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Abstract

Accurate assessment of genetic variation in human DNA sequencing studies remains a nontrivial challenge in clinical gen-
omics and genome informatics. Ascribing functional roles and/or clinical significances to single nucleotide variants identified
from a next-generation sequencing study is an important step in genome interpretation. Experimental characterization of all
the observed functional variants is yet impractical; thus, the prediction of functional and/or regulatory impacts of the various
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mutations using in silico approaches is an important step toward the identification of functionally significant or clinically
actionable variants. The relationships between genotypes and the expressed phenotypes are multilayered and biologically
complex; such relationships present numerous challenges and at the same time offer various opportunities for the design of in
silico variant assessment strategies. Over the past decade, many bioinformatics algorithms have been developed to predict
functional consequences of single nucleotide variants in the protein coding regions. In this review, we provide an overview of
the bioinformatics resources for the prediction, annotation and visualization of coding single nucleotide variants. We discuss
the currently available approaches and major challenges from the perspective of protein sequence, structure, function and
interactions that require consideration when interpreting the impact of putatively functional variants. We also discuss the
relevance of incorporating integrated workflows for predicting the biomedical impact of the functionally important variations
encoded in a genome, exome or transcriptome. Finally, we propose a framework to classify variant assessment approaches
and strategies for incorporation of variant assessment within electronic health records.

Key words: human genome; functional variant; human variation; variant interpretation; mutation; human proteome; non-
synonymous mutations; prediction algorithms; functional genomics; sequence analysis; structure analysis

Introduction

Genomic technologies are redefining the understanding of geno-
type–phenotype relationships. In the early 2000s, array-based
genomic technologies enabled gene expression analysis using
microarrays, followed by single nucleotide polymorphism (SNP,
genetic variation observed in a population) genotyping platforms
in mid-2000s, and subsequently by low-cost, high-throughput,
massively parallel sequencing platforms in the late 2000s [1–3].
Genomic sequencing data offer insights into the relationships be-
tween the human genomic variations and various molecular and
disease phenotypes. Sequencing a biological or clinical sample to
characterize genomic, exomic or transcriptomic variations using
next-generation sequencing (NGS) technologies helps to identify
genomic variations underlying complex diseases. Moreover,
approaches such as targeted sequencing of disease-susceptible
genomic regions, whole exome sequencing (WES), whole genome
sequencing (WGS) and RNA sequencing (RNA-Seq) provide
deeper insights into the genetic bases of familial diseases and a
better understanding of the biological processes underlying dis-
ease phenotypes such as tumors.

Over the past decade, the genetic basis of several complex dis-
eases and clinically relevant quantitative traits were examined
using SNP genotyping array-based genome-wide association
studies (GWAS). Subsequently, sequencing [4–6] studies have im-
proved the understanding of the associations between SNPs with
clinically relevant traits and human diseases (See http://www.
ebi.ac.uk/fgpt/gwas/). SNP arrays have uncovered the more com-
mon variations, while sequencing has unravelled much of the
rare variants spectrum. The frequency of SNPs in the human
genome is approximately 1/300 base pair (bp). SNPs are generally
categorized as common variants [in which the minor allele fre-
quency (MAF)¼ 1–5%] or rare variants (MAF< 1%) according to
their population frequencies. Both GWAS and targeted WES and
WGS studies have expanded the catalog of genotype–phenotype
associations and offered insights into the roles of previously
uncharacterized genetic regions in complex diseases [7–12].

The rapid increase in the high-quality sequencing data gener-
ation using low-cost NGS experimental platforms coupled with
speedy bioinformatics algorithms have enhanced the identifica-
tion of a large number of sequence and structural variants vari-
ations (characterized by genomic DNA> 1 kb in size). SNPs are
associated with medically relevant phenotypes, as well as dis-
eases [13–15] and are often observed on a population scale,
whereas single nucleotide variations (SNVs) are specific poly-
morphisms observed in an individual. Recent studies have high-
lighted the roles of the different types of structural variants (copy

number variations, insertions and deletions (indels), inversions,
translocations, linking, anchored split mapping, gain/loss) in the
genetic bases of several complex diseases [16–19]. Furthermore,
sequencing studies have helped to identify rare personal variants
and variants of unknown significance (VUS).

Public repositories of genomic sequencing and variation data
have experienced an exponential growth in the past decade. For
example Single Nucleotide Polymorphism database (dbSNP) [20]
and Ensembl Variation database [21] that archive short genetic
variants and structural variants and Database of Genomic
Variants [22] that archives a catalog of curated, large-scale gen-
omic structural variants in the human genome are expanding.
Since the first GWAS study reported in 2005, so far genetic basis
of 1251 traits were discovered. These investigations also led
phenotypic annotations for 15 396 SNPs. A large number of clin-
ical-grade genomes, exomes or transcriptomes sequenced for
individualized medicine [23–25] and population-scale sequencing
[26] projects such as 1000 genomes [27], Genome10K (http://www.
genome10k.org/) and UK10K (http://www.uk10k.org/) will further
add to the size of variant-centric databases in the future.
Analysis of the data from the sequencing experiments can be
broadly divided into four major tasks: (i) quality assessment of
the sequencing reads, (ii) alignment of the sequencing reads with
the reference genome, (iii) variant calling and (iv) functional and/
or clinical assessment and prioritization of variants.

The variants identified from the NGS studies present several
data interpretation challenges in bioinformatics. The initial data
inference is a key filtering step in the identification and prioritiza-
tion of a subset of variants for functionally important cues and
validation studies. The following sections describe a simple
framework to classify the available and widely used bioinfor-
matics resources for prediction, annotation and interpretation of
coding SNVs. We also discuss 10 different analytical themes that
can potentially be investigated from a bioinformatics perspective
to obtain a better understanding of coding SNVs.

Landscape of genetic variants

The mutation spectrum of the human genome is complex and
has been classified based on diverse criteria such as the mode of
inheritance, heterozygosity pattern, impact on chromosome or al-
leles, impact on protein sequence, structure and function, impact
on the population or evolutionary role and penetrance (Figure 1).
On the other hand, SNVs may be broadly classified as coding
SNVs (functional variations) that perturb the function of a tran-
script or a protein, or variants may be classified as noncoding
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SNVs (regulatory variations) that are located in the regulatory
elements [promoters, untranslated regions (UTRs), enhancers,
human accelerated regions, noncoding RNA genes, transcription
factor binding sites (TFBS)] that regulate the expression levels of a
transcript or a protein. Regulatory variants may also perturb gene
or protein functions via complex cis or trans-activation mechan-
isms and may, thus, play important roles in influencing the ex-
pression and functions of other genes. An example of a functional
variant (P33S) in the ribonucleoside-diphosphate reductase sub-
unit M2 B (RRM2B) gene associated with autosomal recessive pro-
gressive external ophthalmoplegia is provided in Figure 2(i) and
2(ii). Another example of a missense variant R363H (rs11556924) in
zinc finger, C3HC-type containing 1 (ZC3HC1) gene, is associated
with coronary heart disease [28]. P33S in RRM2B is part of a con-
served haribonucleotide reductase domain. The variant R363H in
ZC3HC1 does not lie within a known functional domain, and thus,
the variation is located in an unassigned region of the protein.
The domain architectures of RRM2B and ZC3HC1 along with the
location of functional variants are highlighted in Figure 2(ii).
Regulatory variants may influence the expression levels of cis- or
trans-acting genes through gene regulation networks. For ex-
ample, an intergenic variant (rs10811661) in the 9p21 locus, which
is harbored near CDKN2A and CDKN2B on chromosome 9, was
associated with myocardial infarction [29] and coronary heart dis-
ease [9]. A targeted deletion study in mice that investigated the
9p21 region, revealed a regulatory role of the variant in perturbing
the expression of two genes (Cdkn2a and Cdkn2b) via a cis-acting

mechanism [30]. Another regulatory variant rs342293 (intergenic
variant between FLJ36031-PIK3CG), which influences a quantitative
trait (mean platelet volume) [31], perturbed a TFBS of ecotropic
viral integration site-1 (EVI1) and influenced the expression
levels of PIK3CG [32]. The genomic locations of the regulatory vari-
ants rs10811661 and rs342293 that were generated using the
Ensembl Genome Browser are highlighted in Figure 2(iii).
Regulatory variants too impact the biological function by altering
the level of transcription that may influence protein levels as well.
The majority of regulatory variants are not within the protein cod-
ing regions, but may indirectly influence gene/protein function via
alternative splicing mechanisms [33]. See the recent reviews
that summarized the impact of regulatory variation of protein ex-
pression and function for a detailed account of regulatory variants
[34, 35].

