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Multi-region proteome analysis quantifies spatial
heterogeneity of prostate tissue biomarkers
Tiannan Guo1,2,* , Li Li3,*, Qing Zhong4,5,* , Niels J Rupp4, Konstantina Charmpi3, Christine E Wong4, Ulrich Wagner4 ,
Jan H Rueschoff4, Wolfram Jochum6 , Christian Daniel Fankhauser7 , Karim Saba7 , Cedric Poyet7 ,
Peter J Wild4,8 , Ruedi Aebersold1,9 , Andreas Beyer3,10

It remains unclear to what extent tumor heterogeneity impacts on
protein biomarker discovery. Here, we quantified proteome intra-
tissue heterogeneity (ITH) based on a multi-region analysis of
prostate tissues using pressure cycling technology and Se-
quential Windowed Acquisition of all THeoretical fragment ion
mass spectrometry. We quantified 6,873 proteins and analyzed
the ITH of 3,700 proteins. The level of ITH varied depending on
proteins and tissue types. Benign tissues exhibitedmore complex
ITH patterns than malignant tissues. Spatial variability of 10
prostate biomarkers was validated by immunohistochemistry
in an independent cohort (n = 83) using tissuemicroarrays. Prostate-
specific antigen was preferentially variable in benign prostatic
hyperplasia, whereas growth/differentiation factor 15 substan-
tially varied in prostate adenocarcinomas. Furthermore, we found
that DNA repair pathways exhibited a high degree of variability in
tumorous tissues, which may contribute to the genetic hetero-
geneity of tumors. This study conceptually adds a new per-
spective to protein biomarker discovery: it suggests that recent
technological progress should be exploited to quantify and ac-
count for spatial proteome variation to complement biomarker
identification and utilization.
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Introduction

During the last decade, numerous new cancer treatment options
have been developed. Their optimal application, however, requires
better molecular characterization of the tumors with the aim of
developing biomarkers matching the specific tumor to the best
available therapy. Some cancer types, such as prostate cancer, still

suffer from an “over-treatment problem,” i.e., radical therapy such
as removal of the organ in unnecessary cases because of uncertain
diagnosis. These problems persist despite the recent progress in
genomic, transcriptomic, and proteomic profiling of tumors. In
contrast to the standardization of histopathological diagnostic
categories, tumor grading, and standards of reporting, molecular
testing is still underexploited in routine diagnostics of localized
prostate cancer (PCa) cases. A recent review about biomarkers in
prostate cancer (Kristiansen, 2018) has highlighted the need to
consider intra-tissue heterogeneity (ITH) in each individual case for
successful molecular testing. ITH is of high clinical relevance. For
instance, a tumor may contain a small subpopulation of cells with
primary resistance, leading to incomplete response to treatment or
early recurrence (Murtaza et al, 2015). A high degree of heteroge-
neity in Gleason score, DNA ploidy, and phosphatase and tensin
homolog expression has been observed in prostate tumors (Cyll
et al, 2017). Thus, it remains a challenge to optimize clinical de-
cisions based on single biopsies (Boutros et al, 2015).

Indeed, ITH is an important contributor to spatially variable
molecular levels, which poses a substantial problem for biopsy-
based tumor diagnostics because for highly variable proteins, the
measured quantity is position dependent. Genomic ITH has been
predicted based on clonal evolution and the cancer stem cell
hypothesis (Dalerba et al, 2007). This prediction was experimentally
validated by the application of high-throughput sequencing to
small tissue samples and even single cells. Such studies have
uncovered a high degree of genetic ITH in the colon (Jones et al,
2008), pancreas (Yachida et al, 2010), breast (Russnes et al, 2011),
prostate (Haffner et al, 2013), renal carcinomas (Gerlinger et al,
2012), and leukemia (Ding et al, 2012; Cancer Genome Atlas Research
N, 2013), with regard to both mutational and gene expression
profiles of tumor cells. For example, Boutros et al (2015) observed
extensive ITH in prostate cancers at the level of gene copy number

1Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland 2Institute of Basic Medical Sciences,
Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang, China 3Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases,
University of Cologne, Cologne, Germany 4Departments of Pathology andMolecular Pathology, University Hospital Zurich, Zurich, Switzerland 5Children’s Medical Research
Institute, Faculty of Medicine and Health, University of Sydney, Westmead, Australia 6Institute of Pathology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
7Department of Urology, University Hospital Zurich, University of Zurich, Zurich, Switzerland 8Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am
Main, Germany 9Faculty of Science, University of Zurich, Zurich, Switzerland 10Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany

Correspondence: peter.wild@kgu.de; aebersold@imsb.biol.ethz.ch; andreas.beyer@uni-koeln.de
*Tiannan Guo, Li Li, and Qing Zhong contributed equally to this work.

© 2018 Guo et al. https://doi.org/10.26508/lsa.201800042 vol 1 | no 2 | e201800042 1 of 15

http://crossmark.crossref.org/dialog/?doi=10.26508/lsa.201800042&domain=pdf
https://orcid.org/0000-0003-3869-7651
https://orcid.org/0000-0003-3869-7651
https://orcid.org/0000-0002-5340-301X
https://orcid.org/0000-0002-5340-301X
https://orcid.org/0000-0002-1751-5866
https://orcid.org/0000-0002-1751-5866
https://orcid.org/0000-0001-6170-2020
https://orcid.org/0000-0001-6170-2020
https://orcid.org/0000-0002-4073-5488
https://orcid.org/0000-0002-4073-5488
https://orcid.org/0000-0002-1172-8123
https://orcid.org/0000-0002-1172-8123
https://orcid.org/0000-0002-3648-6941
https://orcid.org/0000-0002-3648-6941
https://orcid.org/0000-0002-1017-3744
https://orcid.org/0000-0002-1017-3744
https://orcid.org/0000-0002-9576-3267
https://orcid.org/0000-0002-9576-3267
https://orcid.org/0000-0002-3891-2123
https://orcid.org/0000-0002-3891-2123
https://doi.org/10.26508/lsa.201800042
mailto:peter.wild@kgu.de
mailto:aebersold@imsb.biol.ethz.ch
mailto:andreas.beyer@uni-koeln.de
https://doi.org/10.26508/lsa.201800042


alterations and point mutations, which led to spatially divergent
mutational patterns for thousands of genes, including several tumor-
relevant genes (Boutros et al, 2015). It canbeexpected that genomic ITH
will be translated, at least to some extent, to ITH at the protein level.
For example, androgen receptor and prostate-specific antigen (PSA)/
kallikrein 3(KLK3) expression can significantly vary between different
regions within the same prostate carcinoma (Magi-Galluzzi et al, 1997;
Shah et al, 2015). Thus, there is a need to systematically describe
and quantify protein-level heterogeneity in tumor tissues.

