is important to ensure that there is
no overlap between the training data set and the independent
test data set. Finally, the case study is as an effective way to test
the performance of a method in real-world applications, provid-
ing useful insights into the method scalability and usefulness
with unknown data.

Predictor utility

An important aspect of predictors in the biological research
community is to provide a user-friendly web interface or a local
tool to enable non-bioinformaticians to apply the model directly
to their research. The usefulness of bioinformatics tools de-
pends on three factors, i.e. the web interface, the output and in-
terpretation of prediction results and the availability of locally
runnable software. A user-friendly interface can provide appro-
priate guidance and instructions to avoid potential mistakes
when using the web server. This is especially important when
parameter settings are required before conducting prediction
tasks. Among the predictors we tested, those predictors aimed
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at discriminating coiled-coils from non-coiled-coils (e.g. COILS,
PCOILS, Paircoil2 and MARCOIL) require parameter settings be-
fore sequence submission. Documents are available online re-
garding the description of the parameters and their potential
effect on the prediction performance. On the other hand, the
predictors for coiled-coil oligomeric states are mostly param-
eter-free. For coiled-coil oligomeric state prediction, only se-
quence and its heptad register are required as the input (for
example, SCORER 2.0, PrOCoil, RFCoil and LOGICOIL).
Furthermore, SCORER 2.0, PrOCoil and LOGICOIL are also able to
predict sequences without the prerequisite of knowing the
coiled-coils/heptad registers by combing coiled-coil prediction
and extracting heptad register from MARCOIL, without the ne-
cessity of performing a two-stage prediction.

Stand-alone software allows users to perform predictions for
a large amount of sequences on local machines, offering an ad-
vantage over web servers. Among the coiled-coil predictors re-
viewed in this article, SpiriCoil and SOSUIcoil do not have
available locally runnable tools. The local versions of SCORER
2.0, PrOCoil, RFCoil and LOGICOIL were written using the R pack-
age (http://www.r-project.org/). PrOCoil has been integrated
with R so it can be downloaded and installed with the R console.
Users should be aware of the difference in the length of the
coiled-coils in the training data sets of different frameworks es-
pecially for the oligomeric state prediction. For SCORER 2.0,
MultiCoil2, PrOCoil, RFCoil and LOGICOIL, the minimum lengths
of their training coiled-coils are 15, 21, 8, 8 and 15, respectively.
This means that one should take into consideration the length
of the sequence when choosing appropriate predictors to obtain
better prediction results. Although coiled-coil predictors recom-
mend the preferable sequence lengths of coiled-coils, they can
still predict the oligomeric state of the coiled-coils shorter than
the specified length thresholds. Under such circumstance, it is
the users’ responsibility to choose an appropriate predictor ac-
cording to the length of query sequence before its submission.

Understandable and visualizable interpretation of the output
is also important for better understanding the prediction results
and their significance. The output of the coiled-coil predictors
we reviewed is often organized in two ways, based on either a
residue or a sequence basis. Most of the predictors for discrim-
ination of coiled-coils from non-coiled-coils provide prediction
outputs on a residue basis, which allows users to gain a detailed
insight into each amino acid and its predicted score/probability.
Moreover, COILS, PCOILS, Paircoil2 and MARCOIL also provide
the visible plots of predicted score/probability for each amino

acid and enable users to obtain an overview of predicted scores
for the entire sequence. On the other hand, the predictors of
coiled-coil oligomeric state (including SCORER 2.0 and
LOGICOIL) provide only a final decision and an overall predic-
tion score. These scores are not easy to interpret and under-
stand. PrOCoil provides both prediction scores and visible plots
for each amino acid. RFCoil, on the other hand, provides a ma-
trix showing the probability of the query sequence forming a di-
meric coiled-coil or a trimeric coiled-coil, which is relatively
easy to understand.

