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Abstract

Motivation: Combinatorial therapies have been under intensive research for cancer treatment.

However, due to the large number of possible combinations among candidate compounds, ex-

haustive screening is prohibitive. Hence, it is important to develop computational tools that can

predict compound combination effects, prioritize combinations and limit the search space to facili-

tate and accelerate the development of combinatorial therapies.

Results: In this manuscript we consider the NCI-DREAM Drug Synergy Prediction Challenge data-

set to identify features informative about combination effects. Through systematic exploration of

differential expression profiles after single compound treatments and comparison of molecular

structures of compounds, we found that synergistic levels of combinations are statistically signifi-

cantly associated with compounds’ dissimilarity in structure and similarity in induced gene expres-

sion changes. These two types of features offer complementary information in predicting experi-

mentally measured combination effects of compound pairs. Our findings offer insights on the

mechanisms underlying different combination effects and may help prioritize promising combin-

ations in the very large search space.

Availability and Implementation: The R code for the analysis is available on https://github.com/

YiyiLiu1/DrugCombination.

Contact: hongyu.zhao@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Designing effective therapies for cancer treatment is an important

yet challenging task. Although monotherapies are commonly used

to treat cancer (Joensuu et al., 2001; Vogel et al., 2002), they suffer

from many problems, such as acquired resistance and poor safety

(LoRusso et al., 2012). Combinatorial therapies, by utilizing com-

pounds impacting multiple biological processes simultaneously,

have great potentials to overcome these problems and are attracting

growing interest in drug development (Al-Lazikani et al., 2012; Jia

et al., 2009). Indeed, there are many effective combinations used in

practice. For example, the combination of Lapatinib and Capecita-

bine can achieve improved efficacy in breast cancer treatment

(Geyer et al., 2006). In this study we focus on two-way combin-

ations because most studies and available data to date are on two-

way combinations and yet all existing methods are still limited in

their performance in predicting the effectiveness of two-way com-

binations. Generally, when two compounds act together, their com-

bination effect can be categorized into three main types: additive, if

the effect of combination is equivalent to the sum of the effects of

two compounds acting individually; synergistic, if the combination

effect is greater than additive; and antagonistic, if the combination
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effect is less than additive. Typically compound combination effects

are inferred through cell culture experiments, where cell viabilities

under treatment with compounds in combination and treatment

with compounds individually are measured and compared. How-

ever, since the number of possible combinations grows rapidly with

the number of compounds under consideration, exhaustive experi-

mental screening of all these combinations is prohibitively costly.

Therefore, it is very useful to develop computational methods that

can prioritize different combinations in order to reduce the search

space for screening experiments. There are inspiring attempts made

towards this goal (Guimera and Sales-Pardo, 2013; Huang et al.,

2013, 2014; Li et al., 2015; Pang et al., 2014; Zhao et al., 2011).

However, while it is known combination effects can be cell-line spe-

cific (Held et al., 2013), most existing computational methods were

trained using only the specific types of combination effects (synergis-

tic/additive/antagonistic) collected from literature review or data-

bases, without considering the cell lines they were tested on or other

experimental contexts. Besides, many of these methods rely heavily

on prior knowledge of drug combination mechanisms, which is far

from complete and accurate.

In this article, we aim to identify features informative on com-

bination effects of compound pairs using the dataset from the NCI-

DREAM Drug Synergy Prediction Challenge (Bansal et al., 2014).