Despite this well-recognized need, technical challenges have so
far prevented the quantification of protein-level heterogeneity in
tumor specimens at the proteomic scale (Alizadeh et al, 2015). High-
throughput antibody-based immunohistochemistry (IHC) staining
has been applied to tissue sections (Uhlen et al, 2015). However,
such data are semiquantitative and limited in scope by the avail-
ability of suitable antibodies. Single-cell proteomics using mass
cytometry is another promising technology allowing quantification
of protein levels in thousands of individual cells. However, the
technique at present only measures tens of proteins per sample
(Giesen et al, 2014). Label-free shotgun proteomics has been used
to compare the proteomes of three regions of colon tissues isolated
by laser capture microdissection (Wisniewski et al, 2012). During the
review of this study, Buczak et al (2018) reported quantitative
proteomic comparison of five pairs of tumorous and non-tumorous
microdissected formalin-fixed paraffin-embedded tissues from
patients with hepatocellular carcinoma using 10-plex tandemmass
tags (TMT; Thermo Fisher Scientific) and identified protein abun-
dance changes between tumorous and peritumorous tissues, in-
cluding NADH hydrogenase complex I, which is also observed as
changed in 11 murine hepatocellular carcinoma tumors compared
with normal murine livers using label-free quantification (Buczak
et al, 2018). In another experiment of three concentric sector re-
gions, a tumor capsule region, a peritumoral tissue region, and the
bulk tumor, the authors quantified 2,698 Uniprot proteins (ex-
cluding protein groups) using 6-plex tandem mass tags and 2,166
proteins using data-independent acquisition. This study found that
most of the quantified proteins were expressed at comparable
levels across the whole specimen and detected abundance changes
of multiple proteins across regions including collagens, fibrillin, and
decorin. The authors also identified consistency between proteome
and transcriptome data in terms of gene expression changes,
implying that spatial heterogeneity is largely driven by protein
synthesis variation.

Despite this progress, it remains important to separate technical
variability from true spatial ITH and to investigate the relationship
between inter-individual heterogeneity and intra-tissue hetero-
geneity. Answering these questions requires a rigorously designed
study, a highly reproducible proteomics technology, the ability to
analyze multiple regions of a bulk tumor, and statistical models to
deconvolute various types of protein variation.

We have recently developed a mass spectrometry–based pro-
teomics method, i.e., pressure cycling technology (PCT) and Se-
quential Windowed Acquisition of all THeoretical fragment ion
mass spectra (SWATH) (Guo et al, 2015a), which supports highly
reproducible and accurate quantification of a few thousand pro-
teins from biopsy-scale tissue samples at high throughput. This is
accomplished by integration into a single platform of optimized

sample preparation, and mass spectrometric and computational
elements. To generate mass spectrometry–ready peptide samples
from tissue samples, we adopted PCT to lyse the tissues, extract
proteins, and digest them into peptides in a single tube under
precisely controlled conditions (Powell et al, 2012). To analyze the
resulting peptide samples, we used SWATH-MS, a massively parallel
targeting mass spectrometry method (Gillet et al, 2012). In SWATH
mass spectrometry (SWATH-MS), all MS-measurable peptides in
a sample are fragmented and periodically recorded over a single
dimension of relatively short chromatography (Gillet et al, 2012).
The net result of this technique is a single digital file that contains
fragment ions of all mass spectrometry–detectable peptides, from
which peptides and proteins are identified and quantified post-
acquisition, via a targeted data analysis strategy (Gillet et al, 2012;
Röst et al, 2014).

In this study, we approached proteomic ITH for prostate cancer
tissues by PCT-SWATH–based multi-region proteomic analysis of
60 biopsy-level tissue samples from three prostate cancer patients.
We then computed the technical and spatial biological variation for
each measured protein in different types of tissues and different
patients, and established a proteome-scale landscape of protein
ITH in benign and malignant prostate tissues. Our data revealed
distinct ITH patterns of prostate cancer biomarkers that were
further independently validated using IHC in an independent set of
83 patients.

Results

Study design for quantifying proteomic variability

We designed a study to quantify spatial proteomic variability in
multiple regions of malignant and matching benign prostate tis-
sues using the PCT-SWATH-MS platform (Guo et al, 2015). We as-
sumed that the total proteomic variability observed in the sample
cohort was composed of technical and biological variation, the
latter including inter-patient, inter-tissue, and intra-tissue
variation. To open the possibility to partition the overall ob-
served variability into its possible sources, we obtained tissue
samples from multiple regions of prostatectomy specimens as il-
lustrated in Fig 1A. Each sample was a tissue punch biopsy con-
sisting of a cylinder of 1-mm diameter and about 3-mm length that
was derived from fresh frozen tissue blocks using a core needle. The
samples were obtained from prostatectomy specimens in three
individuals diagnosed with adenocarcinoma (ADCA) of the prostate.
Gleason grading was performed according to the International
Society of Urological Pathology and the World Health Organization
consensus (Epstein et al, 2016; Humphrey et al, 2016) (Fig S1). In
total, 12 benign prostatic hyperplasia (BPH) and 18 ADAC tissue
samples were obtained. One of the three individuals had a mixed
acinar and ductal ADAC, and both subtypes were included in the
study to measure the variation resulting from morphologically
distinct subtypes. The other two patient samples displayed acinar
ADCA by histologic means. Each tissue type (malignant versus
benign) of each patient was sampled three to six times, resulting
in a total of 30 biological samples. Each sample was processed by

Quantify proteome heterogeneity Guo et al. https://doi.org/10.26508/lsa.201800042 vol 1 | no 2 | e201800042 2 of 15

https://doi.org/10.26508/lsa.201800042


PCT-SWATH in duplicate to evaluate the technical variation of the
proteomic analysis (Fig 1 and Table S1). The samples were grouped
into 10 batches of six samples, according to patient identity, tissue
type, and technical replicate (Fig 1B and Table S2). This experimental
design allowed us to subsequently estimate intra-tissue variability
from within-batch comparisons (see the Materials and Methods
section), which is important to avoid overestimating variances due
to batch effects.

