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Abstract

Motivation: Gene finding in eukaryotic genomes is notoriously difficult to automate. The task is to

design a work flow with a minimal set of tools that would reach state-of-the-art performance across

a wide range of species. GeneMark-ET is a gene prediction tool that incorporates RNA-Seq

data into unsupervised training and subsequently generates ab initio gene predictions.

AUGUSTUS is a gene finder that usually requires supervised training and uses information from

RNA-Seq reads in the prediction step. Complementary strengths of GeneMark-ET and AUGUSTUS

provided motivation for designing a new combined tool for automatic gene prediction.

Results: We present BRAKER1, a pipeline for unsupervised RNA-Seq-based genome annotation

that combines the advantages of GeneMark-ET and AUGUSTUS. As input, BRAKER1 requires

a genome assembly file and a file in bam-format with spliced alignments of RNA-Seq reads to

the genome. First, GeneMark-ET performs iterative training and generates initial gene structures.

Second, AUGUSTUS uses predicted genes for training and then integrates RNA-Seq read informa-

tion into final gene predictions. In our experiments, we observed that BRAKER1 was more accurate

than MAKER2 when it is using RNA-Seq as sole source for training and prediction. BRAKER1 does

not require pre-trained parameters or a separate expert-prepared training step.

Availability and implementation: BRAKER1 is available for download at http://bioinf.uni-greifs

wald.de/bioinf/braker/ and http://exon.gatech.edu/GeneMark/.

Contact: katharina.hoff@uni-greifswald.de or borodovsky@gatech.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transcriptome sequencing data, RNA-Seq reads, aligned to a genome

sequence have great potential to improve the accuracy of structural

genome annotation: spliced alignments may indicate intron positions,

and coverage increase and decrease along genomic sequence may

indicate locations of exon-noncoding region borders. Nevertheless,

RNA-Seq coverage alone is no reliable indicator of protein coding

regions (Hoff and Stanke, 2015).

The prediction of protein coding regions in genomes is often accom-

plished by tools that use statistical models. Some gene prediction tools

can additionally use RNA-Seq to improve prediction accuracy.
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Statistical models used in gene prediction usually require a train-

ing step to identify species specific parameters. For many tools,

including AUGUSTUS, the training has to be performed on a set of

example genes. In the past, training sets have often been produced

with help of expressed sequence tags (ESTs) or protein data,

and sometimes have been subject to validation by experts. With the

rapidly growing number of novel sequenced genomes, this approach

becomes infeasible. Fast and fully automated training methods,

ideally using the nowadays often available RNA-Seq data, can pro-

vide significant advantages.

In principle, RNA-Seq reads can be assembled into longer con-

tigs; such contigs can be used similarly to EST data both in training

of gene finders and in the prediction step. One of the tools that fol-

low this idea is the MAKER2 pipeline (Holt and Yandell, 2011).

However, the RNA-Seq Genome Annotation Assessment Project

(RGASP) (Steijger et al., 2013) has shown that transcriptome assem-

bly is prone to errors. To avoid transferring assembly errors into

gene prediction, it is advantageous to use the transcript information

contained in unassembled mapped reads.

We have developed BRAKER1, a pipeline that combines the

complementary strengths of two gene prediction tools: GeneMark-

ET (Lomsadze et al., 2014) incorporates unassembled RNA-Seq

reads into unsupervised training and subsequently generates

ab initio gene predictions. A subset of genes predicted by

GeneMark-ET are used to train AUGUSTUS (Stanke et al., 2008).

AUGUSTUS lacks an unsupervised training procedure and requires

a good training set. Additionally, AUGUSTUS incorporates informa-

tion derived from mapped unassembled RNA-Seq reads into the pre-

diction step; in RGASP, AUGUSTUS was one of the most accurate

tools for predicting protein coding genes with RNA-Seq support.

We report accuracy results for BRAKER1 on four model organisms

and compare to the accuracy of MAKER2. Recently, Testa et al.

(2015) published CodingQuarry, a pipeline for RNA-Seq assembly

supported training and gene prediction, but recommend its applica-

tion only to fungi. Therefore, we include CodingQuarry into the

comparison on Schizosaccharomyces pombe.

2 Methods

BRAKER1 is implemented in Perl and requires two input files: an RNA-

Seq alignment file in bam-format, and a corresponding genome file in

fasta-format. Spliced alignment information is extracted from the

RNA-Seq file and stored in GFF-format. GeneMark-ET uses the genome

file and the spliced alignment GFF-file for RNA-Seq supported unsuper-

vised training. After training, GeneMark-ET creates an ab initio gene

set. Those gene structures that have support by RNA-Seq alignments in

all introns are selected for automated training of AUGUSTUS. After

training, AUGUSTUS predicts genes in the input genome file using

spliced alignment information from RNA-Seq as extrinsic evidence. The

pipeline is illustrated in Supplementary Figure S2.1.

In order to access prediction accuracy, nuclear genomes, refer-

ence annotations and RNA-Seq libraries for four model organisms

Arabidopsis thaliana, Caenorhabditis elegans, Drosophila mel-

anogaster and S.pombe were retrieved from databases specified in

Supplementary Materials.

Presence of repetitive sequences and mobile elements (transpos-

able elements, TEs) is a characteristic feature of eukaryotic genomes.