This DREAM challenge provided gene expression profiles of OCL-

LY3 diffuse large B-cell lymphoma cells pre- and post- 14 single

compound treatments, and experimentally-evaluated the combin-

ation effects of 91 pairwise combinations of these 14 compounds. In

the original challenge, participants proposed different methods to

predict combination effects using gene expression profiles, but no

unanimous conclusion could be drawn on the relation between syn-

ergistic effects and transcriptome changes induced by single com-

pounds (Bansal et al., 2014). Although a few participants considered

compound chemical/molecular features such as structure, the rele-

vance of these features to combination effects was not demon-

strated. In this article, we adopt the structural similarity of

compounds defined in PubChem (Kim et al., 2016) and consider

four similarity measures for gene expression changes resulting from

single compound treatments. We systematically explore whether the

structural similarity and expression similarity is associated with

combination effects using PC-index and resampled Spearman correl-

ation (Bansal et al., 2014). Because we are interested in prioritizing

compound pairs likely having synergistic effects, we also evaluate

the area under the receiver operation characteristic curve (AUC) for

synergistic combination prediction using structural similarity and

expression similarity individually and jointly. For the NCI-DREAM

challenge data set, we find that synergistic effect prediction using

gene expression similarity defined with one of the four measures

outperforms the best method reported in the original challenge, and

that prediction using structural similarity also outperforms most of

the methods proposed for the original challenge (Bansal et al.,

2014). Moreover, combining gene expression and structure informa-

tion together further improves predictive power for synergistic ef-

fects. Our findings in this paper may lead to better computational

methods to prioritize compound combinations and facilitate future

drug development.

2 Methods

2.1 Data preprocessing
We analyzed the data distributed for the NCI-DREAM Drug

Synergy Prediction Challenge (Bansal et al., 2014; Goswami et al.,

2015; Yang et al., 2015). In this project, the OCL-LY3 cell line was

perturbed by 14 single compounds, each with 2 concentrations

(IC20’s of 24 and 48 h), and gene expression profiles of untreated

samples, DMSO-treated (DMSO was used as a control media) and

single compound-treated samples were generated at three time

points (6, 12 and 24 h after treatment). All expression profiles were

measured using the Human Genome U219 96-Array plate

(Affymetrix), in triplicate except that DMSO-treated ones were in

octuplicate. Quality-controlled and RMA-normalized (Irizarry

et al., 2003) data (in log2 scale) were provided by the Challenge. All

91 pairwise combinations of the 14 compounds (14� 13=2) were

tested with each compound concentrated at its IC20 of 60 h.

Combination effects of these compound pairs were assessed using

the Bliss independence model (Bliss, 1939). Mean Excess over Bliss

(EOB) values (estimated from five replicates) were provided as a

measurement of the synergy levels and standard errors (SE) were

also given to quantify the uncertainties. We used these experimen-

tally measured combination effects as ‘gold standard’ in our

analysis.

We first applied RUVr (Risso et al., 2014) to remove potential

batch effects in gene expression measurements. We considered com-

pounds, concentrations and time points as treatment status (‘wanted

variation’) and varied the number of hidden factors (‘unwanted vari-

ation’) k from 1 to 40. Based on the relative log expression (RLE)

plots (Supplementary Figs S1 and S2), we set k ¼ 26 in our analysis.

We also reported results with other values of k in supplementary in

formation (Supplementary Figs S3–S10 and Supplementary Tables

S1–S5), which suggest that our results are quite robust to the specific

choice of k.

2.2 Structural similarity measure
We used substructure key-based 2D Tanimoto similarity score from

the PubChem database (Kim et al., 2016) to quantify the structural

similarity between two compounds. PubChem generates a binary

fingerprint (an ordered list of binary bits) to represent the presence

or absence of specific chemical substructure for each compound. It

then defines the similarity score between two compounds as

Tanimoto score ¼ AB

Aþ B� AB
;

where AB is the count of bits shared by the two compounds, and A

and B are the counts of bits in the two compounds, respectively.

It can be seen from the above formula that the Tanimoto score is

always between 0 and 1. According to PubChem, a Tanimoto score

of 0:68 or greater is considered statistically significant at the 95%

significance level (Kim et al., 2016).

2.3 Gene expression similarity measures
We used the average of three/eight replicates to represent gene ex-

pression levels under each experimental condition. We then calcu-

lated the fold changes between treatments (single compounds) and

control (DMSO). The following metrics were adopted to evaluate

the global differential expression similarities between two drugs.