Quantitative proteomic analysis of 30 prostate cancer tissue
regions

The 10 batches of samples were processed using PCT-SWATH in
duplicate over a period of 15 working days. The acquired SWATH-MS

data were subjected to in silico–targeted analysis using the
OpenSWATH software (Röst et al, 2014). In total, 36,660 proteotypic
peptides and 6,873 proteins were quantified consistently across all
60 measurements (Tables S3 and S4). The measured protein in-
tensities were highly reproducible (average Pearson correlation
values between replicates: 0.944). To obtain high-confidence es-
timates of ITH, we subsequently narrowed our statistical variation
analyses to a subset of 3,700 proteins quantified by at least two
concordant proteotypic peptides. Our peptide selection procedure
ensured that the selected peptides showed consistent behavior
across samples. Thereby, we minimized the possibility that peptide
intensity variation was not due to protein abundance changes but
due to posttranslational modifications (PTMs) or other artifacts (see
the Materials and Methods section) (Picotti et al, 2013). We then

Figure 1. Study design.
(A) Hematoxylin and eosin staining of the fresh frozen prostate tissue from three individuals who have contributed to BPH (non-tumorous) and matching acinar or ductal
ADCA. Green, orange, and blue lines depict regions diagnosed by a pathologist as BPH, acinar, and ductal tumors, respectively. Black circles indicate where the punches
were made. (B) Overall measured variation of protein expression was partitioned into biological and technical variation including inter-patient variation, inter-tissue
variation, intra-tissue variation, and technical variation from MS analysis and batch variation. Three or six punches were sampled from each tissue type, followed by PCT-
SWATH analyses in technical duplicate. The samples were shuffled and analyzed in 10 batches of six samples.
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corrected batch effects in the dataset by subtracting the aver-
age signal of each protein per batch. After batch correction, most
technical replicates grouped together by unsupervised clustering
based on the abundance of all proteins (Fig S2).

Quantification of spatial proteomic heterogeneity

Our estimates of proteomic ITH are based on the notion that the
signal variation between two samples is due to a combination of
biological and technical factors. Because the biological variation is
not directly quantifiable, we estimated biological variance by
subtracting the technical variance from the total observed punch-
to-punch variance.

The technical variance was estimated by calculating the disper-
sion between two technical replicates for each sample (independent
protein digests from the same punch measured separately), i.e.,
generating 30 initial technical variance estimates per protein be-
fore averaging them (see the Materials and Methods section for
details). This strategy produced seven technical variance estimates
for all pairs of patient/tissue type (three normal tissue regions,
three acinar tissue regions, and one ductal tissue region; Fig 1).
Pairwise correlations of these seven independent estimates
showed that technical variances were consistently positively cor-
related, with a median correlation of 0.572 (Fig 2A). Likewise, we
analyzed the same type of correlation for the total punch variances.
Like the technical variance, independent estimates of the total
variance were also highly correlated, albeit with a slightly lower
median correlation of 0.302, suggesting that the technical variance
was more robust and less dependent on the specific sample than
the total variance and the biological variance (Fig 2B). Thus, as
expected, the technical variance of a protein was mostly deter-
mined by its physicochemical properties, whereas total variance
varied in different tissue samples, probably because of biological
factors. Furthermore, technical variance of log-transformed in-
tensities was independent of the mean log-intensity (Fig S3),
suggesting that the same estimate of technical variance could
be used at high and low protein concentrations. Subsequently,
we averaged the seven estimates of technical variance per protein
to obtain a single, robust estimate of each protein’s technical
variance.

Having established that our estimates of total variances and
technical variances are robust, we next computed biological var-
iances by subtracting each protein’s technical variance from its

total variance between punches of the same patient and tissue type
(see the Materials andMethods section). This yielded an estimate of
intra-tissue biological variances of protein abundance that can be
interpreted as the degree of proteomic ITH. The technical and total
variances were independently estimated, which makes it numeri-
cally possible that the technical variance can be larger than the
total variance of a specific set of punches. Indeed, for 183 proteins
(4.9%), the estimated technical variance was larger than the total
variance (Fig S4). These were mostly the proteins with very low total
variance. We could not rigorously quantify the biological variances
of these proteins; nevertheless, we assumed that most of them
would have comparably low biological variances. Proteins with
technical variances higher than total variances were excluded from
most subsequent analyses.

Next, we compared the biological variances within a tissue with
the biological variance between tissue types (benign versus ma-
lignant; termed “inter-tissue”) and between patients (Fig 3). Inter-
tissue and inter-patient variances were obtained by first averaging
protein intensities from punches of the same tissue or patient,
respectively (Fig 1A and see the Materials andMethods section). Our
data showed that the biological variance between punches within
the same tissue (i.e., intra-tissue variance) is of similar magnitude
as the variation of average intensities between tissues and patients,
indicating a high degree of protein ITH (Fig 3A). Furthermore, the
protein variances between patients, between tissue, and within
tissue were significantly correlated (Fig 3B–D). Thus, a protein with
large intra-tissue variation is also likely to vary across tissues and
between the three patients.

Classification of proteins based on their intra-tissue variability

To characterize ITH in different tissue types, we compared the
biological variance of each protein in benign and malignant
prostate tissues, and quantified the variability of 3,517 proteins in
BPH and ADCA tissue samples (Table S5). Interestingly, we observed
a strong dependence of the variability of some proteins on the
tissue type. We then classified the thus quantified proteins into five
groups based on their biological variance patterns in the different
sample types (Fig 4A). Group 1 consisted of 100 proteins that were
always robust and generally showed little intra-tissue variation in
benign and malignant prostate tissues. Group 2 consisted of 339
proteins that varied substantially more in benign tissues compared
with malignant tissues. Group 3 consisted of 93 proteins that varied

Figure 2. Consistency of technical and total
variance.
(A) Correlation of technical variances estimated
independently for different samples. Technical
variance is estimated from technical replicates.
(B) Correlation of total variances (between punches)
estimated independently from punches from different
tissue samples (different patients, different tissue
types).
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more strongly in malignant tissues compared with benign tissues.
Group 4 contained 365 proteins that had high intra-tissue variance
in both malignant and benign tissues, whereas Group 5 contained
the remaining 2,620 proteins with intermediate variability. Remarkably,
the top three most variable proteins in BPH are the three proteins
known or used in the diagnosis of prostate tumors, including PSA/
KLK3, prostatic acid phosphatase (PAP)/acid phosphatase, prostate
(ACPP), and Desmin (DES). PSA is an androgen-regulated kallikrein
family serine protease that is produced by the secretary epithelial cells
in acini and ducts of prostate glands (Balk et al, 2003). The secreted
PSA, originated from prostate tissues, is the most commonly used
blood-based biomarker for prostate cancer (Hayes & Barry, 2014).
However, PSA screening has remained controversial because of
uncertainty surrounding its benefits and risks and the optimal
screening strategy (Barry, 2009). Our data showed that PSA in situ
was most variable in BPH but more stable in ADCA tissues. Because
PSA is regulated by androgen, this indicates androgen-driven ma-
lignant growth of prostate tumor cells. PAP is a nonspecific tyrosine
phosphatase and a well-studied tumor suppressor for PCa. PAP
has already been used in immunotherapy regimens against
PCa (Di Lorenzo et al, 2011) and is the second most variable
protein in BPH after PSA. The variability of PAP expression was
relatively high in ADCA samples but lower than its variability in
BPH samples. DES constructs class-III intermediate filaments in
smooth muscle cells. As a marker for prostate stromal compo-
sition, DES expression has already been associated with PCa

survival (Ayala et al, 2003). Tuxhorn et al (2002) have shown that
prostate cancer–reactive stroma is composed of a myofibroblast/
fibroblast mix with a significant decrease or complete loss of fully
differentiated smooth muscle, whereas normal prostate stroma is
predominantly smooth muscle (Tuxhorn et al, 2002). Given the
known heterogeneous composition of myoglandular hyperplasia
(i.e., BPH) out of glandular and stromal (smooth muscle) ele-
ments, the higher variability of DES expression in BPH compared
with PCa is not surprising.