A case study of coiled-coil prediction for human
PolyQ proteins

As an extended test of the reviewed coiled-coil predictors, we
examined the prediction consistency for nine disease-associated
PolyQ proteins. We submitted their sequences to the correspond-
ing web servers and obtained the prediction results. PolyQ pro-
teins contain a stretch of repeated glutamine residues (termed the
‘PolyQ tract’). PolyQ repeats with more than seven residues are
abundant in 128 proteins in the human proteome [53]. These re-
peats have important biological functions especially in transcrip-
tion regulation, and proteins harbouring expanded PolyQ repeats
are involved in neurodegenerative diseases [54]. The PolyQ dis-
eases are caused in part by a gain-of-function mechanism of neur-
onal toxicity involving protein conformational changes that result
in the formation and deposition of b-sheet rich aggregates [55].
Because PolyQ repeats are highly aggregation-prone [55], it is diffi-
cult to determine their structure by X-ray crystallography [56]. The
widely accepted model of b-sheet-mediated aggregation has been
recently challenged by experimental and bioinformatics studies
showing that disease-associated PolyQ proteins contain CCDs
largely overlapping with their PolyQ repeats [27]. We therefore
investigated the prediction of CCDs in human proteins containing
PolyQ repeats, using the data set containing the most updated
nine disease-associated PolyQ proteins from UniProt database
studied by Fiumara et al. [27], which is also available in the PolyQ
database [53] (http://pxgrid.med.monash.edu.au/polyq/; Table 2).

Results and discussion
Independent test and performance evaluation

In this section, to assess the prediction performance of the re-
viewed coiled-coil tools in an objective and fair manner, we

Table 2. The list of nine human disease-related PolyQ proteins

Protein Protein length PolyQ tract UniProt identifier Associated disease

TATA binding protein 339 58–95 P20226 Spinocerebellar ataxia 17 [57–59]
Huntingtin 3142 18–38 P42858 Huntington disease [60]
Ataxin-1 815 197–208 P54253 Spinocerebellar ataxia 1 [61, 62]

212–225
Ataxin-2 1313 166–188 Q99700 Spinocerebellar ataxia 2 [63–65] and

Amyotrophic lateral sclerosis 13 [66]
Voltage-dependent

P/Q-type calcium
channel subunit alpha-1A
(Brain calcium channel I)

2505 2314–2324 O00555 Spinocerebellar ataxia 6 [67–70]

Atrophin-1 1190 484–502 P54259 Dentatorubro-pallidoluysian atrophy [71]
Ataxin 7 892 30–39 O15265 Spinocerebellar ataxia 7 [72]
Androgen receptor 919 58–78 P10275 Spinocerebellar muscular atrophy or Kennedy disease [73]
Ataxin-3 364 296–305 P54252 Spinocerebellar ataxia 3 or Machado-Joseph disease [74]
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assembled two independent test data sets (discussed below)
and measured the performance [in terms of area under curve
(AUC)] of all tested tools on these two data sets. In particular, as
the previous versions of CCHMM, SCORER and MultiCoil have
been upgraded as CCHMM_PROF, SCORER 2.0 and Multicoil2, re-
spectively, we only evaluated the advanced versions in the in-
dependent test. In addition, as SOSUIcoil and SpiriCoil did not
provide local executables, and it was not possible to run
Paircoil2 without execution errors, these three predictors were
not included in this test. According to the nature of the predic-
tion tasks, we performed independent tests for two different
types of tasks, namely, coiled-coil oligomeric state prediction
and CCD prediction. Coiled-coil oligomeric state prediction usu-
ally requires CCDs and their heptad registers (i.e. a-g) as the in-
put, while CCD prediction often takes protein sequences as
input. For the first type, we evaluated the performance of
coiled-coil oligomeric state predictors, including RFCoil,
PrOCoil, SCORER 2.0, LOGICOIL and Multicoil2. For the second
type, we compared the prediction performance of COILS,
PCOILS, MARCOIL, CCHMM_PROF and Multicoil2.