• Direction-based

This metric considers the concordance of the direction of gene

expression changes (up or down) following single-compound treat-

ments. It was motivated by the second best performing method in

the original challenge (Goswami et al., 2015). However, unlike

what was done there, we did not assume a common core gene set for

all compounds since different compounds may impact different
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genes and pathways. Instead, we selected out genes with large ex-

pression changes for each compound and measured the concordance

of two compounds on their corresponding ‘signature’ genes.

Specifically, we discretized expression changes into three levels: 0

for probes with fold changes within a certain range around 1 and

thus viewed as unaffected by a compound;�1 and 1 for probes with

fold changes outside the range and considered down-regulated and

up-regulated, respectively. We then define the expression similarity

score between compound i and compound j as

Pn
l¼1 fci;l � fcj;l

n
;

where n is the total number of probes (48 789 in this dataset) and

fci;l is the status (�1, 0 or 1) for probe l treated with compound i.

• GSEA-based

This metric was proposed in the context of constructing

drug similarity network with transcriptome data (Iorio et al.,

2009, 2010). The original method (Iorio et al., 2009, 2010) first

ranks probes from the most up-regulated to the most down-

regulated in each of the six datasets measured at three time points

and two concentrations, and then merges the six lists using pair-wise

Spearman’s Footrule, Borda Merging Method and Kruskal

Algorithm (Diaconis and Graham, 1977; Lin, 2010) into a unified

ranked list hierarchically. Then for compounds i and j, it calculates

four Gene Set Enrichment Analysis (GSEA) (Subramanian et al.,

2005) scores: ESjp
i and ESjq

i , the enrichments of compound j’s top p

probes and bottom q probes in compound i’s expression list; ESip
j

and ESiq
j , the enrichments of compound i’s top p probes and bottom

q probes in compound i’s expression list. A distance between i and j

is defined as:

dij ¼ 1�

ESjp
i
�ESjq

i

2 þ ESjp
i
�ESjq

i

2

� �
2

:

Since the values of ES’s are between�1 and 1, dij is between 0

and 2. In our analyses, we define the corresponding similarity score

as:

1� dij

2
;

which is between 0 to 1. We also calculated dij without merging the

six lists for each compound.

• Pearson correlation-based

Under each treatment condition, we ranked all the probes ac-

cording to their absolute log2-transformed intensity differences,

and then selected top probes as signatures. We calculated the

Pearson correlation between two compounds’ expression profiles

on all 48 789 probes as well as on the union of their signature gene

sets.

• Spearman correlation-based

We also calculated the Spearman correlation between two com-

pounds’ expression profiles on all 48 789 probes as well as on the

union of their signature gene sets.

2.4 Evaluation of concordance between similarity-based

scores and synergistic levels of compound pairs
We used probabilistic concordance index (PC-index) and resampled

Spearman correlation to quantify the concordance between the

similarity-based scores and synergistic levels of compound pairs

(Bansal et al., 2014).

2.4.1 PC-index

Suppose that there are a total of N compound pairs. Let the

similarity-based scores for compound pair n be sn, and the experi-

mentally measured EOB and its SE be eobn and sen, then for two

compound pairs m and n, we first compute

spmn ¼

1

2
1þ erf

eobm � eobnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2

m þ se2
n

p
 ! !

; if sm> sn

1

2
1� erf

eobm � eobnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2

m þ se2
n

p
 ! !

; if sm < sn

1

2
; otherwise

8>>>>>>>>>><
>>>>>>>>>>:

where

erf xð Þ ¼ 2ffiffiffi
p
p
ðx

0

exp �t2
� �

dt

PC-index is defined as

2

N � N � 1ð Þ
X

m ¼ 1; 2; . . . ;N � 1

n ¼ mþ 1; 2; � � � ; N

spmn:

PC-index takes experimental errors into account when evaluat-

ing the concordance between the predictions and the ‘gold stand-

ard’. It is symmetric around 0:5, i.e. if a prediction has pc-index pc,

then flipping it over (exactly opposite order) gives pc-index 1� pc.