To further investigate the protein variability classes, we then
performed a gene ontology (GO) enrichment analysis (Fig 4B). As
expected, stable proteins of Group 1 were enriched for basic cellular
functions that were required irrespective of the tissue state, such as
energy metabolism (Fig 4B). Proteins highly variable in both ma-
lignant and benign tissues (Group 4) were enriched for immunity-
associated processes. Muscle-related proteins exhibited a high
degree of heterogeneity in benign tissues, reflecting the fact that
smooth muscle fibers are part of healthy prostate tissues, whereas
prostate cancer glands are per definition closely packed with less
intervening stroma (Humphrey et al, 2016). This agrees with the
variability observed for the DES as discussed above. Proteins as-
sociated with cell cycle–related functions such as nucleosome and
chromatin assembly displayed a high degree of heterogeneity
in malignant tissues. Thus, our data are consistent with recent
findings, suggesting that the proliferation rates among prostate
cancer cells can be highly variable (Zellweger et al, 2009) and that

Figure 3. Correlation of biological variance between
patients and tissue types.
Each dot represents one protein. (A) Distributions of
biological variance estimates. Inter-patient variances
and inter-tissue variances are based on averaging the
measurements of at least three punches. Intra-tissue
variance was first determined independently per
patient and tissue type, and then averaged.
(B) Biological variance between tissue of the same
patient versus variance between punches of the same
patient and tissue. (C) Biological variance between
different patients but same tissue type versus variance
between punches of the same patient and tissue.
(D) Biological variance between the same tissue types
in different patients versus variance between different
tissue types of the same patient.
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epigenetic events are of high importance in prostate carcinogen-
esis (Grasso et al, 2012; Plass et al, 2013; Beharier et al, 2015).

Spatial heterogeneity of biochemical pathways

Based on the determined protein-level variance patterns described
above, we could also interrogate the ITH of biochemical pathways.
To quantify a pathway’s variance, we computed the average bi-
ological variance (intra-tissue variance) for all human pathways
from ConsensusPathDB (Kamburov et al, 2013) with at least five

quantified proteins (Fig 4C). Like the individual proteins, we
grouped pathways into five groups depending on their degrees of
heterogeneity in malignant and benign tissues. Five pathways
emerged as being particularly variable in tumor tissues (i.e.,
average biological variance in malignant samples above 0.02):
“Fanconi Anemia Pathway,” “Meiosis,” “Meiotic synapsis,” “Regula-
tion of cell cycle progression by plk3,” and “Role of brca1, brca2, and
atr in cancer susceptibility.” These pathways are involved in DNA
damage response and include proteins such as serine/threonine
protein kinase ataxia telangiectasia and Rad3-related protein (ATR)

Figure 4. Intra-tissue heterogeneity in tumorous and non-tumorous tissue.
(A) Biological variance among punches from the same tissue region was considered as the degree of intra-tissue heterogeneity for the respective tissue type. Degree
of intra-tissue heterogeneity for each protein in benign versus malignant tissue are shown and colored according to classification. (B) GO enrichment analysis of
four protein categories from (A). Length of horizontal bars indicates the significance of the enrichment. (C) Intra-tissue heterogeneity of biochemical pathways. Each
triangle is the average biological variance (intra-tissue heterogeneity) of all quantified proteins from the respective pathway. Degree of intra-tissue heterogeneity
for each pathway in benign versus malignant tissue is shown. Pathways were grouped according to their variability in benign and malignant tissue.
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and the cohesion complex. The specific role of these pathways in
responding to chromosomal aberrations suggests that the occur-
rence and repair of double strand breaks (which are a hallmark of
prostate cancer) are heterogeneous within tissue specimens
(Haffner et al, 2010). Pathways highly variable only in non-tumorous
tissues are markedly enriched for immune activity. The stromal
component of BPH samples demonstrated a high degree of ITH in
antigen processing and presentation, naive CD8+ T cell signaling,
IL-12-mediated signaling, interactions between a lymphoid and
a nonlymphoid cell, MHC class I complex expression, and natural
killer-cell–mediated cytotoxicity, suggesting the combat between
carcinogenesis and immunity. Consistent with the previous anal-
ysis, we observed more variable muscle contraction activity in non-
tumorous tissues. The only pathway variable in both tumorous and
non-tumorous tissues was the synthesis of phosphatidic acid, a criti-
cal component of mammalian target of rapamycin signaling and
a biosynthetic precursor for all cellular acylglycerol lipids with
critical roles in prostate tissue biology (Fang et al, 2001; Foster, 2009).

Investigation of spatial heterogeneity of selected proteins using
IHC in an independent cohort

We further investigated the biological variation of selected proteins
from the PCT-SWATH analysis using a complementary technology in
an independent, larger cohort. We constructed a tissue microarray
(TMA) using benign and malignant (ADCA) prostate tissues from 83
additional patients and established IHC assays to measure the
expression of 10 representative proteins in the various ITH groups
identified from the PCT-SWATH results, including actin related
protein 1 homolog B (ACTR1B), DES, PSA, and growth/differentiation
factor 15 (GDF15) as shown in Fig 5, as well as ACPP, ABCF1, NUP93,
CUTA, CRAT, and FSTL1 (Fig S5). This set of validation proteins
contains some well-established markers for prostate cancer to
elucidate their variability within benign and tumorous tissue
specimens. The stained TMAs contained duplicate tissue cores of
48 ADCA and 35 BPH samples. The heterogeneity of proteins was
evaluated based on an immunoreactivity score computed from
duplicate tissue spots and measured by using the Pearson
correlation coefficient between the two spots for BPH and ADCA
(Fig 5). Thus, a high Pearson correlation score indicates a
homogeneous distribution of the respective protein in the TMAs
(i.e., low ITH). We found that the degree of ITH determined in the
three patients by PCT-SWATH was well validated in the independent
cohort. ACTR1B is an actin-related protein in the dynamin complex to
construct cytoskeleton. This housekeeping protein exhibited a very
high degree of correlation in both BPH (r = 0.96) and ADCA (r = 0.80)
samples, serving as a positive control. In the TMA cohort, DES was
more variable in BPH (r = 0.51) than in ADCA (r = 0.67), which is
consistent with proteomics data. Our TMA data demonstrated that in
BPH samples, PSA was found only in the glandular tissue and
expressed more heterogeneous than in ADCA samples, with blood
PSA levels being a nonspecific biomarker for PCa. GDF15 is a stress-
induced cytokine belonging to the transforming growth factor beta
superfamily (Vanhara et al, 2012). This protein is expressed in highly
complex forms with distinct biological functions related to immunity.
In various tumors, including prostate cancer, GDF15 interacts with
the extracellular matrix and promotes tumor progression and