Coiled-coil oligomeric state prediction
Test data set construction. We carefully prepared two different test
data sets. For the first data set, CCDs and their respective heptad
assignments were extracted from the PDB using SOCKET [41].
Only X-ray crystal structures were selected to ensure the quality
of the data set (downloaded on 6 May 2014). SOCKET was applied
to annotate the coiled-coils in a given structure with a default
packing cut-off of 7.0Å, which was the same as that specified in
the data set collection procedure of previous studies [37, 38]. In
addition, to improve the quality of the data set, we further
removed those structures with a resolution of worse than 4.0Å.
Meanwhile, the structures with unnatural residues were also
removed. For the second data set, we first culled coiled-coil class
(h class) proteins from SCOPe [75] (the extended version of SCOP)
and then verified the CCDs with SOCKET. Only the consensus se-
quences assigned by both SCOPe and SOCKET analysis that con-
tained coiled-coils were retained to constitute the second data
set, whereas the coiled-coil and heptad annotations were ob-
tained by SOCKET. We subsequently examined the overlap be-
tween the second data set and the training data sets of RFCoil,
PrOCoil, SCORER 2.0 and LOGICOIL. Our analysis showed that the
majority of entries in the second data set were covered by the
training data sets of the four predictors, suggesting that the se-
cond data set was not sufficiently large enough to be an inde-
pendent test data set. Therefore, to address this, we first
removed all the training data of investigated predictors from our
data sets and then combined the first, second and other training
data sets of the four predictors, and used CD-HIT to reduce the se-
quence redundancy of the resulting data set to ensure that the
sequence identity of any two sequences in the data set was no
more than 50%. For each cluster generated by CD-HIT, if all se-
quences in this cluster were from our first and second data sets,
the representative sequence was collected. Although sequence
redundancy can be reduced by other alternative ways, 50% has
been commonly used as the preferred threshold for CCDs, as any
threshold lower than 50% is deemed to be too strict for coiled-coil
oligomeric state prediction [36]. Finally, the independent test data
set contained 509 antiparallel dimers, 88 parallel dimers, 94 tri-
mers and 36 tetramers (Supplementary Table S1; Additional file
1—http://lightning.med.monash.edu/coiledcoil/).

Performance comparison. Among the four reviewed predictors,
RFCoil and PrOCoil were trained using coiled-coils with length

�8 amino acids, while SCORER 2.0 and LOGICOIL were de-
veloped using coiled-coils with length >14 residues. In addition,
RFCoil, PrOCoil and SCORER 2.0 were designed to classify paral-
lel dimeric and trimeric coiled-coils. LOGICOIL is the only cur-
rently available predictor that can be used to predict four types
of coiled-coil oligomeric states, including parallel/antiparallel
dimers, trimers and tetramers. Therefore, to comprehensively
evaluate the performance of these tools for predicting the two
different types of coiled-coils, we first split the independent test
data set into two subsets, one with coiled-coils >7 residues and
the other with coiled-coils >14 amino acids. For each subset, we
evaluated the prediction performance using AUC values. This
included the performance comparison of parallel dimer and
parallel trimer between the four predictors, as well as pairwise
performance comparison of LOGICOIL. The receiver operating
characteristic (ROC) curves of these different predictors are
shown in Figure 2. We also notice that certain heptad registers
for CCDs from SOCKET are non-canonical, which means that
the heptad registers (i.e. a-g) are interrupted according to
SOCKET annotations. In view of this, we further removed the
coiled-coils with non-canonical heptad assignments and re-
peated our tests (Additional file 2 downloadable at http://light-
ning.med.monash.edu/coiledcoil/). The corresponding ROC
curves of all predictors for predicting these coiled-coils without
non-canonical heptad registers are shown in Figure 3. For
Figures 2A, B, 3A and B, ‘positive’ and ‘negative’ indicate parallel
dimeric and trimeric coiled-coils, respectively.