The largest value (PCmax) is reached when the predictions are en-

tirely concordant with the ‘gold standard’. Due to noise terms,

PCmax will not be 1 generally. In this study,

PCmax � 0:901:

2.4.2 Resampled spearman correlation

Similar to PC-index, resampled Spearman correlation accounts for

uncertainties of the experiment. It assumes that the experimental

measurement of mean EOB is noisy and follows a normal distribu-

tion, N l; r2
� �

, with l and r equal to the mean EOB and SE ob-

tained from the experiment. For each compound pair n, we

randomly sample a new eob�n from Nðln; r2
nÞ, and then calculated

the spearman correlation between ðs1; s2; . . . . . . ; sNÞ and

ðeob�1; eob�2; . . . � � � ; eob�NÞ. We repeat the process for 10 000

times and use the mean of the 10 000 Spearman correlations as a

final resampled Spearman correlation score rss.

2.4.3 Statistical significance estimation

We simulated 10 000 independent random predictions (10 000 ran-

dom permutations of the 91 pairs) and calculated their PC-indices

and resampled Spearman correlations. We use these scores from ran-

dom predictions as the empirical null distributions for PC-index and
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resampled Spearman correlation. Then we estimated the P-value of

PC-index and rss for each similarity-based prediction as

P� valuePC�index ¼
PC� indexnull � PC� indexð Þ

10 ; 000
;

P� valuerss ¼
rssnull � rssð Þ

10; 000
:

2.5 Synergistic combination prediction
We treated compound pairs with experimentally measured synergis-

tic combination as positive and all others as negative, and adopted

logistic regression models to predict synergistic combinations using

gene expression similarity and structural similarity, individually and

jointly. We performed 100 rounds of 3-fold cross validation. In each

round, we estimated the cross-validation AUC using trapezoidal

method to integrate the ROC curve. We reported the mean AUC over

100 rounds for each classifier as an evaluation of its performance. To

assess the statistical significance of improvement brought by structural

information compared to using gene expression only, we randomly

permutated the structural similarity scores of the 91 pairs 1000 times,

and for each permutation, we calculated the mean AUC (over 100

rounds of cross validation) of the classifier combining the permutated

structural similarity score and the original gene expression similarity

score. We calculated the P-value of AUC improvement as

P-valueimprovement by structure

¼
#ðAUCexpressionþpermutated structure > AUCexpressionþstructureÞ

1; 000
:

Similarly, we calculated the P-value of AUC improvement by

adding gene expression information as

P� valueimprovement by expression

¼
#ðAUCstructureþpermutated expression > AUCexpressionþstructureÞ

1; 000
:

3 Results

We evaluated the structural similarity of the 14 compounds and also

compared their effects on the transcriptome of the OCL-LY3 cell

line. Following the performance evaluation methods of the original

DREAM challenge (Bansal et al., 2014), we used PC-index and

resampled Spearman correlation coefficient to measure the associ-

ations between these similarity scores and the synergistic levels.

Additionally, we evaluated these scores’ ability to predict synergistic

combinations using AUC from cross validation.

3.1 Structural similarity negatively correlates

with synergism
A negative correlation can be observed between EOB for two com-

pounds against their structural similarity scores (Fig. 1). The PC-

index between EOB and the negative structural similarity score was

0:586 (P-value 0:0047), and the resampled Spearman correlation be-

tween them was 0:251 (P-value 0:0041). This result outperforms

most of the methods in the original challenge (Supplementary Table

S6). It indicates that synergistic effect is significantly negatively cor-

related with structural similarity.

In addition, there is an interesting pattern behind this overall

negative correlation. In this dataset, compound pairs with EOB> 0

and EOB/SE> 2 were classified as having synergistic effects; simi-

larly, those with EOB < 0 and EOB/SE < �2 were defined to be

antagonistic; and the rest of the combinations were classified as

additive (Bansal et al., 2014). We observed that none of the com-

pound pairs with large structural similarity scores (e.g. >0.6) have

synergistic effects, while the combination effects of the compound

pairs with small structural similarity scores spread across all the

three classes. We will discuss possible mechanisms for this phenom-

enon in Section 4.

3.2 Gene expression similarity positively correlates

with synergism
We considered four measures for the similarity of gene expression

changes brought by two compounds individually and all the similar-

ity scores showed positive correlations with EOB.