metastasis (Vanhara et al, 2012). We found GDF15 to be expressed
at relatively low levels in BPH with a low degree of ITH probably
because of inflammatory changes of glandular architecture fol-
lowed by stromal tissue increase in BPH (Vanhara et al, 2012). In
the ADCA samples, GDF15 expression was elevated with a high
degree of variation, indicating complex interactions between
tumor cells and the microenvironment via modulators including
GDF15. The high variability of ACPP in BPH samples was also con-
firmed in this cohort. Proteins grouped as medium heterogeneity,
including ABCF1, NUP93, CUTA, CART, and FSTL1, displayed consistent
heterogeneity patterns after manual inspection of the TMA data. Taken
together, we observed significant correlations between the hetero-
geneitymeasured in the TMAs and the biological variancemeasures
obtained with PCT-SWATH across all 10 proteins (Fig 6A and B).

Discussion

This study investigated the spatial variability of the prostate pro-
teome, which serves as a basis for better understanding the biology
of PCa protein biomarkers. Protein biomarkers including PSA and
GDF15 have been well studied in PCa; however, their spatial ex-
pression in prostate tissues has not been systematically studied.
ITH has been studied at the morphologic and genomic level in
diverse cancers, and it poses a major challenge for cancer biology
and diagnosis (Alizadeh et al, 2015). However, proteomic ITH re-
mains underexplored in prostate cancer, despite the critical roles of
proteins in tumorigenesis and cellular biochemistry in general and
the various single cell–based methods.

This study represents a technical advance toward understanding
spatial ITH at the proteome level for solid tumors and other tissues.
Using the PCT-SWATH methodology (Guo et al, 2015) and an as-
sociated data analysis strategy (Röst et al, 2014), we achieved deep
proteomic coverage (consistent quantification of 6,873 reviewed
SwissProt proteins across the 60 prostate tissue samples) and
performed quantitative analysis of spatial ITH of 3,700 proteins,
which were quantified by at least two proteotypic peptides that
showed consistent abundance across samples. Despite the rigor-
ous filtering, we could quantify a three times higher number of
proteins than a recent proteomic analysis of primary prostate
tissue samples (Iglesias-Gato et al, 2016). The number of proteins
quantified in our study exceeds by one to two orders of magnitude
the number of proteins typically quantified by tissue staining, which
is the current standard method for protein quantification in clinical
tissue samples. Our workflow is also compatible with laser capture
microdissected samples, which can also be analyzed by using
shotgun proteomics (Grosserueschkamp et al, 2017; Buczak et al,
2018; Garcia-Berrocoso et al, 2018). Our data did not achieve single-
cell resolution like the mass cytometry (CyTOF) technology. These
technologies, however, quantify orders of magnitude fewer pro-
teins (Amir el et al, 2013; Giesen et al, 2014; Levine et al, 2015). The
data generated in this study are unique with respect to the
structure of the sample set, the degree of proteomic coverage, and
the degree of measurement reproducibility and accuracy. Never-
theless, new MS-based proteomics technologies enabling analysis
of single cells from tissue samples will be desirable to quantify
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spatial ITH at higher spatial resolution in future studies. Advanced
matrix-assisted laser desorption/ionization imaging emerges as
a useful tool to dissect ITH of proteins, peptides, and small mol-
ecules with high spatial resolution (Balluff et al, 2015; Widlak et al,
2016); however, the proteome depth and precision remains to be
further improved.

The main goal of this study was not to discover new protein
biomarkers; instead, we aimed to characterize the spatial ITH of the
prostate proteome and investigate whether the ITH influences the
utility of protein biomarkers and candidates. Our data contributed

to the understanding of the following prostate cancer biology. First,
we systematically reported the degree of ITH of 3,700 SwissProt
proteins in prostate tissues. Although some of these proteins are
widely used in clinic, their expression pattern in prostate tumors
was unclear. We found that PSA was preferentially variable in BPH,
whereas GDF15 tended to vary in different tumor regions. This
finding, together with the ITH pattern of eight more clinically rel-
evant protein biomarkers, was further investigated and confirmed
in an independent cohort of 83 PCa patients using TMA technol-
ogy. This additional cohort analysis not only confirms that the

Figure 5. Immunohistochemical validation of representative proteins.
The top proteins from four ITH groups in BPH and malignant (ADCA) prostate tissue were validated using a TMA with two representative tissue spots of each patient.
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PCT-SWATH technology is a valid and practical extension of IHC
and TMA for proteome-scale ITH analysis of clinical tissue
samples but also consolidated the spatial variability of these
proteins in prostate tissues, providing guidance for clinical ap-
plication of these proteins as biomarkers. We found that protein ITH
patterns vary between tissue types because of their biological
functions and interplay with the microenvironment. Despite the
high consistency with respect to ITH measured with TMA and
proteomics, the two assays are of course not identical. For example,
secreted proteins will likely be lost during IHC procedures, which
partly explains the small discrepancy between TMA and MS data.
Furthermore, protein truncations and other PTMs may have dif-
ferent effects depending on whether antibody binding and/or
peptides quantified in the MS are affected.

Second, the data also shed light on the heterogeneity of multiple
biochemical pathways. Interestingly, benign tissue displayed a high
degree of variability in immunity-related signaling pathways,
whereas tumor tissues, characterized by enhanced proliferation
and DNA damage, exhibited high degree of heterogeneity in several
DNA damage response pathways, suggesting that spatially variable
DNA repair pathways probably contributed to genomic heteroge-
neity during the evolution of prostate cancers. We quantified
the degree of ITH of several key proteins involved in DNA damage
response, including ATR, MRE11, RAD21, RAD23A, RAD23B, RAD50,
RAD9A, CHEK1, XRCC5, and XRCC6. The data showed that ATR, a DNA
damage sensor, is variable only in tumors. We identified more
proteins in the 6,873 proteins (3,700 proteins with two or more
proteotypic peptides, and the other proteins with at least one
proteotypic peptide), including BRCA2, ATM, RAD51C, RAD51AP2,
XRCC1, XRCC2, and XRCC4. These proteins were not included in the
ITH analysis because either single-proteotypic peptide identifica-
tion or discordant quantity of multiple proteotypic peptides in
a protein failed to pass our stringent inclusion criteria. Furthermore,
we found that the degree of intra-tissue variability of multiple
pathways was slightly higher in benign specimens compared with
malignant tissues (Fig 4), which may be due to the more complex
structure of healthy tissues involving a larger number of distinct cell
types, whereas in tumorous tissues, most cell types are replaced by
tumor cells.