Prediction, annotation and visualization
of coding SNVs

Scientific literature often refers to variants using diverse sets of
terms including recommended nomenclature [36] or standard
terms from Sequence Ontology (SO) [37]. In this review, we broadly
classify genomic variants as ‘functional variants’ and ‘regulatory
variants’, and we primarily focus on coding SNVs and computa-
tional approaches for the prediction, annotation, visualization and
interpretation of coding SNVs. The different terms used to define
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Figure 1. The human mutation spectrum.
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variants in the Ensembl Variation resources and dbSNP and their
corresponding SO identifiers and descriptions are summarized in
Table 1. The interpretation of variants can be broadly divided into
three steps: ‘annotation’, ‘prediction’ and ‘visualization’.

A given set of variant(s) identified from a sequencing study
will be segregated into various classes of genomic variants in the
first step in variant annotation (Table 1). Cross-referencing the
variants with reference databases and clinical annotation data-
bases like ClinVar [38] can be used to assess the novelty of gen-
omic variants. Fully automated pipelines can be used to annotate
variants based on coordinate specific mapping to genomic re-
gions using proprietary and/or public databases, and various fea-
tures associated with variant can be derived from such
annotation mapping and variant-specific layering approach. For
example, a variant can be mapped to a protein-coding region,
junction regions or noncoding regions of the genome.

Based on the location of the variant in the protein-coding or
noncoding regions, variants (non-synonymous, missense, non-
sense or frameshift variants) can be further examined to under-
stand their impact on protein functions. Tools like Combined
Annotation-Dependent Depletion (CADD) [39], SIFT (as tolerated
or damaging variants) [40], PolyPhen2 (as benign, possibly

damaging or probably damaging variants) [41] or Condel (meta-
predictor that combines prediction scores from multiple tools)
[42] can be leveraged for predictive assessment of genetic vari-
ants. Annotation primarily provides localization of a genetic vari-
ant using genome coordinates; prediction aims to hypothesize
the probable impact of a particular genetic variant on function or
regulation. The combination of annotation and prediction pro-
vides an integrated view of genomic variants. Tools such as
snpEff or the Ensembl Variant Predictor can be used to predict the
impact of a variation in comparison with the reference sequence.
The impact of a sequence variant with respect to the evolutionary
conservation can also be predicted or derived from GRANTHAM
score [43], genomic evolutionary rate profiling (GERP) score [44],
phylogenetic P-value (PhyloP) score [45] and PhastCons score [46].
The development of substitution matrices in the early 1970s was
instrumental in fueling the design and implementation of com-
putational approaches to infer the functional impact of genomic
variants [43, 47]. Matrices such as Point Accepted Mutations
(PAM1 matrix: substitution probabilities for sequences with a mu-
tation rate of 1/100 amino acids; PAM250 matrix: 250 mutations/
100 amino acids), BLOCK SUbstitution Matrix (BLOSUM) matrices
[48] and sequence search algorithms designed to identify the

Figure 2. Examples of the coding (functional) and noncoding (regulatory) variants. (i) Functional variant (Pro33Ser) in RRM2B associated with autosomal recessive progres-

sive external ophthalmoplegia visualized on a protein structure (PDB ID: 2vux; Quaternary assembly is generated using PISA/PDBe). Functional variant (Pro33Ser) is high-

lighted in red color inside the green circle on chains A (part of loop) and B (part of helix). Visualization was created using UCSF Chimera (www.cgl.ucsf.edu/chimera). (ii)

Protein domain architectures and functional variants mapped to ii (a) RRM2B and ii (b) ZC3HC1. Ribonuc_red_sm¼Ribonucleotide reductase domain; zf¼C3HC zinc finger-

like domain; Rsm1¼Rsm1-like domain. Functional variants are highlighted using red vertical line. Figure was generated using MyDomains (http://prosite.expasy.org/mydo-

mains/). (iii) Genomic localization of the regulatory variants (a) rs10811661 and (b) rs342293. The location of the variants are highlighted using a vertical red line. Regulatory

variant rs10811661 regulated the expression of nearby genes CDKN2A and CDKN2B (highlighted in red boxes). Intergenic variant rs342293 located between FLJ36031

(CCDC71L)-PIK3CG is located in a TFBS of EVI1 that regulates the expression (repress) of PIK3CG. Genomic regions were visualized using Ensembl Genome Browser v. 67.
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similarity between any two sequences (pairwise sequence align-
ment) and the evolutionary relationships between two or more
sequences (multiple sequence alignments) have spawned the de-
velopment of improved heuristic homology search tools [49, 50].
The early 2000s witnessed the development of several predictive
methods based on sequence conservation, amino acid substitu-
tions and perturbation of the local structural environment to as-
sess the impact of functional variants in proteins [51–57]. The ka/
ks ratio (or dN/dS) test, which estimates the ratio of the total
number of non-synonymous substitutions per non-synonymous
sites (dN) to the total number of synonymous substitutions to

synonymous sites (dS), is widely used to quantify the selection
pressure on functional genes [52]. Furthermore, bioinformatics
tools, databases and statistical methods for the identification, an-
notation and analysis of SNPs from genotyping and sequencing
data have been amply surveyed in literature [58–66].

Integrative approaches can provide additional annotations
for variants such as the location of the variants within the con-
served protein sequence/structure domains (contiguous unit in
protein sequence or structure with evidence of functional anno-
tation from experimental or computational function association
methods), within known functional sites. Gene Ontology (GO)

Table 1. The naming convention used to describe the sequence variants in the Ensembl Variation resources and dbSNP

Ensembl variant
consequences

dbSNP
functional
classes

SO ID SO: Definition

Essential splice site splice-3 SO:0001574;
SO:0001575

A splice variant that changes the two base regions at the 30 end of an
intron; a splice variant that changes the two base regions at the 50

end of an intron.
Stop gained splice-5 SO:0001587 A sequence variant whereby at least one base of a codon is changed,

resulting in a premature stop codon, leading to a shortened
transcript.

Stop lost nonsense SO:0001578 A sequence variant where at least one base of the terminator codon
(stop) is changed, resulting in an elongated transcript.

Complex in/del NA SO:0001577 A transcript variant with a complex INDEL—Insertion or deletion that
spans an exon/intron border or a coding sequence/UTR border.

Frameshift coding frameshift SO:0001589 A sequence variant, which causes a disruption of the translational
reading frame, because the number of nucleotides inserted or
deleted is not a multiple of three.

Non-synonymous
coding

missense SO:0001582;
SO:0001652;
SO:0001651;
SO:0001583

A codon variant that changes at least one base of the first codon of a
transcript; an inframe non-synonymous variant that deletes bases
from the coding sequence; an inframe non-synonymous variant
that inserts bases into in the coding sequence; a sequence variant,
where the change may be longer than three bases, and at least one
base of a codon is changed, resulting in a codon that encodes for a
different amino acid.

Splice site NA SO:0001630 A sequence variant in which a change has occurred within the region
of the splice site, either within 1–3 bases of the exon or 3–8 bases of
the intron.

Partial codon NA SO:0001626 A sequence variant where at least one base of the final codon of an in-
completely annotated transcript is changed.

Synonymous coding cds-synon SO:0001567;
SO:0001588

A sequence variant where at least one base in the terminator codon is
changed, but the terminator remains; a sequence variant where
there is no resulting change to the encoded amino acid.

Coding unknown NA SO:0001580 A sequence variant that changes the coding sequence.
Within mature miRNA NA SO:0001620 A transcript variant located with the sequence of the mature miRNA.
50 UTR untranslated_5

/UTR-5
SO:0001623 A UTR variant of the 50 UTR.

30 UTR untranslated_3
/UTR-3

SO:0001624 A UTR variant of the 30 UTR.

Intronic intron SO:0001627 A transcript variant occurring within an intron.
NMD transcript SO:0001621 A variant in a transcript that is the target of NMD.
Within non-coding

gene
ncRNA SO:0001619 A transcript variant of a non-coding RNA gene.

Upstream near-gene-5 SO:0001636;
SO:0001635

A sequence variant located within 2 KB 50 of a gene; a sequence variant
located within 5 KB 50 of a gene.

Downstream near-gene-3 SO:0001634;
SO:0001633

A sequence variant located within a half KB of the end of a gene; a se-
quence variant located within 5 KB of the end of a gene.

Regulatory region NA SO:0001566 A sequence variant located within a regulatory region.
Transcription factor

binding motif
NA SO:0001782 A sequence variant located within a transcription factor-binding site.

Intergenic intergenic SO:0001628 A sequence variant located in the intergenic region, between genes.