We defined the first similarity score based on the directions (up

or down) of gene expression changes. We set different thresholds on

fold changes to define signatures and calculated the PC-indices and

resampled Spearman correlations between EOB and the direction-

based similarity measurements (Fig. 2(a, b)). In all situations we

considered, the PC-indices were greater than 0:5 and the resampled

Spearman correlations were greater than 0, which indicate positive

correlations between synergistic level and gene expression similarity.

Taking all genes into account (first bar of each data set in Fig. 2),

only weak correlations could be observed; by excluding genes with

Fig. 1. EOB against structural similarity of compounds. Activities of com-

pound pairs are discretized into three states as defined in the original chal-

lenge: synergistic (circle), additive (triangle) and antagonistic (square)

(a)

(b)

Fig. 2. (a) PC-indices of direction-based gene expression similarity scores. (b)

Resampled Spearman correlations of direction-based gene expression simi-

larity scores. When calculating the similarity scores, we considered all probes

as well as probes with fold changes beyond certain ranges only. *P-value

<0:05; **P-value <0:01
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small changes, signals in most of the six datasets (measured at three

time points and two concentrations) became strong. The largest PC-

index and resampled Spearman correlation were 0:618 (P-value

0:0003) and 0:338 (P-value 0:0002), respectively.

The second gene expression similarity score we considered was

based on GSEA. We set different cutoffs to define top and bottom

signature genes and the resulting PC-indices and resampled

Spearman correlations between these expression similarities and

EOB were shown in Figure 3(a, b). Again, we could observe positive

correlations between EOB and these expression similarities in all

cases. Here the largest PC-index and resampled Spearman correl-

ation we got were 0:574 (P-value 0:0125) and 0:213 (P-value

0:0112), respectively.

The third and fourth expression similarities we considered were

based on the more conventional Pearson and Spearman correlations.

Similar to what we did earlier, besides considering all the probes, we

also selected strong signals (probes with the largest expression changes

under the treatment of each single compound) and calculated the cor-

relations only on these probes. We presented the PC-indices and

resampled Spearman correlations between EOB and these two

correlation-based scores in Figures 4(a, b) and 5(a, b), respectively.

These two expression similarity measures also had positive correl-

ations with synergistic levels. The largest PC-index and the largest

resampled Spearman correlation we got for the Pearson correlation-

based similarity were 0:582 (P-value 0:0068) and 0:245 (P-value

0:0046), respectively. The largest PC-index and resampled Spearman

correlation we got for Spearman correlation-based similarity were

0:571 (P-value 0:0156) and 0:206 (P-value 0:0147), respectively.

Similar to structural similarity, we observed (Supplementary Fig.

S11) that it is less likely for the compound pairs with relatively small

gene expression similarity scores to have synergistic effects, while

for the compound pairs with relatively large gene expression similar-

ity scores, their combination effects vary case by case.

In addition, we also note the following two observations. First,

according to our results, all six datasets have certain information

that could be utilized, and no dosage or exposure time is ‘optimal’ in

terms of transcriptome concordance with experimentally measured

synergistic levels. Second, we found that signals can usually be

strengthened when we focus on a subset of signature genes influ-

enced most by the perturbations rather than considering all of them

together. This is reasonable as many genes may not be impacted by

individual drug perturbations and introduce noises.

3.3 Structural similarity and gene expression similarity

provide complementary information on synergistic

combination prediction
Since compound pairs with synergistic effects are most worthy of

further investigation, we trained logistic regression models to predict

(a)

(b)

Fig. 3. (a) PC-indices of GSEA-based gene expression similarity scores. (b)

Resampled Spearman correlations of GSEA-based gene expression similarity

scores. When calculating the similarity scores, we considered different

numbers of top (p) and bottom (q) signatures; we included the results for

a merged data set and six unmerged data sets separately. *P-value <0:05;

**P-value <0:01

(a)

(b)