Repetitive sequences create challenges for automatic gene finders

both at parameter estimation step and gene prediction step. The size

and quality of the training set generated by GeneMark-ET for

AUGUSTUS (multi-exon genes with so called anchored introns, the T
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introns predicted ab initio and also supported by RNA-Seq read map-

ping) is not significantly affected by TEs masking since TEs have no

anchored introns. However, at the prediction step TEs can corrupt

gene prediction. For this reason, soft masking of genomic sequence is

recommended before execution of BRAKER1. In this publication

we used RepeatModeler to generate repeat library and RepeatMasker

to mask sequence [Smit, A.F.A. and Hubley, R. (2008–2015)

RepeatModeler Open-1.0, http://www.repeatmasker.org/].

3 Results and discussion

When comparing BRAKER1 to MAKER2 (details on the MAKER2

run are described in Supplementary Materials), BRAKER1 gains on

average 15% points in accuracy on gene level (see Table 1). A gene

may have several transcripts both in the reference and in the pre-

dicted gene set. When computing transcript level accuracy, each

transcript variant is counted as a TP/FP/FN on its own. When com-

puting gene level accuracy, a predicted gene is counted as TP if at

least one of the predicted gene’s transcripts matches correctly a

reference transcript. (For details, see documentation of the EVAL

package in Keibler and Brent, 2003). We should remind that in these

runs of BRAKER1 and MAKER2 we use only RNA-Seq information

as the source of external evidence.

Notably, Reid et al. (2014) developed a pipeline, SnowyOwl, with

GeneMark-ES (Ter-Hovhannisyan et al., 2008) and AUGUSTUS

to predict genes in fungal genomes. SnowyOwl attempts to improve

prediction accuracy by selecting a gene variant with the highest hom-

ology score from a set of predicted gene variants in the same locus.

This pipeline requires protein database information as additional ex-

ternal resource. We did not include SnowyOwl into comparisons

since it cannot work without protein information.

Yet another recently developed automatic pipeline for fungal gen-

ome annotation utilizing RNA-Seq data is CodingQuarry (Testa et al.,

2015). Tests of CodingQuarry on the S.pombe genome demonstrated

that it makes an improvement in comparison to MAKER2, however,

BRAKER1 is on average �4% more accurate on gene level than

CodingQuarry (Table 1).

In attempt to elucidate the roles and contributions of separate

gene finding tools in BRAKER1 and MAKER2 as well as the role of

repeat masking and incorporation of RNA-Seq information, we

show the following results: values of ab initio accuracies of

GeneMark-ET and AUGUSTUS for repeat masked and unmasked

genomes are provided in Supplementary Tables 1.1 and 1.2, respect-

ively. These two tables show the BRAKER1 accuracies as well.

Given that BRAKER1 uses AUGUSTUS trained on genes most

reliably predicted by GeneMark-ET, and since AUGUSTUS incorp-

orates RNA-Seq into the prediction step, we expect to see an in-

crease in accuracy when comparing BRAKER1 (the ‘hints

supported’ AUGUSTUS) with GeneMark-ET and with ab initio

AUGUSTUS. This is the case for A.thaliana, C.elegans and

D.melanogaster; on the fungus S.pombe, GeneMark-ET shows even

higher accuracy than the current formal output of BRAKER1 (see

Supplementary Tables S1.1 and S1.2).

Repeat masking on genome scale is an optional pre-processing

step for running BRAKER1; still, taking this step does not signifi-

cantly affect prediction accuracy (Supplementary Table S1.2).

To quantify the accuracy that MAKER2 gains by combining pre-

dictions from SNAP, AUGUSTUS and GeneMark-ES, from masking

and from RNA-Seq information, we show the ab initio accuracies of

the three gene-finders on unmasked genomes (Supplementary Table S1.

3). These results show that the unsupervised training of GeneMark-ES

allows to get accuracy close to or even better (S.pombe) than the one

achieved by the MAKER2 training with utilization of RNA-Seq

information.

Interestingly, we have observed (Supplementary Table S1.4) that

the prediction accuracy of ab initio AUGUSTUS fully automatically

trained by BRAKER1 is in most cases few percent lower than the ab

initio accuracy of AUGUSTUS utilizing the packaged parameter files

(obtained by supervised training). However, after adding RNA-Seq

information, prediction accuracy of BRAKER1 (Supplementary

Table S1.2) clearly exceeds accuracy of ab initio predictions made

by ‘expert trained’ AUGUSTUS.

In summary, we have observed that when the transcript data

(RNA-Seq) is used as a sole source of evidence, BRAKER1 predicts

genes more accurately than MAKER2 and CodingQuarry. The gain

of accuracy is due to i/ use of GeneMark-ET and generation of ac-

curate training sets for AUGUSTUS as well as ii/ use of hints origi-

nated from mapping of RNA-Seq reads that AUGUSTUS

incorporates in the final gene prediction step.

In contrast to running MAKER2, running BRAKER1 is a ‘one

step process’, meaning that after starting it once, it will execute

training and prediction in fully automated mode without manual

command execution.

The example running time of BRAKER1 is �17.5 hours on a sin-

gle CPU for training and prediction on D.melanogaster; running

time can be improved by use of parallel processors.
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