We note that generally, when testing with parallel dimeric
and trimeric coiled-coils, LOGICOIL and RFCoil achieved the
highest AUC values (see Figures 2A, B, 3A and B). Although
LOGICOIL was trained using longer coiled-coil sequences, most
of which contained canonical heptads, it was able to predict
shorter coiled-coils with non-canonical heptads. Pairwise AUC
values can be observed in Figures 2C and 3C, where LOGICOIL
achieved the highest AUC values when predicting parallel dimer
and tetramer (with AUC values of 0.771 and 0.794, respectively).
However, distinguishing tetramer from trimer appears to be the
most challenging task. PrOCoil-BA performed constantly better
than PrOCoil when tested with both short and long coiled-coils
(see Figures 2A, B, 3A and B). In addition to AUC values, we also
computed the 95% confidence interval using the ‘pROC’ package
[76]. The 95% confidence intervals are shown for each ROC curve
in the corresponding tables in Figures 2 and 3. It can be seen
that most of the 95% confidence intervals are overlapped. This
suggests that even though the compared predictors achieved
different AUC values, it is difficult to determine which predictor
is the ‘statistically significant’ best model. For each of the paral-
lel dimeric and trimeric testing samples, we also applied major-
ity voting to generate consensus results and compared the
performance of majority voting with other individual predictors
(Supplementary Tables S2 and S3). It is clear that majority vot-
ing could indeed improve the prediction accuracy when testing
oligomeric state prediction of coiled-coils with length �15
amino acids that contained both canonical and non-canonical
heptad registers. Because dimeric coiled-coils are more preva-
lent than trimer and tetramer, all these predictors were trained
with imbalanced training data sets. Accordingly, some pre-
dictors are highly biased. For example, when testing RFCoil, we
noticed that RFCoil could readily predict dimeric coiled-coils
with high confidence, but often wrongly predicted many trimers
as dimers. This is probably because of the limited number of tri-
mers included in the training data set, and hence the trained
RFCoil model did not generalize and perform well on trimer pre-
diction. Therefore, to address this problem in future work, we
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recommend that certain techniques for imbalanced data pro-
cessing and mining be applied (e.g. oversampling or undersam-
pling) to enrich the imbalanced samples. Oversampling and
undersampling [77] are both basic (opposite but equivalent)
methodologies for sampling the data with imbalanced class dis-
tribution. Oversampling is a technique that randomly selects

samples from the class where the number of samples is quite
small to enrich the samples in this class, while undersampling
randomly selects samples from the class where the number of
samples in this class is large to reduce the number of
samples in this class. These two techniques are basic and
easy to implement. More complex and advanced techniques

Figure 2. Performance comparison of coiled-coils with non-canonical heptad registers between RFCoil, SCORER 2.0, PrOCoil and LOGICOIL on the independent test. (A)

ROC curves and the 95% confidence intervals for parallel dimeric and trimeric coiled-coils with length �8 amino acids. (B) ROC curves and the 95% confidence intervals

for parallel dimeric and trimeric coiled-coils with length �15 amino acids. (C) ROC curves and the 95% confidence intervals of LOGICOIL for pairwise oligomeric state

prediction with coiled-coils with length �15 residues. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.

Figure 3. Performance comparison of coiled-coils without non-canonical heptad registers between RFCoil, SCORER 2.0, PrOCoil and LOGICOIL on the independent test.

(A) ROC curves and the 95% confidence intervals for parallel dimeric and trimeric coiled-coils with length �8 amino acids. (B) ROC curves and the 95% confidence inter-

vals for parallel dimeric and trimeric coiled-coils with length �15 amino acids. (C) ROC curves and the 95% confidence intervals of LOGICOIL for pairwise oligomeric

state prediction with coiled-coils with length �15 residues. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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for imbalanced biological/medical data mining tasks also exist
[78–80].