The observed intra-tissue protein variability patterns have im-
plications that extend beyond the present study to protein bio-
marker studies in general and have specific significance for
biomarker studies in the context of personalized medicine, where
sample availability is generally sparse. Our data suggest that the

variation of some protein levels between patients is similar in
magnitude to the variation within a single prostate. These findings
underline the significance of low intra-tissue variability as an
important property of a clinical protein biomarker. In fact, the
observed variability patterns provide a rational explanation why
some previously published tissue biomarker studies did not pro-
duce concordant results. Similar conclusions were drawn in an
earlier study, in which the abundance variability of plasma proteins
was analyzed in a twin cohort (Liu et al, 2015). The data indicated
that those biomarker candidates that were proposed in the liter-
ature and eventually approved for clinical use showed low levels
of variability derived from genetic differences in a population. In
contrast, biomarker candidates proposed in the literature that
showed a high degree of genetically caused abundance variation in
a population were rarely validated. Our data add a new perspective
to this problem: a candidate biomarker may show high variability
between patients when quantified using single-needle biopsies per
patient. However, the tumor-wide average concentrations may not
be substantially different, and the true cause of the apparent inter-
patient variability may be ITH, rather than rooted in the biochemical
difference between normal and tumor tissues. Therefore, we sug-
gest that intra-tissue variability of a protein or a pathway be used as
an important criterion for the assessment of protein biomarker
candidates, in addition to other parameters such as expression
level and biochemical function. Including more biological repli-
cates per patient to average out protein ITH or increasing patient
numbers to account for variability may not always be possible.
Thus, our work provides an important lead as to how ITH can be
tackled even for small patient and sample numbers in clinically
realistic scenarios.

Materials and Methods

Patients and samples for PCT-SWATH analyses

The prostates from three patients after prostatectomy were cut
into tissue sections (thickness: about 3 mm). Fresh BPH and ADCA
tissue sections were frozen and embedded in Tissue-Tek optimal
cutting temperature compound (Sakura). The tissues were ex-
amined by trained pathologists and graded similarly according to
the Gleason system as shown in Fig 1. Tumorous tissues from each
patient contained acinar prostate tumors, whereas one patient

Figure 6. Correlation between mass
spectrometry–based (MS) variance estimates and
TMA homogeneity.
(A) shows benign tissues whereas (B) depicts tumor
tissues. The concentrations of CRAT and NUP93 were
almost zero in the benign tissue samples. Thus, it is
virtually impossible to estimate their intra-tissue
variation in benign tissues. The correlation between
MS-based variance and TMA homogeneity was,
however, computed without excluding these two
proteins. NUP93 was slightly off the regression curve
because its signal in IHC was relatively weak.
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included an extra ductal prostate tumor. To obtain biopsy-scale
tissue samples for PCT-SWATH analysis, we used a needle to punch
out tissue cylinders (diameter: 1 mm, length: ~3 mm, wet weight:
~2 mg) at the locations as shown in Fig 1. About 100 μg proteins and
50 μg peptides were extracted per milligram of tissue. Multiple (three
or six) punches were obtained from each area. The Ethics Committee
of the Canton of Zurich approved all procedures involving human
fresh frozen material. All three patients were part of the Zurich
prostate cancer outcomes cohort study (ProCOC, KEK-ZH-No. 2008-
0040) (Umbehr et al, 2008; Wettstein et al, 2017), and each patient
signed an informed consent form.

PCT-SWATH

The tissue samples were first washed to eliminate optimal cutting
temperature, followed by PCT-assisted tissue lysis and protein
digestion, and SWATH-MS analysis, as described previously (Guo
et al, 2015). Briefly, each tissue punch was washed with 70%
ethanol/30% water (30 s), water (30 s), 70% ethanol/30% water (5
min, twice), 85% ethanol/15%water (5min, twice), and 100% ethanol
(5 min, twice). Subsequently, the tissue punches were placed in
PCT-MicroTubes with PCT-MicroPestle and 30 μl lysis buffer con-
taining 8 M urea, 0.1 M ammonium bicarbonate, complete protease
inhibitor cocktail (Roche) using a barocycler (model NEP2320-45k;
Pressure BioSciences), which offers cycling alternation of high
pressure (45,000 psi, 50 s per cycle) and ambient pressure (14.7 psi,
10 s per cycle) for 1 h. The extracted proteins were then reduced and
alkylated before lys-C and trypsin-mediated proteolysis under
pressure cycling. Lys-C (Wako; enzyme-to-substrate ratio, 1:40)–
mediated proteolysis was performed under 45 cycles of pressure
alternation (20,000 psi for 50 s per cycle and 14.7 psi for 10 s per cycle),
followed by trypsin (Promega; enzyme-to-substrate ratio, 1:20)-me-
diated proteolysis using the same cycling scheme for 90 cycles. The
resultant peptides were cleaned by Sep–Pak C18 (Waters Corp) and
analyzed, after spike in 10% iRT (retention time) peptides, using
SWATH-MS following the 32-fixed-size-window scheme as described
previously with a 5600 TripleTOFmass spectrometer (SCIEX) and a 1D+
Nano liquid chromatography system (Eksigent). The liquid chro-
matography gradient was formulated with buffer A (2% acetonitrile
and 0.1% formic acid in HPLC water) and buffer B (2% water and 0.1%
formic acid in acetonitrile) through an analytical column (75 μm ×
20 cm) and a fused silica PicoTip emitter (New Objective) with 3-μm
200-Å Magic C18 AQ resin (Michrom BioResources). Peptide samples
were separated with a linear gradient of 2% to 35% buffer B over
120 min at a flow rate of 0.3 μl⋅min−1. Ion accumulation time for MS1
and MS2 was set at 100 ms, leading to a total cycle time of 3.3 s.