SO identifiers and descriptions were obtained from MISO (www.sequenceontology.org/miso/).
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terms and pathways associated with the variant-containing
genes, associations mapped within genetic databases such as
dbSNP, Ensembl, Online Mendelian Inheritance in Man [67],
Human Gene Mutation Database [68], Catalogue of Somatic
Mutations in Cancer (COSMIC) [69] and other clinically relevant
genomic regions also enable enhanced variant annotation.
Together, integrative data analysis platforms (such as
TargetMine [70]) and integrated annotation tools such as
ANNOVAR [71] or webservers that can handle Variant Call
Format (VCF) [72] files, facilitate the annotations for a large
number of sequence variants in a small amount of time.
Adopting a standard set of terms from the SO to define the type
of variants would also help in streamlining the interoperability
of results from the different prediction tools. A comprehensive
list of tools for rapid variant annotation is provided in Table 2.

The visualization of a variant in the context of multiple
layers of biological information is helpful to interpret and priori-
tize variants for functional studies. A growing number of gen-
ome browsers and data visualization libraries enable the
interactive and static visualizations of variants in the context of
the human genome or transcriptome with biological, clinical
and population scale annotation data compiled from multiple
resources. Genome browsers [Integrative Genomics Viewer
(IGV), UCSC Genome Browsers, NCBI Sequence Viewer, etc.] en-
able the visualization of variants in the context of a reference
genome. Resources such as Distributed Annotation System
(DAS) and DASTY (a protein-centric DAS client) can be leveraged
for interactive visualization of coding variants in a protein with
rich annotations. A list of genome browsers and visualization
libraries capable of visualizing variants and multiple annotation
components is provided in Table 3.

Text mining and natural language processing
for knowledge aggregation for SNVs

Biomedical knowledge about relationships between genes, dis-
eases, phenotypes and genetic variations are scattered across a
large number of unstructured literature databases. Application
of natural language processing and text-mining, therefore,
offers a useful approach for function assignment of coding
SNVs. Further text mining of large biomedical literature data-
bases like PubMed and Medline helps to provide clues for fur-
ther investigations and leads to hypothesis [73]. For example,
PhenGen [74] offers links to a variety of literature evidence to
support genotype–phenotype connections. Integrated databases

like T-HOD database [75] and PolySearch [76] provide text-
mining tools to derive meaningful biological inferences to
interpret coding SNVs.

Emerging challenges in annotation and
interpretation of coding SNVs

The growing number of tools for the prediction, annotation and
visualization of coding SNVs can address several gaps in the
current state of knowledge on variant interpretation. The devel-
opment of new algorithms for variant interpretation could be
considered for several emerging themes of the protein se-
quence-structure-function paradigm. Several tools [See Tables
4, 5 and 6] are currently available to assess sequence and struc-
ture-based features; yet, a reliable interpretation on how a gen-
omic variant could perturb a protein or a protein network is
often a challenging task.

VUS (also known as incidental variations or secondary vari-
ations) are a class of variants hitherto unknown in known dis-
ease genes, but the influence of these variants on the disease
phenotype is largely unknown. Pilot data from 1000 Genomes
project on exon capture sequencing of 1092 individuals selected
from 14 populations across Europe, East Asia, sub-Saharan
Africa and the Americas reported an observed frequency of 2500
non-synonymous variants at conserved positions; 20–40 vari-
ants identified as damaging; 24 at conserved sites and about 150
loss-of-function (LOF) variants that includes stop-gains, frame-
shift insertions and deletions (indels) in a coding sequence and
disruptions to essential splice sites. Emerging evidence suggests
that rare variants may have a higher collective impact on dis-
ease incidence rate than common variants, and considering the
allele frequency as a metric to assess the clinical impact of the
variant may help to assess the clinical impact of VUS. Majority
of the variants identified in individuals in 1000 Genomes project
are common with >5% of MAF or low frequency (MAF: 0.5–5%)
than rare variants (MAF: <0.5%). Rare variant frequencies esti-
mated as 130–400 non-synonymous variants per individual that
includes 10–20 LOF variants, 2–5 damaging mutations, and 1–2
variants identified from cancer genome sequencing projects
[77–79]. As an ever-increasing number of VUS are being charac-
terized, their annotation and interpretation is becoming more
challenging. With the advent of WGS and WES in clinical set-
tings, the repertoire of VUS associated with complex, chronic
and rare diseases is rapidly expanding. We surveyed the
Human polymorphisms and disease mutations index (humsa-
var.txt) to gather unclassified variants reported in UniProtKB, a
curated database of functional information on proteins. The
current release (2014_05) of the humsavar lists 6564 variants as
‘Unclassified variants’; these variants were mapped to 1910 pro-
tein coding genes. A manually curated annotation of the vari-
ants and disease ontology-based disease term-gene enrichment
analyses indicated that the genes were largely from cancer pa-
tients (322 genes tested; P< 0.05). We noted that 497 genes
encoded polymorphism, disease and unclassified variants, sug-
gesting that VUS-labeled variants may directly influence the
genes that are relevant to human diseases and clinically rele-
vant phenotypes. A proportional Venn diagram of genes
mapped to variants labeled as ‘Polymorphism’, ‘Disease’ and
‘Unclassified’ is illustrated in Figure 3. The top 10 disease ontol-
ogy terms enriched among the genes within the three classes of
variants are summarized in Table 2. We observed that certain
diseases were represented by genes that share multiple classes
of variants, thereby suggesting that unclassified variants may

Table 2. Top-10 terms from a gene-disease enrichment analyses per-
formed using list of genes with shared polymorphism, disease and
unclassified variants using disease ontology

DO term No. of
genes

P-values
(Bonferroni
corrected)

Congenital abnormality 38 9.13E-34
Cancer 64 7.222E-33
Diabetes mellitus 39 8.913E-23
Breast cancer 36 3.56E-17
Atherosclerosis 26 1.478E-16
Retinal disease 16 2.044E-16
Adenovirus infection 15 8.816E-14
Hypertension 21 2.072E-13
Alzheimer’s disease 22 7.548E-13
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play a key role in certain clinical conditions such as cancers,
chronic diseases (diabetes, atherosclerosis, hypertension and
kidney disease), neurodegenerative disease (Alzheimer’s dis-
ease) and infection (P< 0.05; Bonferroni corrected). Annotating
functional coding SNVs including VUS validated using an or-
thogonal method also requires detailed sequence, structure and
interaction-based analyses. In this context, we discuss some of
the predictive features and analytical approaches that once
incorporated in coding variant annotation algorithms, may po-
tentially enhance the interpretation of the functional variants
on a proteome-wide scale.

Sequence and structural properties
perturbed by coding SNVs

A protein performs its defined function after attaining a specific
tertiary or quaternary structure [80, 81]. This is often mediated
by cross-links of inter-chain and intra-chain amino-acid residue
interactions within a protein. These interactions (hydrogen
bond, disulphide bonds, salt bridges, ionic interactions, electro-
static interactions, hydrophobic interactions, etc.) stabilize the

fold of individual protein chains and the overall quaternary as-
sembly. Individual amino acids within a protein are under the
influence of the varied elements of the sequence-structure-
function paradigm that modulate their biochemical role [82].
Primarily, a residue may be located within an evolutionarily
conserved compact globular domain [83] or in an unassigned re-
gion with no known protein domain association [84]. A residue
can be a part of a motif which can be functional [85], that of a
linear motif [86], propeptide [87], signaling peptide [88] or a part
of structural [89] and spatially interacting sites, which partici-
pate in higher order interactions [90], catalytic sites [91], ligand
binding sites [92] and allosteric sites [93] associated with exten-
sive inter-chain and intra-chain interactions [90] based on
the oligomeric property of the proteins. Amino acids can also be
part of specific sub-cellular localization signals that direct
the proteins to specific locations in the cell [94]. The lengths of
the proteins [62], sequential localization (N-terminal,
C-terminal or other region of protein sequence) and the location
of a coding SNV with respect to the surface—interior or inter-
face of the protein structure—could influence disease manifest-
ation [95].