We next compared the prediction performance of Multicoil2
and other predictors. Multicoil2 accepts the full-length protein
sequences as the input rather than coiled-coil sequences and
their respective heptad registers. Instead of providing an overall
score for the input sequence, Multicoil2 generates pre-
dicted probabilities for each individual residue in the sequence
to form parallel dimers, parallel trimers or non-coiled-coils.
Here, to compare with other methods, we calculated the
average of the predicted probabilities by Multicoil2,
normalized the value into the range of [0, 1] and removed
the predicted non-coiled-coils from the results (the prediction
threshold was set as 0.5). We combined the parallel dimeric
and trimeric coiled-coils with length >¼ 21 amino acids
(given that Multicoil2 can only predict CCDs with length >¼ 21
amino acids) in the data set used in our independent test
with the dimers and trimers sequences in the Multicoil2
training data set and applied CD-HIT to remove the sequence
redundancy, ensuring that the identity between any two
sequences in the resulting data set was no more than 50%. As
a result, only 22 CCDs remained in the resulting data set.
For the remaining CCDs, we downloaded their complete protein
sequences so that we could use them as the input to Multicoil2.
Multicoil2 predicted only 11 of 22 (50.0%) sequences that
contained CCDs that overlapped with SOCKET annotation.
Therefore, we compared only the prediction performance of
different predictors on these 11 ‘valid’ CCDs (Figure 4;
Additional file 3—http://lightning.med.monash.edu/coiledcoil/).
In Figure 4, ‘positive’ and ‘negative’ represent parallel dimeric and
trimeric coiled-coils, respectively. LOGICOIL correctly classi-
fied all the parallel dimeric and trimeric coiled-coils,
while Multicoil2 and PrOCoil obtained the lowest AUC value.
Consistent with the results in Figures 2 and 3, PrOCoil-BA per-
formed better than PrOCoil (greater by 0.2), followed by RFCoil
and SCORER 2.0. In addition, the 95% confidence intervals suggest
that LOGICOIL was the best predictor based on this independent
testing data set. Consistent with the AUC values shown in Figure
4, LOGICOIL correctly classified all the test samples. It is note-
worthy that the majority voting strategy achieved an accuracy of
90.9%, which was ranked as the second best accuracy according
to the accuracies of other individual predictors (Supplementary
Table S4).

CCD prediction
Testing data set construction. The positive data set comprised pro-
tein sequences containing annotated CCDs based on SOCKET.
For the negative data set, we extracted protein entries of alpha
and beta classes (a/b; i.e. c class) from the SCOPe database, ex-
cept for superfamilies c.37.1, c.49.2, c.67.1 and c.93.1, which are
annotated to contain CCDs [24]. Protein sequences were ex-
tracted from PDB, and those sequences that contain unnatural
amino acids were removed. These sequences were further vali-
dated by SOCKET with a loosened threshold of 7.4Å [33] to en-
sure they did not contain any CCDs. After removing all the
available training data of investigated predictors from our test-
ing data set, we combined our testing data sets with the avail-
able training data sets of CCHMM_PROF, MARCOIL and
Multicoil2. We then applied CD-HIT to remove the sequence re-
dundancy, so that the sequence identity between any two se-
quences was not >30%. Similar to the construction process of
the independent test data set for CCD oligomeric state predic-
tion, for each cluster generated by CD-HIT, only representative
sequences from the clusters where there were no samples from

the training data sets of the compared predictors in this cluster
were collected. After this procedure, the final data set included
a total of 1643 sequences, 601 of which did not contain any
CCDs and 1042 containing 2176 CCDs (Additional files 4 and 5—
http://lightning.med.monash.edu/coiledcoil/). CCHMM_PROF
and PCOILS require the position-specific scoring matrix (PSSM)
generated by PSI-BLAST as the input to make the prediction.
Accordingly, we used the Uniref90 database to generate the
PSSM profiles of all the tested sequences and conduct the com-
parison, which was also used as the search database by
CCHMM_PROF [33]. The parameters for PSI-BLAST was prelimin-
arily set by the PCOILS program; for CCHMM_PROF, we used the
same parameters described in [33].

