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Abstract

Precision medicine initiatives come amid the rapid growth in quantity and variety of biomedical data, which exceeds the
capacity of matrix-oriented data representations and many current analysis algorithms. Tensor factorizations extend the
matrix view to multiple modalities and support dimensionality reduction methods that identify latent groups of data for
meaningful summarization of both features and instances. In this opinion article, we analyze the modest literature on
applying tensor factorization to various biomedical fields including genotyping and phenotyping. Based on the cited work
including work of our own, we suggest that tensor applications could serve as an effective tool to enable frequent updating
of medical knowledge based on the continually growing scientific and clinical evidence. We encourage extensive experi-
mental studies to tackle challenges including design choice of factorizations, integrating temporality and algorithm
scalability.
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Introduction

The collection of electronic medical data, while growing rapidly,
poses technical challenges owing to large volume, uncertainty
from noise and missing data and the fact that it draws from
multiple modalities including clinical and genomic profiles,
medication prescriptions and environmental exposures.
Precision medicine aims to harness information from all modal-
ities, develop a comprehensive view of a patient’s pathophysio-
logic progression and administer personalized therapies.
Existing efforts are often based on only a few biomarkers, and
their generalization demands new computational solutions,
particularly to address the growing volume, uncertainty and
number of modalities of data.

Tensor factorization has emerged as a promising solution
for the computational challenges of precision medicine. A ten-
sor is a multidimensional array where each modality spans one
dimension (mode of a tensor). Figure 1 shows the tensor for
modeling interactions among patients, biomarkers and inter-
ventions. Various factorization schemes have been proposed to

decompose a tensor into factor matrices, which not only re-
duces dimensionality but also helps discover latent groups in
each modality and identify group-wise interactions (see [1] for a
general review). Typical matrix factorization approaches con-
catenate multiple data modalities into a single second dimen-
sion of the matrix, thus disallowing explicit representation of
interactions among these modalities. In contrast to matrix fac-
torization [2], different tensor factorizations can also integrate
additional domain-specific prior knowledge to constrain the
tensor structure. Figure 1 shows a visualization of two types of
factorization: Tucker [3] and CANDECOMP/PARAFAC (CP) [4].

Tensor factorization in biomedical informatics

Applying tensor factorization to biomedical informatics has
gained traction over the past decade. Earlier applications
focused on DNA microarray or sequencing data. Tucker and/or
CP factorizations have been frequently applied to subjects
including functionally related gene sets regarding protein/gene
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locus links and responses to stimulants [5], bacteria sub-lineage
structure characterized by multiple types (modalities) of bio-
markers [6], mouse brain genetic organizations across three-di-
mensional anatomical voxel positions [7] and relations between
genes and transcription factors extracted from scientific litera-
ture [8]. To account for uncertainty, multiple authors proposed
probabilistic Tucker and/or CP factorizations to incorporate pri-
ors on tensor structural parameters. Those priors can specify
dependence between exposure to environmental chemicals and
single nucleotide polymorphism level differences [9], or prob-
ability of gene sequence conditioned on the composing nucleo-
tides and chromosomal positions [10, 11].

As an alternative to Tucker or CP factorizations, another vein
of work viewed tensor factorization as a series of matrix factor-
izations with shared structural constraints, and termed their
models Generalized Singular Value Decomposition (GSVD) or
Higher-Order Singular Value Decomposition (SVD) (HOSVD).
Some authors performed comparative analysis using ‘organ-
ism� gene� experimental condition’ tensors [12–14], or ‘nucleo-
tide� sequence position�organism’ tensors [15]; others studied
the effect and regulation of targeted pathways [16, 17] and further
predicted treatment responses [18, 19]. When two of the tensor
modalities are symmetric, eigenvalue decomposition replaces
SVD, as seen in gene network functional grouping using binary/
weighted ‘network� gene� gene’ tensors [20, 21]. However, it is
difficult to extend GSVD/HOSVD to probabilistic versions to ac-
count for uncertainty.