Fig. 4. (a) PC-indices of Pearson correlation-based gene expression similarity

scores. (b) Resampled Spearman correlations of Pearson correlation-based

gene expression similarity scores. When calculating the similarity scores, we

considered all probes as well as probes with largest expression changes

only. *P-value <0:05; **P-value <0.01

(a)

(b)

Fig. 5. (a) PC-indices of Spearman correlation-based gene expression similar-

ity scores. (b) Resampled Spearman correlations of Spearman correlation-

based gene expression similarity scores. When calculating the similarity

scores, we considered all probes as well as probes with largest expression

changes only. *P-value <0:05; **P-value <0:01
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synergistic combinations using structural similarity score, each of

the four gene expression similarity scores, individually and jointly.

The AUCs using gene expression similarity alone and jointly with

structural similarity, estimated from 100 rounds 3-fold cross-

validations, are listed in Tables 1–4. The AUC using structural simi-

larity alone is 0.73.

It can be seen that most classifiers achieved satisfactory results in

identifying synergistic combinations. Moreover, using structural

similarity and gene expression similarity together does lead to

greater predictive power. Specifically, for direction-based gene ex-

pression similarity scores, combining them together with structural

similarity, in all the 30 cases (6 datasets�5 thresholds), 28 had

larger AUCs compared with using expression similarity alone (all

with P-values <0:05), and 23 had larger AUCs compared with using

structural similarity alone (22 with P-values <0:05); for GSEA-

based gene expression similarity scores, among the 28 cases (7 data-

sets�4 thresholds), combining them together with structural

similarity outperformed using expression similarity alone and using

structural similarity alone in 28 cases (all with P-value <0:05) and

19 cases (8 with P-values <0:05), respectively; for Pearson

correlation-based gene expression similarity scores, when using two

features, 29 out of 30 cases (6 datasets�5 thresholds) had larger

AUCs than using expression similarity alone (all with P-values

<0:05) and 15 had larger AUCs than using structural similarity

alone (7 with P-value <0:05); for Spearman correlation-based gene

expression similarity scores, AUCs in all the 30 cases (6 datasets�5

thresholds) were larger when using both features than using expres-

sion similarity alone (all with P-values <0:05), and AUCs in 13 cases

were larger than using structural similarity alone (6 with P-value

<0:05). Hence, we concluded for most of these gene expression

similarity scores, their predictions for synergistic combinations were

significantly improved when incorporating structural information.

Especially in the cases where expression similarity scores were

less informative (Figs 2–5 and Tables 1–5), the increments were

Table 1. AUC of logistic regression model to predict synergistic combinations: direction-based expression similarity scores

6 h, IC20 (48 h) 6 h, IC20 (24 h) 12 h, IC20 (48 h) 12 h, IC20 (24 h) 24 h, IC20 (48 h) 24 h, IC20 (24 h)

All 0.43 [0.70] 0.70 [0.77] 0.47 [0.71] 0.67 [0.76] 0.56 [0.73] 0.56 [0.71]

FC> 1.1 or< 1/1.1 0.55 [0.71] 0.77 [0.80] 0.43 [0.70] 0.69 [0.77] 0.66 [0.76] 0.68 [0.74]

FC> 1.2 or< 1/1.2 0.69 [0.75] 0.81 [0.83] 0.62 [0.73] 0.74 [0.78] 0.79 [0.82] 0.78 [0.79]

FC> 1.3 or< 1/1.3 0.75 [0.77] 0.81 [0.81] 0.74 [0.78] 0.74 [0.79] 0.84 [0.85] 0.79 [0.82]

FC> 1.4 or< 1/1.4 0.77 [0.77] 0.82 [0.80] 0.76 [0.80] 0.73 [0.78] 0.85 [0.84] 0.79 [0.81]

AUCs are shown using gene expression similarity only and combining gene expression similarity with structural similarity (in brackets). FC, fold change.