Table 3. Rapid variant annotation tools

Name Description URL

ANNOVAR Efficient software tool to use up-to-date information to
functionally annotate genetic variants detected from
diverse genomes.

http://www.openbioinformatics.org/annovar/

AnnTools Comprehensive and versatile annotation toolkit for gen-
omic variants.

http://anntools.sourceforge.net/

dbNSFP A lightweight database of human non-synonymous
SNPs and their functional predictions.

https://sites.google.com/site/jpopgen/dbNSFP

EVA An efficient and versatile tool for filtering strategies in
medical genomics.

http://plateforme-genomique-irib.univ-rouen.fr/EVA/
index.php

Exome Variant
Server

Provides different calculated values (GERP, GRANTHAM,
etc.) and annotations for SNPs.

http://evs.gs.washington.edu/EVS/

gSearch gSearch compares sequence variants in the Genome
Variation Format (GVF) or VCF with a pre-compiled
annotation or with variants in other genomes.

http://ml.ssu.ac.kr/gSearch/index.html

HugeSeq A pipeline for detection and annotation of genetic
variations.

http://hugeseq.snyderlab.org/

MuSiC Comprehensive mutational analysis pipeline to segre-
gate passenger and driver mutations from cancer
genomes.

http://gmt.genome.wustl.edu/genome-music/current/

NGS-SNP Collection of command-line scripts for providing rich
annotations for SNPs.

http://stothard.afns.ualberta.ca/downloads/NGS-SNP/

SeattleSeq Annotation Provides annotation of known and novel SNPs. http://snp.gs.washington.edu/SeattleSeqAnnotation/
snpEff Variant annotation and effect prediction tool. http://snpeff.sourceforge.net/
SVA Software system designed for annotation and visualiza-

tion of genetic variants.
http://www.svaproject.org/

STORMSeq Cloud computing solution for read mapping, read clean-
ing, and variant calling and annotation.

https://github.com/konradjk/stormseq

TREAT Targeted RE-sequencing Annotation Tool. http://ndc.mayo.edu/mayo/research/biostat/stand-
alone-packages.cfm

VAAST Probabilistic search tool for identifying damaged genes
and their disease-causing variants in personal gen-
ome sequences.

http://www.yandell-lab.org/software/vaast.html

VARIANT VARIANT (VARIant ANalysis Tool) can report the func-
tional properties of any variant in all the human,
mouse or rat genes.

http://variant.bioinfo.cipf.es/

Variant Reporter Generate a report of known variants and functional
consequences.

www.ncbi.nlm.nih.gov/variation/tools/reporter

Variant Tools Tool for the annotation, selection and analysis of vari-
ants in the context of next-gen sequencing analysis.

http://varianttools.sourceforge.net/
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Table 4. Genome browsers and biological data visualization libraries

Name Description URL

1000 Genomes
browser

Genome browser to access data from 1000 Genomes
project.

http://www.ncbi.nlm.nih.gov/variation/tools/
1000genomes/

AnnoJ Web 2.0 application designed for visualizing sequencing
and annotation data.

http://www.annoj.org/

Artemis Genome Browser and Annotation Tool. http://www.sanger.ac.uk/resources/software/
artemis/

Bio::Graphics Perl modules for biological data visualization. http://search.cpan.org/dist/Bio-Graphics/
Bio::Graphics (Ruby) Ruby library for drawing overviews of genomic regions. http://bio-graphics.rubyforge.org/
Bluejay Java-based integrated computational environment for the

exploration of genomic data.
http://bluejay.ucalgary.ca/

CGView Circular Genome Viewer. http://wishart.biology.ualberta.ca/cgview/
Circos Circos is a software package for visualizing genomic data

and annotations in circular layout.
http://circos.ca/

Dalliance Interactive genome viewer, which runs directly in a modern
web browser.

http://www.biodalliance.org/

DAS DAS is an integrated visualization toolkit to share and col-
late genomic annotation information.

www.biodas.org

DASTY Web client for visualizing protein sequence feature infor-
mation using DAS.

http://www.ebi.ac.uk/dasty/

DNAPlotter DNAPlotter can be used to generate images of circular and
linear DNA maps to display regions and annotations of
interest.

http://www.sanger.ac.uk/resources/software/
dnaplotter/

Ensembl Genome
Browser

Ensembl Genome Browser enables the visualization of gen-
omic and transcriptomic sequence and related informa-
tion for several vertebrate and non-vertebrate species.

http://useast.ensembl.org/index.html

GASV Geometric Analysis of Structural Variants. http://compbio.cs.brown.edu/software.html
Gbrowse Generic Genome Browser (GBrowse) is a genome viewer de-

veloped as part of Generic Model Organism Database
(GMOD) project.

http://gmod.org/wiki/GBrowse

GENBOREE Customizable genome browser. http://genboree.org/java-bin/login.jsp
GeneViTo JAVA-based workbench for genome-wide analysis through

visual interaction.
http://athina.biol.uoa.gr/bioinformatics/GENEVITO/

GenomeGraphs R-based interface to plot genomic information from
Ensembl.

http://www.bioconductor.org/packages/release/bioc/
html/GenomeGraphs.html

GenomePixelizer Tool to generate custom images of genomes out of the
given set of genes.

http://www.atgc.org/GenomePixelizer/

GenomeTools Versatile genome analysis software. http://genometools.org/
GenomeView Next-generation stand-alone genome browser and editor. http://genomeview.org
Gremlin Interactive visualization model for analyzing genomic

rearrangements.
http://compbio.cs.brown.edu/software.html

IGB Integrated genome browser. http://bioviz.org/igb/index.html
IGV Integrative Genomics Viewer. http://www.broadinstitute.org/igv/
Jbrowse Genome browser with a fully dynamic AJAX interface. http://gmod.org/wiki/JBrowse
jsDAS JavaScript client library for the DAS. http://www.ebi.ac.uk/dasty/ebi/html/jsdas.html
MagicViewer Integrated solution for NGS data visualization and genetic

variation detection and annotation.
http://bioinformatics.zj.cn/magicviewer/index.php

NCBI Graphical
Sequence Viewer

Graphical display for the Nucleotide and Protein sequences. http://www.ncbi.nlm.nih.gov/projects/sviewer/

Rover Genome browser framework to build custom genomic tools. http://chmille4.github.com/Rover/site/home.html
Rviewer Interactive online tool for comparing and prioritizing gen-

omic regions.
http://rviewer.lbl.gov/rviewer/

Savant Genome Browser for high-throughput sequencing data. http://genomesavant.com/
Scribl HTML5 Canvas-based graphics library for visualization of

genomic data and annotations.
http://chmille4.github.com/Scribl/

UCSC Genome
Browser

Interactive genome browser that provide access to se-
quence data from different species, integrated with a
large collection of layered annotations from experiments
and prediction algorithms.

http://genome.ucsc.edu/cgi-bin/hgGateway

VISTA Browser Visualization of pairwise and multiple alignments of whole
genome assemblies.

http://pipeline.lbl.gov/cgi-bin/
gateway2?selector¼vista

Whole Genome
rVISTA

Visualization of TFBS that are conserved between species
and overrepresented in upstream regions of groups of
genes.

http://genome.lbl.gov/vista/index.shtml
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Previously, studies have established (Table 4) that functional
variants may impact the overall structural conformation and
function of proteins (ligand binding, substrate specificity, pro-
tein–protein interaction, transcription factor-target binding,
etc.). Residue-specific interactions can play a key role in such
variations. Sequence-based investigations will further help to
identify linear sequence motifs that confer diversity in the splice
variants [6], but the identification and analysis of the impact of
point mutations on spatially distributed structural motifs may
require structural data [55]. However, the limited availability of
structural data compared with sequence data may pose add-
itional challenges for incorporating structural analysis of the
functional variants [96]. Moreover, additional challenges arise
owing to the dynamic protein conformations and allosteric or
other long-distance effects (including higher order interactions)
of few mutations on the activity of the protein.

UniProtKB provides extensive information about residue
properties and curated information about globular domains (via
annotations derived from Pfam, SMART or InterPro),
posttranslational modifications (PTMs) and several bioinfor-
matics tools and webservers are available to investigate residue
properties and structural properties. (See Table 5 for a list of
tools to predict various sequence features. See URL http://bio
informatics.ca /links_directory/category/protein for list of tools
available for different protein-centric analyses.)

Occasionally, multiple sequence or structural features can
be annotated onto a single variant: for example, a residue could
be part of a functional motif and/or a structural motif, and cod-
ing SNVs may perturb either or both features. Quantifying mul-
tiple features perturbed by variants using an objective-scoring
schema will help to capture the entire set of features perturbed
by a functional variant. Comparative analysis of the sequence
and structural features of the wild type and the variant se-
quences will also enhance the understanding of the impact of
multiple coding variants within a protein.