In other biomedical fields, CP and Tucker factorizations have
been used to localize and extract artifacts from Electroencephalo-
gram (EEG) data to analyze epileptic seizures [22–24], where ten-
sor modes include time points, electrodes of the multi-channel
EEG and subjects (see [25] for a brief review). Probabilistic CP was
shown to improve EEG classification accuracy when missing data
are present [26]. In image analysis, HOSVD was applied to factor-
ize a ‘patient�voxel� fMRI (functional Magnetic Resonance
Imaging) mode’ tensor and to classify cognitive normal or

declining status [27]. Wang et al. [28] demonstrated the potential
of using tensor modeling to generalize sparse logistic regression
to multiple modalities on fMRI data. In Electronic Health Record
(EHR) phenotyping, CP has been adapted to enforce sparsity con-
straints [29], to explicitly account for interactions among groups
of the same modality [30] and to incorporate medical knowledge
via customized regularization terms [31], all with the goal of ex-
tracting clinically meaningful groups of patients. Both Tucker and
CP seem to have broader adoptions than GSVD/HOSVD in non-
genomic biomedical fields, perhaps owing to the relative ease of
imposing probabilistic and other regularizations. Although CP
produces summation of rank-1 sub-tensors (Figure 1) and leads
to simplified interpretation, Tucker provides a more flexible and
sometimes more realistic factorization by allowing varying num-
ber of groups in different modalities. Selecting a type of factoriza-
tion is largely a design choice dependent on both data and
outcome, and deserves extensive experimental studies and
characterizations.

Toward precision medicine—discussion and
future work

The advent of precision medicine initiatives, coupled with the
welcome growth of new modes of data, suggests that medical
knowledge needs continuous update. The current revision pro-
cess, often involving meta-analysis of multiple studies and
agreement of consensus groups, has difficulty in keeping up
with the pace of change. An interesting alternative is to allow
data-driven processes to suggest nimble and timely updates.
Toward this goal, Luo et al. [32, 33] aimed to automatically iden-
tify from pathology reports a panel of test results that are diag-
nostic of lymphoma subtypes. Compared with a conventional
‘patient�word’ matrix, they composed a ‘patient� test re-
sult�word’ tensor and used non-negative Tucker factorization
to identify diagnostic panels of test results. One can use such

Figure 1. Tensor modeling and factorization schemes. The data tensor x models the interactions among modes including patient, biomarker and medical intervention.

The Tucker factorization (above, [3]) decomposes x into three factor matrices specifying groups in each mode and a core tensor G specifying levels of interaction be-

tween the groups from different modes. In general, number of groups in each mode is less than the dimensionality of that mode and the core tensor G can be thought

of as a compression of x. The CP factorization (below, [4]) decomposes x as a weighted sum of rank-1 sub-tensors, each of which is the outer-product (S; Sijk ¼ aibjck) of a

patient factor vector (a), an intervention factor vector (b) and a biomarker factor vector (c). The weights kr ; r ¼ 1. . .R indicate relative importance of sub-tensors.

Compared with Tucker, the structural hypothesis of CP requires the same number of groups for each mode.
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panels to suggest amendment to diagnostic guidelines in a for-
mat understandable to clinicians. However, extending tensor
factorization to enable frequent updating in other fields such as
genomics and biomedical signal processing remains an open
question.

Another big challenge concerns how to properly model tem-
porality within tensor factorization. Most existing work treats
time points as independent, thus losing significant information
[16, 17, 22–24]. Although we can add temporal locality con-
straints as an additional regularizer, this imposes new compu-
tational complexity and still lacks constraints on temporal
ordering. Integrating stochastic processes into tensor factoriza-
tion represents a theoretically appealing approach toward mod-
eling temporality, but related work with biomedical
applications is still in its infancy [26]. Specifically, it remains a
major challenge to select appropriate stochastic processes
based on consistency with biologic knowledge instead of math-
ematical convenience, yet maintain efficient inference proced-
ures. Tensor factorization also needs to address data sparsity
and algorithm scalability, which are more broadly recognized
challenges in general domains. Only successfully answering all
these challenges can lead to breakthroughs in supporting per-
sonalized medicine by properly drawing evidence with uncer-
tainty from multi-modal, longitudinal and constantly evolving
medical big data and the medical knowledge base.

Key Points

• Precision medicine demands new computational solu-
tions generalizing from limited number of biomarkers
to address the growing volume, uncertainty and num-
ber of modalities of electronic medical data.

• Tensor factorizations can easily integrate multiple data
modalities, reduce dimensionality and identify latent
groups in each mode for meaningful summarization of
both features and instances in medical data.

• Tensor factorizations demonstrated successes in geno-
typing and phenotyping applications, and showed
promises in enabling frequent updating of medical
knowledge out of continuously growing scientific and
clinical evidence.

• Challenges including design choices of factorization
schemes, integrating temporality, addressing data
sparsity and algorithm scalability pose exciting re-
search opportunities to bioinformatics community, to-
ward fully harnessing tensor factorization in the
emerging horizon of precision medicine.
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