Table 2. AUC of logistic regression model to predict synergistic combinations: GSEA-based expression similarity scores

Merged 6 h, IC20 (48 h) 6 h, IC20 (24 h) 12 h, IC20 (48 h) 12 h, IC20 (24 h) 24 h, IC20 (48 h) 24 h, IC20 (24 h)

p¼q¼5000 0.65 [0.73] 0.51 [0.72] 0.74 [0.78] 0.46 [0.71] 0.66 [0.76] 0.64 [0.74] 0.65 [0.73]

p¼q¼2000 0.66 [0.74] 0.52 [0.72] 0.75 [0.79] 0.43 [0.71] 0.65 [0.76] 0.67 [0.75] 0.65 [0.73]

p¼q¼1000 0.66 [0.74] 0.55 [0.72] 0.76 [0.79] 0.42 [0.71] 0.65 [0.75] 0.68 [0.75] 0.66 [0.74]

p¼q¼500 0.65 [0.74] 0.57 [0.72] 0.77 [0.79] 0.42 [0.71] 0.65 [0.75] 0.68 [0.75] 0.66 [0.74]

AUCs are shown using gene expression similarity only and combining gene expression similarity with structural similarity (in brackets).

Table 3. AUC of logistic regression model to predict synergistic combinations: Pearson correlation-based expression similarity scores

6 h, IC20 (48 h) 6 h, IC20 (24 h) 12 h, IC20 (48 h) 12 h, IC20 (24 h) 24 h, IC20 (48 h) 24 h, IC20 (24 h)

All 0.48 [0.71] 0.74 [0.78] 0.42 [0.71] 0.63 [0.75] 0.62 [0.74] 0.64 [0.73]

Top 10000 0.50 [0.71] 0.75 [0.78] 0.42 [0.71] 0.62 [0.74] 0.64 [0.75] 0.64 [0.72]

Top 5000 0.54 [0.72] 0.77 [0.79] 0.42 [0.71] 0.61 [0.74] 0.67 [0.76] 0.64 [0.73]

Top 2000 0.57 [0.72] 0.79 [0.79] 0.46 [0.71] 0.58 [0.73] 0.68 [0.76] 0.62 [0.73]

Top 1000 0.58 [0.72] 0.81 [0.80] 0.46 [0.71] 0.59 [0.73] 0.69 [0.75] 0.60 [0.72]

AUCs are shown using gene expression similarity only and combining gene expression similarity with structural similarity (in brackets).

Table 4. AUC of logistic regression model to predict synergistic combinations: Spearman correlation-based expression similarity scores

6 h, IC20 (48 h) 6 h, IC20 (24 h) 12 h, IC20 (48 h) 12 h, IC20 (24 h) 24 h, IC20 (48 h) 24 h, IC20 (24 h)

All 0.45 [0.71] 0.72 [0.78] 0.45 [0.71] 0.65 [0.76] 0.59 [0.73] 0.59 [0.71]

Top 10000 0.48 [0.71] 0.75 [0.78] 0.42 [0.71] 0.63 [0.75] 0.63 [0.75] 0.63 [0.72]

Top 5000 0.54 [0.72] 0.75 [0.79] 0.43 [0.71] 0.59 [0.74] 0.66 [0.75] 0.62 [0.72]

Top 2000 0.60 [0.73] 0.74 [0.79] 0.46 [0.71] 0.50 [0.73] 0.68 [0.75] 0.51 [0.71]

Top 1000 0.61 [0.73] 0.76 [0.79] 0.49 [0.71] 0.48 [0.72] 0.67 [0.75] 0.45 [0.69]

AUCs are shown using gene expression similarity only and combining gene expression similarity with structural similarity (in brackets).
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remarkable; as it is not always easy to identify an ‘optimal’ dosage/

duration in transcriptome effect measurements, we believe including

structural information would benefit synergistic combination predic-

tion greatly. Besides, for most cases where gene expression similarity

demonstrated certain power to predict synergistic combinations,

combining them and structural similarity together did lead to better

performance over using structural similarity alone, too. Additionally,

we found that the dataset measured at 6 h post-treatment with IC20’s

of 24 h was most useful here compared to others, a phenomenon not

observed when examining the scores’ correlations to EOBs (Section

3.2). We investigated the expression similarity scores on this dataset

and found that most of them indeed could separate out synergistic

pairs from the rest more effectively, as compared to measurements

obtained from other datasets, synergistic pairs tend to be more

concentrated on the relatively large gene expression similarity parts

using these scores; while PC-index and resampled Spearman correl-

ation emphasize more on the global concordance between the similar-

ity score and EOBs, such signal was diluted.