Gain and loss of PTMs owing to SNVs

Amino acids in a mature peptide chain are targets of varied
PTM [97] events. PTMs include phosphorylation, methylation,
acetylation, amidation, hydroxylation, sulfation, lipidation,

glycosylation and palmitoylation [98]. Several studies have now
compiled and assessed the impact of phosphorylation in cancer
[97] and have reported mutational landscapes of various PTM
events including gain or loss of particular PTMs owing to SNVs
(for example, gain of glycosylation [99], gain and loss of phos-
phorylation in cancer [100]). Pan-cancer [101] and proteome
wide studies [102] have also assessed the impact of variety of
PTMs. Several tools and databases are currently available to
assess impact of individual PTMs owing to SNVs [refs?].
However, tools that can provide complete in silico profiling of
mutations will help the researchers to identify PTM-relevant
mutations and use the information to assess therapeutic
stratifications.

Coding SNVs in unassigned regions of proteins

An unassigned region refers to the segments in proteins with
no known functional domain assignments [84]. Human proteins
have a variable degree of unassigned regions, and small-un-
assigned regions are often defined as the linker regions between
two domains (Figure 2i). We surveyed the human proteome
using Pfam-based domain annotations to understand the un-
assigned regions in the human proteome. We computed as-
signed and unassigned regions (in percentage) for 20 242 protein
sequences from the SwissProt database (reviewed sequences).
Pfam-A-based domain assignments were retrieved for 20 137 se-
quences. A subset of 105 proteins was excluded from the ana-
lysis owing to overlapping domain assignments. Of the 20 137
sequences that were analyzed (Figure 4A), one protein (haloacid
dehalogenase-like hydrolase domain-containing protein 2) was
assigned with a conserved domain over its entire length, 3234
sequences were completely unassigned and the rest of the pro-
teins had varying segments of unassigned regions (mean:
53.87%; SD:630.94%). Current approaches in variant annotation
and interpretation are primarily focused on highly conserved
globular domains. Given that domains are presently assigned to
only �50% of the human proteome, analytical methods such as
Prediction of Unassigned Regions (PURE) that use intermediate
sequence search techniques for domain assignments [103] or
similar approaches that use sensitive sequence search protocols

Table 5. Examples of the functional variants located in sequence features perturbing diverse functional and structural effects in proteins

Variant location Description URL

Protein domain DMDM: A database that compiles domain mapping of dis-
ease mutations have information about 202 507 muta-
tions associated with 10 919 domains (compiled from
CDD, Pfam, COG and SMART databases).

http://bioinf.umbc.edu/dmdm/

Phosphorylation site Mutation of an AKT phosphorylation site of human B-raf. http://www.ncbi.nlm.nih.gov/pubmed/15791648
Propeptide Mutation in the von Willebrand factor (VWF) propeptide

affects the oligomerization.
http://www.ncbi.nlm.nih.gov/pubmed/20335223

Signal peptide Mutation in signal peptide of ADAMTS10 influence secre-
tion of full-length enzyme.

http://www.ncbi.nlm.nih.gov/pubmed/18567016

Active site Mutation in the active site of human deoxycytidine kinase
affects the substrate specificity.

http://www.ncbi.nlm.nih.gov/pubmed/18361501

Linear motif Linear motifs mediate functional diversity of transcript
variants.

http://www.ncbi.nlm.nih.gov/pubmed/22638587

Structural motif Heterozygous missense mutation of a spatially distributed
structural motif in human connexin (GJB3) gene cause
erythrokeratodermia variabilis.

http://www.ncbi.nlm.nih.gov/pubmed/9843209

Subcellular localization Missense mutations in the NPHS2 gene altering the traffick-
ing of nephrin to the plasma membrane.

www.ncbi.nlm.nih.gov/pubmed/15496146
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Table 6. Tools for predicting various sequence and structural features

Name Description URL

3dswap-pred Classify a protein sequence as domain-swapping or
non-domain swapping using an SVM model.

http://caps.ncbs.res.in/3dswap-pred/index.html

AAIndex An amino acid index is a set of 20 numerical values rep-
resenting various physico-chemical and biochemical
properties of amino acids.

http://www.genome.jp/aaindex/

Bioinformatics Link
Directory (Protein)

Extensive list of tools for prediction of protein sequence
features, structure features and function.

http://bioinformatics.ca /links_directory/category/
protein

dbPTM Comprehensive resource for protein PTMs. http://dbptm.mbc.nctu.edu.tw/
DISOPRED Dynamically disordered protein chains do not have sta-

ble secondary structures and have high flexibility in
solution. Disordered regions also play critical roles in
protein function.

http://bioinf.cs.ucl.ac.uk/disopred/

ELM Eukaryotic Linear Motif server. http://elm.eu.org/
Eris Eris server computes the change of the protein stability

induced by mutations using structural data.
http://dokhlab.unc.edu/tools/eris/index.html

FoldAmyloid Method for predicting of amyloidogenic regions from
protein sequence.

http://bioinfo.protres.ru/fold-amyloid/oga.cgi

FoldX FoldX can be used to find interactions contributing to
the stability of proteins and protein complexes using
structural data.

http://foldx.crg.es/

Globplot Globplot can predict disordered regions in protein
sequence.

http://globplot.embl.de/

H-Predictor Predict hinge regions involved in protein oligomeriza-
tion via the domain-swapping mechanism from
structural data.

http://troll.med.unc.edu/dokhlab/index.php/
Special:Hpredictor

Harmony Substitution and propensity score-based protein struc-
ture assessment algorithm.

http://caps.ncbs.res.in/harmony/

HORI Webserver for prediction of higher order residue inter-
actions in protein structures.

http://caps.ncbs.res.in/hori

InterPro Integrated database of predictive protein signatures
used for the classification and automatic annotation
of proteins and genomes.

http://www.ebi.ac.uk/interpro/

IUPred Prediction of intrinsically unstructured proteins. http://iupred.enzim.hu/
LIMBO Predicts the amylogenic regions in a protein. http://limbo.vib.be
MUPRO Prediction of protein stability changes for single-site

mutations from sequences.
http://mupro.proteomics.ics.uci.edu/

NCBI-CDD Extensive protein domain and family annotation
database.

http://www.ncbi.nlm.nih.gov/Structure/cdd/
cdd.shtml

Pfam Database of conserved protein domain families. http://pfam.sanger.ac.uk/
PFILT Program to filter various sequence regions including

low-complexity regions.
http://bioinfadmin.cs.ucl.ac.uk/downloads/pfilt/

PIC Protein interactions calculator. http://pic.mbu.iisc.ernet.in/
ProtParam Compute biochemical features like Molecular Weight,

Theoretical pI, Grand Average of Hydropathy
(GRAVY), instability index, etc.

http://web.expasy.org/protparam/

PSIPRED Secondary structure prediction. http://bioinf.cs.ucl.ac.uk/psipred/
PURE Prediction of unassigned regions in proteins. http://caps.ncbs.res.in/pure
SABBLE Relative solvent accessibility prediction. http://sable.cchmc.org/
ScanProsite Report the functional motifs/patterns encoded in the se-

quence. Helps to assess the gain/loss of functional
sites owing to mutation.

http://prosite.expasy.org/scanprosite/

SignalP Predicts the presence and location of signal peptide
cleavage sites in amino-acid sequences.

http://www.cbs.dtu.dk/services/SignalP/

SMART Simple modular architecture research tool for assigning
domains to protein.

http://smart.embl-heidelberg.de/

TANGO Predicts the aggregation-prone regions in a protein. http://tango.crg.es/
TargetP Predicts the subcellular location of eukaryotic proteins. http://www.cbs.dtu.dk/services/TargetP/
UniProtKB Catalog of information on proteins. http://www.uniprot.org/
WALTZ Predicts the aggregation-prone regions in a protein. http://waltz.vub.ac.be/
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(Table 5) may potentially help investigate the evolutionary and
functional roles of variants in unassigned regions.

Impact of coding SNVs in low-complexity
regions

Low-complexity regions (LCRs) in the protein universe refer to a
stretch of amino acids with low Shannon entropy (leucine-rich
domains or poly-alanine tracts). Unlike linear motifs, which
have a specific function and sequence signature, the individual
functions of LCRs are poorly characterized. LCRs do not adopt a
definite secondary structure but may exist as solvent-exposed
amino acids in the coiled or disordered regions in proteins. LCRs
are observed in functionally diverse proteins and in both eu-
karyotes and prokaryotes. The predominant functions of LCRs
include promoting mRNA stability and mediating a diverse set

of protein–protein interactions [104]. We scanned the reference
human proteome (reviewed subset of 20 237 sequences) using
PFILT [105] and observed that 14.32% (n¼ 2899) protein se-
quences have LCRs with a median length of 16 amino acids
(Figure 4B). A recent study showed that a functional variant
localized to an LCR in Nance-Horan Syndrome (NHS) gene was
associated with clinical features of NHS including cardiac
anomaly [106]. In the absence of direct functional information
to interpret the impact of functional variants, scanning protein
sequences with an LCR prediction tool like PFILT is highly rec-
ommended to investigate the probable gain or loss of LCRs
owing to the functional variations.