Performance comparison. Firstly, we evaluated the effectiveness of
different predictors for identifying CCDs by calculating the aver-
aged probability score for each protein. If a protein was pre-
dicted to contain coiled-coil residues, the probability was
calculated as the averaged score of all predicted coiled-coil resi-
dues; otherwise, if a protein was not predicted to have CCDs,
then the calculated probability was the averaged score of all
residues of the whole protein. The ROC curves and correspond-
ing AUC values of the compared predictors are shown in
Figure 5A, where ‘positive’ represents the sequences containing
CCDs, while ‘negative’ indicates the sequences without CCDs.
Because Multicoil2 can only predict protein sequences with
CCDs >21 amino acids, we provided the results of Multicoil2 on

Figure 4. ROC curves and the 95% confidence intervals of Multcoil2 and other

predictors for parallel dimeric and trimeric coiled-coil prediction. A colour ver-

sion of this figure is available at BIB online: http://bib.oxfordjournals.org.
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both the entire test data set (termed ‘Multicoil2-all’) and a sub-
set that only contained proteins with coiled-coils >¼ 21 amino
acids (termed ‘Multicoil2-21’). It is apparent that Multicoil2-21
identified the majority of coiled-coils and achieved the
highest AUC value of 0.898, followed by CCHMM_PROF
(AUC¼ 0.811). The AUC value of PCOILS was higher than COILS
by 0.017, presumably owing to the incorporation of evolutionary
information in the form of PSSM generated by PSI-BLAST. Next,
we examined whether the identified CCDs were identical to
those annotated by SOCKET. To do so, we compared all 2176
CCDs and their corresponding prediction scores of all reviewed
predictors. A domain was predicted as a CCD if its probability
was >0.5. For the negative protein (i.e. proteins without CCDs),
if it was predicted to have a CCD, the average score would be
calculated; otherwise, the average prediction score for each resi-
due in this protein would be calculated. The results are shown
in Figure 5B, where the ‘positive’ denotes CCDs while the ‘nega-
tive’ indicates the sequences without CCDs. Similar to Figure
5A, CCHMM_PROF and Multicoil2-21 again achieved the highest
and second highest AUC values (AUC¼ 0.906 and 0.863, respect-
ively), suggesting that the majority of their predicted CCDs were
consistent with the SOCKET assignment. COILS obtained the
lowest performance with an AUC score of only 0.607. We also
note that Multicoil2-all achieved a lower AUC score, possibly
owing to its restriction of having a length requirement of coiled-
coils during the model training. The performance comparison
results between individual predictors and majority voting are
shown in Supplementary Table S5. Because the minimum
length of coiled-coils used for training Multicoil2 is 21, we

further filtered the testing data set with different thresholds of
coiled-coil lengths to perform the CCD coverage test. Although
majority voting did not improve the overall prediction accur-
acy, the performance of majority voting was still competitive
compared with individual predictors (Supplementary Table S5).

CCD and CCD oligomeric state prediction for human
PolyQ proteins

Identification of CCDs
We first made a consensus-based decision for CCD prediction
based on the predictors that are capable of discriminating
coiled-coils from non-coiled-coils. The predictors used in this
step were COILS, PCOILS, Paircoil2 (the p-score version with dif-
ferent window sizes and probability score version), MARCOIL,
CCHMM_PROF, SpiriCoil and Multicoil2. Strikingly, the results
are largely inconsistent between different predictors
(Supplementary Tables S6–S13), making it difficult to generate a
consensus prediction. Only a small portion of the proteins was
predicted to harbour CCDs according to the prediction results of
PCOILS, Paircoil2 (both p-score and probability score versions),
SpiriCoil and Multicoil2. In contrast, COILS, MARCOIL and
CCHMM_PROF predicted several CCDs within the nine PolyQ
proteins. Most of the predicted coiled-coils overlapped or
flanked the PolyQ tract. Based on the prediction results, the
final decisions of predicted CCDs were made through majority
voting (i.e. the CCD peptides need to be predicted by at least
four predictors; the results are listed in Table 3). In the predic-
tion of CCDs in nine disease-associated PolyQ proteins by

Figure 5. Performance comparison of CCD predictors. (A) ROC curves and the 95% confidence intervals of different predictors for identifying coiled-coil domains. (B)