In summary, we observed that both structural similarity and

gene expression similarity are informative to predict synergistic ef-

fects; and these two types of features provide complementary

information.

4 Discussion and conclusion

Developing combinatorial therapies for cancer treatment has at-

tracted increasing attention due to their great potentials as com-

pared to monotherapies. One major challenge to develop

combinatorial therapies is the large search space of possible combin-

ations, therefore computationally predicting combination effects

and prioritizing combinations is vitally important. In this paper, we

have analyzed the experimentally measured 91 combinations of 14

compounds from the NCI-DREAM Drug Synergy Prediction

Challenge to identify features that are informative on combination

effects.

We observed that structural similarity is statistically significantly

negatively correlated with synergism. There has been previous

work utilizing structural similarity to model compound combination

effects, based on the assumption that if the combination of com-

pound A and compound B has a specific effect, compounds having

similar structure to compound A (B) tend to have the same inter-

action with compound B (A) (e.g. Vilar et al., 2012). Compared

with these work and several methods in the original challenge, we

systematically investigated the relation between structural similarity

and synergism. We hypothesize that the negative correlation we

observed may be caused by ‘competitive binding’ (Cokol et al.,

2011; Jia et al., 2009), i.e. when two compounds bind to similar tar-

gets they tend to have antagonistic or additive effects due to compet-

ing and interfering interactions between them. Specifically, when

two compounds have similar structures (i.e. many share substruc-

tures), they more likely interact with the same protein sites or per-

turb the same biological processes, where competition exists, and

reduces the chance of synergistic effects. On the other hand, com-

pound pairs with distinct structures (lower structural similarity

scores) can interact with different proteins or have varied functions,

where there is no strong competition for ‘resources’; depending on

the biological processes they influence and genomic context of the

cell line they work on, their combination effects can be synergistic,

additive or antagonistic.

We also found a statistically significant positive association

between synergism and the similarity of gene expression changes

caused by single compounds. This association is robust to the four

different similarity measures we considered on all six gene expres-

sion profiles. We hypothesize that two compounds leading to differ-

ent changes on gene expressions may offset each other’s effects

when applied together, thus are less likely able to ‘collaborate’ to

generate synergistic effects. On the other hand, if two compounds

lead to similar gene expression changes, they may not have such

‘neutralizing’ problem and hence are more likely to be synergistic;

yet, the actual effects in such cases can vary depending on the inter-

actions of different biological processes affected by the two

compounds.

In addition, we found both gene expression similarity and struc-

tural similarity are predictive of synergistic combinations. More im-

portantly, these two distinct similarity scores provided complementary

information on synergistic effect predictions; when utilized together,

the performance can be further improved. Besides classifying com-

pound combinations as synergistic/non-synergistic, similarly we also

observed complementary informativeness of gene expression and

structural similarity in the three-class (synergistic, additive and antag-

onistic) classification as well (Supplementary Tables S3–S5). Our find-

ings in this paper should be useful for prioritizing compound

combinations. They also provide insights for us to further investigate

the mechanisms behind various combination effects.

There are several directions worth explorations in future studies.

First, for compound structural similarity scores, we used 2D infor-

mation here as it is robust and often generates superior results in ac-

tivity prediction (Maggiora et al., 2014). In the future, when more

accurate descriptions of 3D compound structures and reliable met-

rics of 3D structural similarity are available, we can carry out simi-

lar analysis based on 3D information. Second, we considered gene

expression similarity defined on individual genes in this paper. Since

genes are not isolated in biological systems, better measures may be

defined by taking gene–gene interactions into account. Finally, in

addition to structure and expressions, other types of molecular and

biological features may be investigated and prove useful in predict-

ing combination effects.
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