Coding SNVs and intrinsically disordered
regions in proteins

Proteins are believed to be functional when the structure attains
its definite globular fold [107]. Recent studies, however, suggest
that proteins may perform their functions even when not in a
fully folded state. Such proteins or regions within proteins that
exist in a stable conformation without attaining a definite struc-
tural conformation are generally referred to as intrinsically dis-
ordered proteins (IDPs) or proteins with intrinsically disordered
regions (IDRs) or simply disordered proteins [108, 109]. Disprot
is a database that catalogs a curated list of disordered proteins
that includes 248 experimentally validated human proteins
with disordered regions (http://www.disprot.org/actionsearch.
php?keyword¼human&criterion¼organism). Prediction models
suggest that 30–40% of human proteins are considered to be
IDPs or have IDRs and approximately 25% of eukaryotic proteins
are predicted to be fully disordered [108, 109].

Regions of the intrinsically disordered segments in proteins
have been found to be functionally important (Figure 5).
Disordered regions mediate various functional roles including
protein binding and protein–protein interactions. Previous stud-
ies have shown that IDPs can attain a definite structure on bind-
ing to their interacting partner and may thus exist in an
intermediate stage of disordered (unfolded) to ordered (folded)
stage [110, 111]. Irrespective of the structural plasticity, recent

Figure 3. Proportional Venn diagram of genes with coding variants annotated as

polymorphism (Polymorphism, n¼11 527), disease (Disease, n¼2105) and un-

classified (Unclassified, n¼1910) in Human polymorphisms and disease muta-

tions index. Percentages of genes shared between the three groups are provided.
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Figure 4. Histograms depicting the distribution (in percentage) of: (A) unassigned regions and (B) LCRs in the human proteome.
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studies have shown the presence of evolutionarily conserved
functional motifs within IDPs [112, 113].

Recently, the influence of disease mutations in the dis-
ordered regions was extensively surveyed, and the crucial
roles of disorder-promoting amino acids in imparting vari-
ations in the protein structures were proposed [114, 115].
Disorder-promoting amino acids are a potential cause of
variations in protein structures and structural models.
Disorder-to-order transitions are enriched among disease
mutations compared with neutral polymorphisms [116].
Currently, protein modeling or variant effect prediction al-
gorithms do not take the intrinsic disorder characteristics
of a protein into consideration. Integrating tools such as
Disopred [117] for disorder region prediction into the vari-
ant annotation pipelines will improve our understanding of
the impact of coding SNVs in the disordered regions of a
protein.

Influence of coding SNVs on protein
misfolding, domain swapping, aggregation,
macromolecular crowding and degradation

Diseases have multiple environmental, as well as genetic,
causes and structural biology is an active area of research to
understand how changes in individual protein structures or
protein complexes may play a key role in disease manifest-
ations. Understanding the structural bases of human diseases

would help to identify better targets and design better ligands
for more effective therapeutic interventions.

Protein misfolding and aggregation

Protein folding pathways play a crucial role in mediating cellu-
lar homeostasis. Defective folding of a protein product is the
mechanistic basis of several disease phenotypes like
Alzheimer’s disease and Parkinson’s disease [118]. When non-
synonymous mutations lead to the production of misfolded
proteins with aberrant function, several gate-keeping pathways
act on such misfolded proteins to clear them from the cellular
environment [119]. Misfolded proteins targeted for ubiquityla-
tion may also lead to protein aggregation. Protein aggregation
[120–123] is defined as a molecular phenomenon where a pro-
tein is not cleared from the cellular environment by the normal
pathways (Figure 6A). This leads to the aggregation of proteins
in the cellular environment, which in turn leads to cellular tox-
icity and is considered to be the mechanistic basis of various
human diseases such as prion diseases [123, 124].

Domain swapping

3D domain swapping (Figure 6B) is a phenomenon observed in a
subset of proteins where intermolecular interactions are
replaced by intramolecular interactions [125, 126]. Domain
swapping is also recognized as a mechanism for forming pro-
tein aggregates via open-ended mode. Domain swapping is

Figure 5. Examples of IDRs in human proteins: (A) Breast cancer type 1 susceptibility protein (BRCA1), (B) Cellular tumor antigen p53 (Oncoprotein p53), (C) T-cell sur-

face glycoprotein CD4 (Disprot), (D) Secondary structure information (UniProtKB) and (E) mutation histogram (COSMIC) of BRCA1 is provided to illustrate mutations in

the unstructured regions.
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observed in a variety of therapeutically important proteins and
is considered to be the mechanism mediating deposition dis-
eases such as neurodegenerative diseases and Alzheimer’s dis-
ease that are caused by conformational perturbations [127, 128].
Missense mutations in the human phenylalanine hydroxylase
have been shown to infleunce aggregation and degradation
properties [129]. Functional mutations are also considered to be
a causative factor for proteins to adopt swapped conformation
from monomers to higher oligomers [130–132]. A recent study
[128] that surveyed a subset of human proteins involved in 3D
domain swapping suggested that swapping is not only confined
to conformational diseases; it is also associated with several
key biological pathways and also plays a role in mediating di-
verse diseases in humans. Another study [133] that investigated
the structural properties of proteins involved in 3D domain
swapping suggested that 10% of protein folds and 5% of protein
families include domain-swapped structures.

Macromolecular crowding

Proteins interact with a variety of small molecules and other
macromolecules to perform a specific functional task. The qua-
ternary assembly of a protein is influenced by the important,
yet understudied, phenomenon of macromolecular crowding

(117, 118). Protein function is driven by interactions mediated by
inter- and intra-chain amino acids, and mutations in the sur-
face amino acids may affect macromolecular homeostasis.
Mutagenesis studies have shown the impact of functional mu-
tations on protein–protein interfaces (119), oligomerization (120)
and stability (121). Mutations that influence the intra-chain
interactions may influence the crowding effect in the cellular
environment. Probing the impact of functional mutations on
such effects using theoretical models and molecular dynamic
simulation studies is likely to enhance the understanding of the
relationship between coding SNVs and macromolecular crowd-
ing. A list of selected tools and databases available for the pre-
diction of misfolding, protein aggregation and domain
swapping is summarized in Table 5.

Protein degradation

Targeted biochemical studies have revealed that the protein
degradation pathway plays an important role in the clearance
of the mutated proteins to reduce cellular toxicity. For example,
mutant Cu, Zn-superoxide dismutase associated with amyo-
trophic lateral sclerosis was cleared by macroautophagy path-
way that includes proteasomal cleavage; phenylalanine
hydroxylase (109) and NAD(P)H: quinone oxidoreductase 1 (156)

(a) (b)

Figure 6. Schematic representation of the impact of functional mutation on protein misfolding, folding, aggregation, domain swapping, macromolecular crowding and

protein degradation pathways. Structure of misfolded rat CD2 structure (PDB ID: 1A6P) and normal CD2 (PDB ID: 1HNG) is used for representing misfolded and folded

structures. Functional variant is represented using red asterisk.
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were also cleared by similar mechanisms. Functional variants
play a crucial role in aggregation and protein degration path-
ways [134, 135]. Computational approaches that can predict the
degradation properties of mutated proteins using sequence or
structural information will be useful for rapid characterization
of functionally active proteins. Integrated models that combine
folding, misfolding, aggregation, 3D domain swapping, macro-
molecular crowding and degradation pathways (Figure 6) in a
systems biology approach are likely to provide additional in-
sights into the regulation of these important mechanisms and
the role of coding SNVs in mediating such mechanisms.

Coding SNVs and metamorphic proteins

The molecular paradigm of sequence-structure-function sug-
gests that a diverse set of sequences could attain a similar
structural fold that may lead to a functional convergence. While
this is generally true for the protein universe, occasionally devi-
ations are observed. Metamorphic proteins refer to a relatively
new class of proteins in which a given sequence has been
shown to attain different folded conformations under native
conditions while performing distinct functions [136–138].
Metamorphic proteins such as human chemokine lymphotactin
have been shown to influence evolutionary transitions of struc-
ture and coding SNVs, which could play an important role in
switching between two or more folds and functions for a single
sequence [139]. Computational approaches to catalog and pre-
dict the metamorphic properties and the impact of coding SNVs
on metamorphic proteins would help us understand how muta-
tions drive functional plasticity at the proteome level.