ROC curves and the 95% confidence intervals of different predictors, showing the consistency between the predicted CCDs and those annotated by SOCKET based on

the protein structures. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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Fiumara et al. [27], only two relatively old CCDs predictors
were used (COILS and Paircoil2). We note that the results of
Fiumara et al. are inconsistent with our predictions in this sev-
eral state-of-the-art predictors. This discrepancy highlights that
it remains a challenging task to develop reliable and consistent
CCD prediction methods, and that attention should be paid
when only a few specific methods are used to make the predic-
tion, especially when these methods are used to guide and in-
terpret experimental investigations such as the studies by
Fiumara et al. [27].

Prediction of oligomeric state of PolyQ proteins. To examine the po-
tential oligomeric states of the peptides listed in Table 3, we
performed the prediction using RFCoil, SCORER 2.0, PrOCoil
and LOGICOIL (Supplementary Tables S14 and S15). Because
COILS, MARCOIL, PCOILS, Paircoil2 and Multicoil2 all provided
heptad registers, we used these heptads to facilitate the oligo-
meric state prediction. As we can see, with different heptad
registers, RFCoil, SCORER 2.0 and PrOCoil produced consistent
prediction results (dimer formation), while the oligomeric state
predictions from LOGICOIL were variable.

Conclusion

Given the functional significance of CCDs, computational biolo-
gists are motivated to develop more accurate and reliable pre-
dictors for CCD prediction. Aiming at providing a
comprehensive review of coiled-coil predictors to non-bioinfor-
maticians, this article describes and compares a number of
widely used coiled-coil predictors in terms of their input, model
construction and model evaluation. Independent tests reveal
that LOICOIL achieved the overall highest AUC value when used
to predict parallel dimeric and trimeric coiled-coils. For CCD
prediction, Multicoil2 achieved the highest AUC value when de-
tecting long CCDs in proteins, while CCHMM_PROF achieved the
highest AUC value for the coverage of detected CCDs without
the length limitation of CCDs. A case study of nine PolyQ pro-
teins demonstrated that coiled-coil predictions were quite dif-
ferent among different predictors, which could further
confound the consensus prediction analysis. We conclude that
coiled-coil prediction is still a challenging task, and we expect
that more powerful algorithms with improved prediction per-
formance will emerge with the increasing availability of coiled-
coil data.

Key Points

• This article provides a comprehensive review on the
current progress of computational approaches for
coiled-coil domain (CCD) prediction and coiled-coil oli-
gomeric state prediction.

• Independent tests using rigorously prepared data sets
highlight that Multicoil2 (tested with long coiled-coils)
and CCHMM_PROF achieved the highest area under
curve (AUC) values for coiled-coil domain prediction,
while LOGICOIL achieved the highest AUC value for
parallel dimeric and trimeric prediction.

• The CCD prediction results on nine PolyQ proteins
show inconsistencies of CCD prediction, which should
be borne in mind when using prediction methods to
make meaningful and reliable biological inferences.

• This review serves as a useful guide for researchers
who want to gain a better understanding of state-of-
the-art approaches in this area and aim to develop
their own methods with improved performance.

Supplementary Data

Supplementary data are available online at http://bib.
oxfordjournals.org/.
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Table 3. The consensus CCDs predicted by at least four predictors

Protein Predicted
coiled-coils

Protein structure Sequence Overlapping
PolyQ tract

Agreed by

Voltage-dependent
P/Q-type calcium
channel subunit
alpha-1A (Brain
calcium channel I)

720–747 3BXK (B/D¼ 1955–1975) AQELTKDEQEEEEAANQKLALQKAKEVA No COILS, PCOILS, Paircoil2
(P-score version),
CCHMM_PROF,
Multicoil2 and
MARCOIL

Atrophin-1 793–819 – AKKRADLVEKVRREAEQRAREEKERER No COILS, PCOILS, Paircoil2
(P-score version),
CCHMM_PROF,
Multicoil2 (cut-
off¼ 0.5) and
MARCOIL
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