SWATH assays for prostate tissue proteome

We also analyzed unfractionated prostate tissue digests prepared
by the PCT method using data-dependent acquisition (DDA) mode
in a tripleTOFmass spectrometer over a gradient of 2 h as described
previously (Röst et al, 2014). We spiked iRT peptides (Escher et al,
2012) into each sample to enable retention time calibration among
different samples. We then combined this library with the DDA files
from pan-human library (Rosenberger et al, 2014). Altogether, we
analyzed 422 DDA files using X!Tandem (MacLean et al, 2006) and

OpenMass Spectrometry Search Algorithm (Geer et al, 2004) against
a target-decoy, nonredundant human UniProtKB/SwissProt protein
database (October 21, 2016) containing 20,160 protein sequences and
the iRT peptide sequences. Reversed protein sequences were used as
decoy sequences. We allowedmaximal twomissed cleavages for fully
tryptic peptides, 50 ppm for peptide precursor mass error, and 0.1 Da
for peptide fragment mass error. Static modification included car-
bamidomethyl at cysteine, whereas variable modification included
oxidation at methionine. Search results from X!Tandem and Open
Mass Spectrometry Search Algorithm were further analyzed through
Trans-Proteomic Pipeline (TPP, version 4.6.0) (Deutsch et al, 2010)
using PeptideProphet and iProphet, followed by SWATH assay li-
brary building procedures as detailed previously (Schubert et al,
2015; Guo et al, 2015). Altogether, we identified 160,442 peptides
with <1% false discovery rate.

Peptide quantification using OpenSWATH

SWATH files were analyzed using the prostate tissue proteome
assay library described above and OpenSWATH software as de-
scribed previously (Röst et al, 2014). Briefly, wiff files were converted
into mzXML files using ProteoWizard msconvert v.3.0.3316, and then
mzML files using OpenMS (Sturm et al, 2008) tool FileConverter.
OpenSWATH was performed using the tool OpenSWATHWorkflow
with input files including the mzXML file, the TraML library file, and
TraML file for iRT peptides. The false discovery rate for peptide
identification was below 0.1%. High-confidence peptide features
from different samples were aligned using the algorithm TRansition
of Identification Confidence (version r238), which is available from
https://pypi.python.org/pypi/msproteomicstools or https://code.
google.com/p/msproteomicstools/. The following parameters for
the feature_alignment.py are as follows: max_rt_diff = 30, method =
global_best_overall, nr_high_conf_exp = 2, target_fdr = 0.001,
use_score_filter = 1.

Protein quantification

The concentration of each protein was quantified through the si-
multaneous measurement of several peptides. To optimize the
protein quantification, we developed a new computational method,
which combines maximally consistent peptides for each protein
and excludes inconsistent (i.e., uncorrelated) peptides (Picotti et al,
2013). For example, variation of PTMs would result in peptide-level
variation that is uncorrelated across samples because mostly only
one of the two peptides would be affected by the PTM (Picotti et al,
2013). Given a set of peptides unambiguously assigned to a single
protein, consistent peptides were selected using the following
procedure: all pairwise correlations between all peptides of a protein
across the samples were calculated at first. Peptide pairs with
a Pearson correlation coefficient (r) of at least 0.3 were determined,
resulting in clusters of correlated peptides. This procedure yielded
one or more peptide clusters per protein. We used the largest
cluster of each protein and we quantified the protein’s concen-
tration as the average intensity across the peptides in that cluster.
The minimum cluster size was set to two, and proteins without
a cluster of at least two correlated peptides were removed from the
subsequent analysis. This procedure resulted in robust relative
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quantification of 3,700 proteins with high correlation between
technical replicates (r ≥ 0.95) and no missing values.

Determining the biological variance between punches
in a specific tissue (intra-tissue variance)

Measurements of protein abundance differences between indi-
vidual punches are affected by a combination of biological and
technical factors. Thus, to quantify the biological variation between
punches, we need to subtract the technical variance from the total
variance, i.e., the combined variance due to technical and biological
factors. Estimating the biological variance of protein levels between
punches therefore requires estimates of the technical variance and
the total variance. Intuitively, one would estimate both variances
using a standard approach such as ANOVA in a single statistical
model. However, technical replicates are paired because they come
from the same punch and, thus, they are not independent, whereas
the total variance needs to be estimated across punches, i.e., in-
volving partially independent measurements.

Therefore, we decided to separately estimate technical and total
variances. Here, technical variance was estimated from the dis-
persion of measurements between paired technical replicates and
total variance was estimated from the dispersion of measurements
between independent punches from the same specimen. Com-
pared with an approach estimating both technical and total vari-
ance in a single statistical model, our approach has the caveat that
the two variance estimates can be inconsistent in the sense that
the estimated total variance can be smaller than the estimated
technical variance. Obviously, this happens only for those proteins
where the technical noise is large compared with the biological
variance, in which case it is anyways impossible to reliably estimate
the true biological variance (no matter which statistical approach is
taken). We, therefore, conservatively accept that in those cases, we
cannot provide an estimate of the biological variance. However, we
assume that in most of those cases, the biological variance will be
small compared with the other proteins for which we could esti-
mate a biological variance.

In detail, the variances were estimated in the following way.
First, the protein concentrations (computed from peptide in-

tensities as described above) were log10-transformed. Next, protein
concentrations were quantile normalized per sample. As the signal
distributions between non-tumorous (benign) and tumorous tissue
(malignant: acinar and ductal) differed significantly, the normalization
was performed separately for each tissue type. For each protein, we
computed the technical variation for each sample and averaged the
inter-replicate variance across all 30 samples (Tukey, 1977). Because
technical replicates are (obviously) paired, the technical variance was
estimated as the dispersion of the two replicates from their sample
mean averaged across all punches (n = 30). Thus, the technical
variance VARTECH of protein i was estimated as follows:

VARTECHi =
1
n�

n

j=1

ðxi;ja − xi;jbÞ2
2 ;

with xi;ja and xi;jb being the two technical replicates (a and b) of the
protein-level measurements from punch j. In this case, no batch
correction was performed because batch correction would reduce

the technical variance (technical replicates were always in different
batches), which might lead to underestimation of the technical
variance. The final estimate of technical variances was computed
after removing outliers above and below the 1.5 times interquartile
range of 30 samples based on Tukey’s method (Tukey, 1977).

The total variances between punches (i.e., the combined vari-
ance from technical noise and biological variance) were initially
computed for each batch separately. Thus, variation among punches
from the same specimen (same patient p and same tissue type t) was
averaged. Finally, total variances VARTOT between punches were
averaged across batches

VARTOTiðp; tÞ =
1
2
�
VARðxi;ja; j2Pðp; tÞÞ + VARðxi;jb; j2Pðp; tÞÞ

�
;

where Pðp; tÞ denotes all punches j from patient p and tissue t (i.e.,
either benign, acinar, or ductal). The indices a and b denote the two
technical replicates, as above. Thus, total variances were estimated
purely from deviations within batches and are (unlike technical
variances) not affected by batch-to-batch variation. As a con-
sequence, technical variances are biased toward larger values
compared with total variances. This approach is conservative in the
sense that itminimizes the number of proteins that are falsely classified
as having variable concentrations within tissues. Thus, this ap-
proach will likely underestimate the true number of proteins with
large biological intra-tissue variance. Given the total variance and
technical variance, the biological variance VARBIO of protein i was
computed as follows:

VARBIOiðp; tÞ = VARTOTiðp; tÞ − VARTECHi:

This scheme generated seven independent estimates of total
variance per protein: four for patients 1 and 2 (benign and ma-
lignant acinar tissues) and three for patient 3 (benign, acinar, and
ductal). The intra-tissue variance shown in Fig 4 is the average
biological variance of a given protein across all patients and tissue
types. The tissue-specific variances used for Fig 5 are the average
variances across the patients for the respective tissues (benign,
acinar, and ductal). The biological variance in tumor was estimated
as the average of all acinar and the ductal (patient 3) tumor regions.