Impact of coding SNVs on the transcriptomic
diversity

Dynamic features of the human proteome are driven by tran-
script diversity, and the average number of characterized tran-
scripts per gene is rapidly expanding. The recent adoption of
RNA-Seq as a tool for expression profiling has led to the charac-
terization of a large number of novel transcripts including
fusion transcripts [140]. Several novel tissue-specific or
cell-type-specific transcripts were reported from RNA-Seq
experiments. The cellular compartment-based functional roles
of such transcripts are determined by alternative splicing
events [141]. RNA editing is a phenomenon where a pre-mRNA
molecule is altered through a chemical change in the base
makeup, thereby adding to the diversity of the transcriptome.
RNA editing events occur via two distinct mechanisms of sub-
stitution editing and insertion/deletion editing, leading to func-
tional diversity. Fusion transcripts [142] and RNA editing events
are also associated with various diseases including prostate
cancer and amyotrophic lateral sclerosis [143]. Computational
approaches are available for the identification of fusion tran-
scripts [144] and RNA editing events [145–147] from sequencing
data. Understanding the precise roles and the impact of variants
on such a diverse set of transcripts using computational
approaches is a challenging task. Ascribing the functional role
and assessing the impact of coding SNVs for mediating novel
and fusion transcripts using bioinformatics approaches is an
emerging problem and being addressed in recent studies [148].
Recently, we designed an integrated method to simultaneous
analyses of genome and transcriptome from RNA-seq data. The
eSNV-Detect method can precisely capture genetic variation
(genotypes) from RNA-seq data and helps to design cost-

effective and sustainable experimental strategies [149]. Analytic
and interpretation strategies that rely on multiple data-types
would provide greater confidence for variant calling, annotation
and interpretation and thus actionability for clinical
interventions.

Functional impact of synonymous variations

Synonymous mutations are defined as mutations that result in
a variation at the DNA level that code for the same amino acid
in the protein level owing to codon degeneracy. Synonymous
variants may either be coding or noncoding and the functional
roles of such variants are emerging. A recent study [150] sug-
gests that introns are involved in functional mechanisms, and
introns with positional conservation across eukaryotic lineage
are classified as functional introns. A comparative analysis of
synonymous and non-synonymous variants associated with
complex diseases has shown similar likelihood and effect size
with disease association [151]. Synonymous mutations may
also influence the introns regulating gene expression [152]. A re-
cent report also suggests that the coding exons function as tis-
sue-specific enhancers and synonymous variations in such
enhancer sites may influence the expression level of certain
genes [153]. Synonymous variants could influence the expres-
sion of intronic noncoding RNAs [154], perturb the transient
protein–DNA [155, 156] and protein–RNA interactions in the cell.
Such perturbations can lead to diseases such as cancer, neuro-
logical disorders and cardiac disease [157]. Developing bioinfor-
matics approaches to explore the putative impact of
synonymous mutations on different layers of the coding and
noncoding genome and their relationships will be an important
aspect in the detailed interpretation of the genomic variants.
The detailed structural exploration of protein–DNA [158] and
protein–RNA interactions [159] will help to precisely map the
mechanistic bases of the loss or gain of interactions owing to
synonymous variations.

Impact of coding SNVs on the interactome
of a protein

The individual interactome of proteins varies to a great extent
[160]. Proteins often interact with nucleotides (protein–DNA or
protein–RNA interactions), proteins (protein complexes, obligate
or non-obligate) [161] and protein–protein interactions (transient
or permanent) [107]) and small molecules (molecular reactions,
enzymatic reactions, metabolic pathways) [162, 163]. Coding
SNVs play an important role in mediating such interactions. An
interactome of a protein can be defined using information gath-
ered from high-throughput experiments that systematically
identify interactants of proteins. Public protein-protein databases
like BioGRID [164] and STRING [165] provide large data sets for
deriving a protein interactome. Network-level investigations to
understand the category of interactors that are perturbed owing
to coding SNVs will help delineate the impact of such mutations
on the protein interactomes. Using network measures (centrality,
degree, stress, betweenness, closeness, cliques, radiality, transi-
tivity, reciprocity, assortativity, structural equivalence, network
heterogeneity, network density, clustering coefficients, neighbor-
hood connectivity, shared neighbors, network topology, etc.) as
quantitative parameters in variant annotation pipelines will help
the researchers gain better insights into the impact of coding
SNVs on the protein interactome. Biologically relevant network
properties such as network modularity [166], network fragility
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[166] and lethality [166] can also be derived from an interactome.
Incorporating a comparative network analysis framework that
compares wild-type and variant interactomes will help quantify
the impact of coding SNVs on a network scale. Methods such as
VCF2Networks employ genotype networks (i.e. all genotypes
associated with a single phenotype) to understand the relation-
ships between the genotype space and clinical or biological phe-
notypes [167]. Table 7 summarizes the available tools to
investigate gene lists and to derive global functional trends and
network properties.

Pathway-level impact of coding SNVs

Multiple functional genomics studies have investigated the per-
turbations of pathways as a result of mutations in diseases
such as adenocarcinoma (MAPK signaling, p53 signaling, Wnt
signaling, cell cycle and mammalian target of rapamycin path-
ways) [168], childhood acute lymphoblastic leukemia (RAS path-
way) [169], colorectal carcinoma (WNT signaling pathway) [170],
etc. Several SNP-centric approaches for pathway-level inference
have been designed for the interpretation of SNPs identified
from GWA studies or differentially expressed genes from gene-
expression studies [171–175]. Coding SNVs may also influence
the cross talk between various signaling pathways. Current
variant interpretation algorithms strive to identify pathways

associated with genes harboring coding SNVs; yet, a detailed
understanding of the impact of variants on biological pathways
and pathway cross talks [176] is often lacking. Incorporating
analytical routines to quantify the effect of functional muta-
tions on pathways and pathway cross talk will be useful in in-
terpreting functional variants from a biological perspective.

A classification schema for annotating
coding SNVs

Identifying the entire spectrum of molecular perturbations
owing to coding variations at the level of sequence, structure,
interaction and function of proteins is considered the basis of
variant interpretation. Multiple automated prediction tools that
can assess the functional effect of mutations are currently
available [See Table 6]. Several variant annotation tools focus
on the task of predicting the type or effect of mutations, provide
extended annotations from precomputed databases or lookup
tables and map a coding variant to its corresponding gene, pro-
tein, functional domain or signaling pathway. These
approaches have several limitations because additional layers
of protein-centric information that can be derived from the pre-
diction or computation of sequence-based features with coding
variants are lacking. To deal with this challenge and to design
broad-spectrum tools for deep variant interpretation, we

Table 7. Software libraries and tools for biological network analysis

Name Description URL

Bio4J Bio4j is a bioinformatics graph-based database http://www.bio4j.com/
BioConductor (Graphs

and Networks view)
Collection of BioConductor modules for biological net-

work analysis and visualization
http://www.bioconductor.org/packages/release/

BiocViews.html#___GraphsAndNetworks
Cytoscape Open source platform for complex network analysis and

visualization with a large collection of plug-ins for
biological network analysis

http://www.cytoscape.org/

DAVID Integrated functional annotation tool http://david.abcc.ncifcrf.gov/home.jsp
FunDO Functional Disease Ontology server http://django.nubic.northwestern.edu/fundo/
gene2pathway R package for prediction of KEGG pathway membership

for individual genes based on InterPro domain
signatures

http://www.bioconductor.org/packages/release/bioc/
html/gene2pathway.html

GeneAnswers R package for biological or medical interpretation of the
given one or more groups of genes by means of statis-
tical test

http://www.bioconductor.org/packages/release/bioc/
html/GeneAnswers.html

GO Tools Tools for analysis of GO T term enrichment, statistical
analysis, semantic similarity and functional similar-
ity using GO terms derived from gene lists

http://www.geneontology.org/GO.tools.shtml

Gephi Open-source graph visualization and analysis software http://www.gephi.org
Gremlin Graph-based programming language https://github.com/tinkerpop/gremlin/wiki/
iGraph Network analysis and visualization library in C. Also

available R package and a Python extension
http://igraph.sourceforge.net/

KEGGgraph R package for analysis of KEGG pathways http://www.bioconductor.org/packages/2.10/bioc/
html/KEGGgraph.html

LEDA A broad-spectrum Cþþ class library for efficient data
types and algorithms including large-scale network
analysis

http://www.algorithmic-solutions.com/leda/about/
index.htm

Neat Web-based network analysis tools http://gephi.org/
Ontology Analysis

plugins for Cytoscape
http://chianti.ucsd.edu/cyto_web/plugins/ Plugins for functional enrichment analysis using

network data
PANTHER Classification of genes and proteins http://pantherdb.org/
Reactome Curated knowledgebase of molecular events and

pathways
http://www.reactome.org

TargetMine Integrates different types of biological data and enable
flexible queries, export results and analyze lists of
data.

http://targetmine.mizuguchilab.org
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recommend a three-level annotation schema for the interpret-
ation of coding variants (Figure 7). Primary level annotation pro-
vides an overview of the types of mutations and association
annotations. Secondary level annotation enables the systematic
investigation of multiple variants in a single gene. Tertiary-level
annotations help to find the global characteristics of genes har-
boring coding variants and various properties in a network-
scale.

Level 1: Primary annotation of coding SNVs

Tools that use position information from VCF files to derive the
type of mutation (synonymous or non-synonymous), the loca-
tion of the corresponding gene and its mapping onto several an-
notation resources using positional data may be viewed as
‘primary annotations’. See Table 2 for a list of tools that use
minimum input data to gather a diverse set of annotations
using database lookup tables and identifier mapping.

Level 2: Secondary annotation of coding SNVs:- Impact
of multiple variants in a single gene

Sequence and structural explorations of coding variants are
referred to as secondary annotations. VCF files can have mul-
tiple variants of the same gene associated with a given pheno-
type or disease. A systematic investigation of multiple variants
in a single gene and an assessment of the relative impact of cod-
ing variants could help in classifying multiple variants in a gene
and help to delineate the variants as pathogenic, moderately
pathogenic or VUS. Comparative analysis of wild-type and vari-
ant sequences can be performed and quantified using the total
number of gains or losses in the sequence features. Based on the

availability of the structural data, a given variant can be modeled
in a protein structure using in-silico mutagenesis experiments.
In the absence of experimental protein structural data, a protein
structure model can be obtained from the homology model data-
base or a new model can be built using homology modeling
approaches. Once the wild type and mutant type structures are
obtained, the impact of variation can be rapidly computed using
structural feature analyses or using computationally expensive
molecular dynamics simulations. Table 5 summarizes key se-
quence and structure feature prediction tools.

Level 3: Tertiary annotation of coding SNVs:- Impact of
coding SNVs on multiple genes, pathways and
interactome

The global impact of multiple coding variants on a genome or
exome can be assessed using a combination of both knowledge-
based enrichment or depletion analysis and network or interac-
tome analyses. Functional profiling using GO terms have been
used as an effective approach for characterizing collective func-
tional characteristics of a perturbed set of genes [177, 178].
Gene-list-based analyses can provide biologically relevant infor-
mation about the variants. Enrichment analysis is not just con-
fined to a priori defined gene sets or GO annotations;
enrichment can be performed using several types of annota-
tions and could provide insights into the probable functional as-
sociations of genes with coding variants. Enrichment analysis
using protein annotations would help to identify functionally
significant protein domains, protein classes, families (mem-
brane proteins or kinases, etc.), protein superfamilies (angioten-
sin receptors or G-protein coupled receptors) or protein folds
(Rossman fold, beta-propeller) associated with proteins

Figure 7. Three-level schema for annotation of functional variants.
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harboring coding variants. Furthermore, it is possible to identify
enriched molecular events mediated by genes, enriched TFBS in
the upstream of genes and biological pathways mediated by the
genes using annotations from Reactome, UCSC and KEGG repo-
sitories. Disease ontology can be used to find known gene–
disease associations. Following the knowledge-based analysis, a
network-level analysis of genes harboring coding SNVs can be
performed using publicly available network analysis tools such
as Cytoscape and Gephi.

Future directions

The rapidly increasing availability of sequence, structure, func-
tional and interaction information offers an attractive means to
obtain a detailed characterization of coding variants. However,
the use of large data sets to systematically explore the functional
variants is currently limited owing to the gaps in the available
sequence–structure–function interaction data. Sequence data
are available for the entire human proteome, but the availability
of protein structural data, experimentally verified functional as-
sociations and biomolecular interaction data is limited. The
availability of structural data of homologous protein structures
is a prerequisite for structural investigations of functional vari-
ants and its impact on the structural environment. Availability
of high-quality interaction data will also help analyze the cellu-
lar networks modulated by proteins harboring coding variants.
The expansion of structural data sets using structural genomics
[179], homology modeling [180] and the application of computa-
tional approaches such as genomics-aided structure prediction
[181] is likely to lower the increasing chasm between sequence,
structure, function and interaction data and may help to ascer-
tain the impact of variants at the biomolecular level [163, 182,
183]. Improving the annotation databases using high-quality,
curated data and integration with cloud-based or stand-alone
pipelines [184–189] can also help facilitate such efforts.

The current version of the Bioinformatics Link Directory en-
lists >900 bioinformatics tools that are capable of processing dif-
ferent types of protein data (sequence, structure, interaction,
quantification and annotation). Unifying multiple resources and
enabling programmatic access via application program interfaces
and web services for rapid integration will significantly enhance
the efficacy of variant annotation pipelines. The development of
novel statistical methods that can quantify various residue-
specific properties would enable a comparative analysis of wild-
type and variant sequences and can thereby help to facilitate the
identification and prioritization of functional mutations. The in-
clusion of a diverse set of sequence, structure and network fea-
tures into a graphically depicted database and an assessment of
the impact of various data types (sequence, structure, function
and interaction) using probabilistic or machine learning models
would also help automate variant annotation interpretation.

From a sequence perspective, understanding the precise
functional role of LCRs, unassigned regions and disordered re-
gions as well as the relationship between these features and cod-
ing SNVs is a key step in variant annotation and interpretation.
Identifying deviations in protein structural space that are likely
to lead to misfolding, domain swapping, aggregation, degrad-
ation or deviations that are metamorphic in nature owing to the
impact of coding SNVs is an emerging challenge. Several algo-
rithms are available to predict sequence or structural domains,
assign distantly related domains to unassigned regions, func-
tional motifs, structural motifs and structural features, protein
disorder and aggregation propensities. However, algorithms and
tools to predict 3D domain swapping or to analyze metamorphic

properties, degradation pathways and the network-level impact
of coding SNVs are less abundant. This may be attributed to the
fact that these concepts are continually evolving in the protein
universe and concerted efforts are needed to understand the im-
pact of coding variants of such unique features from both experi-
mental and computational biologists alike.

This review summarizes the major bioinformatics chal-
lenges involved in gaining a deeper understanding of coding
SNVs. Coding SNVs may impart a molecular or disease pheno-
type by interacting with noncoding, regulatory parts of the gen-
ome and the structural variants may provide an important
contribution to this phenomenon. Analyzing functional and
regulatory variants in a single analytical framework may further
enhance the interpretation of the genomic variants.

Conclusions

A rapid decline in sequencing costs using NGS technologies has
led to an exponential increase in the frequency of the sequenc-
ing projects over the past decade. A large number of personal
genomes and exomes, clinical samples and cancer genomes are
being sequenced as part of large-scale collaborative projects.
The identification of a plethora of sequence variants associated
with diverse molecular and disease phenotypes. Scalable com-
putational approaches that integrate annotations using se-
quence, structure, functional and interaction data are necessary
for the rapid interpretation of coding SNVs. We have discussed
the bioinformatics resources available for the prediction, anno-
tation and visualization of coding SNVs, summarized the major
bioinformatics challenges into 10 different themes for a deeper
interpretation of coding SNVs and recommended a three-level
schema to assess the phenotypic impact of functional vari-
ations on individual protein sequences, structures, different
functional categories, biological pathways and interactomes.
We envisage that addressing the key challenges discussed in
this review and adopting a comprehensive annotation schema
for variant annotation could improve genomic reports that are
generated as part of genomic medicine investigations and ex-
perimental studies to better understand the variations impli-
cated in rare, common and complex disease manifestations.

Key Points

• Interpretations of variants identified from next-gener-
ation sequencing pose several challenges.

• Systems-level experimental investigation of the func-
tional variants is expensive and time-consuming;
efficient computational techniques are required to
identify the impact of functional variants.

• We recommended an integrated approach that com-
bines multiple data types and tools for the prediction,
annotation and visualization of functional variants
and we have proposed a systematic approach for func-
tional variant annotation and interpretation.

• Significant challenges that need to be negotiated dur-
ing the interpretation of coding single nucleotide vari-
ants are presented with the help of various examples.

• A three-level annotation approach that combines the
information at the level of an individual variant, mul-
tiple variants in a single protein and global trends of
multiple genes harboring multiple variants is proposed
for an effective interpretation of coding single nucleo-
tide variants.
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