Grouping of proteins and pathways based on their variability

In cases where the estimated technical variance is greater than the
estimated total variance, subtracting the technical from the total
variance yields a negative “variance estimate” (Fig S4). Because
these negative “variances” are the result of our imperfect variance
estimates, the distribution of these values can be used to quantify
the inherent uncertainty in our estimates of the biological variance.
Thus, we can use the distribution of the absolute values (the “mirror
distribution” into the positive range) as a background distribution
for the null hypothesis that the true biological variance is in-
distinguishable from zero (or that the total observed variance is
exclusively due to technical variance). Based on this approach, 797
proteins had P-values below 0.01 and were, thus, classified as
biologically variable proteins (i.e., significantly variable within the
same specimen). These 797 variable proteins were further sub-
classified as follows: if the ratio of biological variance in benign to

Quantify proteome heterogeneity Guo et al. https://doi.org/10.26508/lsa.201800042 vol 1 | no 2 | e201800042 11 of 15

https://doi.org/10.26508/lsa.201800042


biological variance in tumor was above 2, they were classified as
“variable in non-tumor” (339 proteins); if the ratio of biological
variance in tumor to biological variance in normal was above 2,
proteins were classified as “variable in tumor” (93 proteins); 365
proteins with similar variances in both tissue types (i.e., not dif-
ferent by more than a factor of two) were classified as “variable in
non-tumor and tumor.” Stable proteins were defined by choosing
the 100 proteins with the lowest biological variance. The remaining
proteins, which were not assigned to any of the above four groups,
were classified as “medium heterogeneity” proteins.

Note that our computation of empirical P-values for determining
variable proteins is not critical for the conclusions. If we had simply
chosen the top 200 most variable proteins (as the basis for groups
1–3) and compared themwith the 200most stable proteins (Group 4),
the conclusions would be virtually identical.

Gene set enrichment analysis

GO enrichment of proteins was performed using topGO, which takes
the topology of the ontology into account. The enrichment analysis
was carried out by using Fisher’s exact test with the background of
measured proteins in this study. We excluded GO terms with less
than 10 proteins and with more than 300 proteins from the analysis
(the former are too small and the latter are too generic). Fur-
thermore, we reported only GO terms that had at least four proteins
enriched (overlapping).

Intra-tissue heterogeneity of entire biochemical pathways was
determined according to the protein-level variance. Pathway var-
iability was calculated by averaging the biological variances of
all proteins annotated for a given ConsensusPathDB pathway.
We required that each pathway contained at least five quantified
proteins. ConsensusPathDB combines pathway annotations from
different sources. Thus, in some cases, the same pathway is re-
ported more than once. In such a case, the pathway variant with the
largest number of quantified proteins was used.

Determining the variance between tissues (inter-tissue variance)
and between patients (inter-patient variance)

Batch effects were corrected by centering each protein’s concen-
tration per batch. In our experimental design, batches were bal-
anced in the sense that each batch had the same number of benign
and malignant samples (three of each) and each batch had the
same number of samples from the same patient (two patients per
batch and three samples from each patient).

Inter-tissue variances were estimated using concentrations
centered per patient (subtracting patient mean). Inter-patient
variances were estimated using concentrations centered per tissue
type (subtracting tissue mean across patients). All of those com-
putations were based on batch-corrected concentrations and after
averaging technical replicates. Batch-corrected values were also
used for Fig 2.

Patient cohort and TMA

The Ethics Committee of the Kanton St. Gallen, Switzerland, ap-
proved all procedures involving human materials used in this TMA,

and each patient signed an informed consent. For the study, pa-
tients with BPH and matching ADCA were included, whereas ad-
vanced prostate cancer, infectious or inflammatory diseases, or
other malignancies fulfilled exclusion criteria as described pre-
viously (Cima et al, 2011). A TMA was constructed using formalin-
fixed, paraffin-embedded tissue samples derived from 83 patients
(BPH, n = 35; ADCA, n = 48).

Immunohistochemical staining and evaluation

The following primary antibodies were used to stain 4-μm slides of
the TMA using the Ventana Benchmark (Roche Ventana Medical
Systems, Inc.) automated staining system: ACTR1B (1:400; abcam,
60 min pretreatment), Desmin/DES (1:20; Dako A/S, 16 min pre-
treatment), KLK3/PSA (1: 10000; Dako A/S) and GDF15 (1:50; Biorbyt,
30 min pretreatment), ACPP (1:2000; DAKO A/S), ABCF1 (1:50; Novus
Biologicals, 90 min pretreatment), NUP93 (1:50; Novus Biologicals,
60 min pretreatment), CUTA (1:100; Lifespan Biosciences, 60 min
pretreatment), CRAT (1:100; Atlas Antibodies, 30 min pretreatment),
and FSTL1 (1:100; Atlas Antibodies, 16 min pretreatment). Detection
was performed with ChromoMap kit (Ventana) for ABCF1, PCP4, and
CUTA and with OptiView DAB kit (Ventana) for the others (Desmin,
KLK3/PSA, NUP93, CRAT, FSTL1, and PAP) using the heat-induced
epitope retrieval Cell Conditioning 1 solution. Slides were coun-
terstained with hematoxylin (Ventana), dehydrated, and mounted.
For GDF15, 4-μm slides were stained using the Leica Bond (Leica
Biosystems) automated staining system. For detection, the Bond
Polymer Refine Detection kit and heat-induced epitope retrieval
HIER2 solution (Leica Biosystems) following hematoxylin counter-
staining was used. Staining intensities for each antibody were
evaluated in a semiquantitative, four-tier manner (negative = 0,
weak = 1, moderate = 2, and strong = 3), along with the occupied area
(in 1%, 3%, 5%, and above 10% steps), by one pathologist (NJ Rupp).
An immunoreactivity score (staining intensity multiplied by per-
centage of spot) similar to the recommendations by Remmele &
Stegner (1987) consisting of “staining intensity × area (%)” was
calculated.

Data deposition

The SWATH raw data and analyzed data, as well as the assay library,
are deposited in PRoteomics IDEntifications (Vizcaı́no et al, 2014).
Project accession: PXD003497.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201800042.
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