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Abstract

Biomolecular simulations are typically performed in an aqueous environment where the number of 

ions remains fixed for the duration of the simulation, generally with either a minimally 

neutralizing ion environment or a number of salt pairs intended to match the macroscopic salt 

concentration. In contrast, real biomolecules experience local ion environments where the salt 

concentration is dynamic and may differ from bulk. The degree of salt concentration variability 

and average deviation from the macroscopic concentration remains, as yet, unknown. Here, we 

describe the theory and implementation of a Monte Carlo osmostat that can be added to explicit 

solvent molecular dynamics or Monte Carlo simulations to sample from a semigrand canonical 

ensemble in which the number of salt pairs fluctuates dynamically during the simulation. The 

osmostat reproduce the correct equilibrium statistics for a simulation volume that can exchange 

ions with a large reservoir at a defined macroscopic salt concentration. To achieve useful Monte 

Carlo acceptance rates, the method makes use of nonequilibrium candidate Monte Carlo (NCMC) 

moves in which monovalent ions and water molecules are alchemically transmuted using short 

nonequilibrium trajectories, with a modified Metropolis-Hastings criterion ensuring correct 

equilibrium statistics for an Δμ, N, p, T) ensemble. We demonstrate how typical protein (DHFR 

and the tyrosine kinase Src) and nucleic acid (Drew-Dickerson B-DNA dodecamer) systems 

exhibit salt concentration distributions that significantly differ from fixed-salt bulk simulations and 

display fluctuations that are on the same order of magnitude as the average.
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Introduction

Molecular dynamics simulations have proven themselves a powerful tool for studying the 

structure, dynamics, and function of biomolecular systems in atomic detail. Current state-of-

the-art approaches simulate a small volume around the biomolecule using explicit atomistic 

solvent to model the local environment. To more realistically emulate electrostatic screening 

effects in the local solvent environment, explicit ions are generally added, both to achieve 

net neutrality and to mimic the macroscopic salt concentration in the in vitro or in vivo 
environment being studied.

Salt concentrations and ionic composition are tightly regulated in biology4. Ion composition 

differs between inter/intracellular environments2, tumor microenvironments5, and 

organelles1 (see Figure 1, left). The local ionic concentration in the environment around real 

biological macromolecules, however, can significantly deviate from macroscopic 

concentrations. Many biomolecules possess a significant net charge, and the energetic 

penalty for physical systems to maintain charge separation over large distances serves to 

recruit more or less ions from bulk to maintain charge neutrality over macroscopic 

lengthscales. Yet, the number of ions within the immediate vicinity may not necessarily 

counter the net charge of the macromolecule, as proteins can predominantly bind to ions that 

have the same polarity as their net charge6. Additionally, statistical fluctuations in the total 

number of ions in the region around the biomolecule may result in significant variance in the 

local salt concentration, where relative concentration fluctuations diminish slowly with 

increasing simulation volume (Figure 1, middle).

Biomolecular behavior can be sensitive to salt environments

The conformations, dynamics, function, and binding of biological macromolecules can be 

exquisitely sensitive to the salt concentration and composition of the local environment. The 

Hofmeister effect, in which ions modulate the strength of the hydrophobic effect—a major 

driving force in protein folding and association7,8—has been known since at least the 

nineteenth century9-11. Biomolecular interactions involving highly charged nucleic acids—

such as DNA:protein interactions critical for DNA repair12—have been observed to show 

sensitivity to macroscopic salt concentrations13, as have DNA:antibiotic interactions14. In 

the realm of pharmaceutical design, where there is great interest in engineering small 

molecule ligands, salt effects are known to modulate the interactions of small molecules 

with proteins15 or with supramolecular hosts16.

Current simulation practice arbitrarily fixes microscopic salt composition

In contrast to real physical systems, where the local region near the biomolecule is able to 

exchange ions with a macroscopic reservoir at a fixed salt concentration (Figure 1, middle), 

simulations of biomolecules typically fix the number of salt molecules present in the 

simulation volume. There is a great deal of diversity in how the fixed number of added ions 

is typically determined: Along with the specified macroscopic ion concentration, simulation 

packages may make use of the total cell volume (e.g., Gromacs17), the total solvent volume 

excluding the biomolecular solutes (e.g., CHARMM-GUI18), or the number of water 

molecules (converting the ion concentration into mole or mass fraction, as in 
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OpenMM19,20). Some simulation packages choose to use only minimal neutralizing 

counterions or no counterions at all, relying on uniform background neutralizing charge to 

allow treatment of long-range electrostatics by particle mesh Ewald (PME) methods21,22 

(such as Schrödinger’s FEP+ alchemical free energy calculations23). In simulation volumes 

large enough to mimic the inclusion of a macroscopic salt reservoir far from the 

biomolecular system of interest, the environment near the biomolecule may be accurately 

represented, but long correlation times for well-ordered ions may still hinder equilibration of 

the ion environment24-26.

Simulations in the semigrand canonical ensemble can mimic real salt fluctuations

Simulations in the (semi)grand canonical ensemble, however, can—at least in principle—

remedy this situation by explicitly allowing one or more components (such as ions) to 

fluctuate over the course of the simulation via grand canonical Monte Carlo (GCMC) moves 

(Figure 1, right). In grand and semigrand canonical methods, simulations are placed in 

thermodynamic equilibrium with a theoretical reservoir of components. The simulation can 

exchange molecules/particles with the reservoir, and the concentration the components in the 

reservoir are specified by their respective chemical potentials. Before running these 

simulations, one first has to determine the mapping between the concentration in the 

reservoir and chemical potentials, a process we refer to as calibration. Sampling over ion 

concentrations in explicit water via straightforward GCMC is difficult: Monte Carlo 

insertion/deletions have to overcome long-range effects, low acceptance rates for 

instantaneous Monte Carlo moves, and the concentration is sensitive to small (< kBT) 

variations in the chemical potential. Some efforts have circumvented these issues by using 

implicit solvent models6,27, cavity-biased insertions in specialized solvent models 28, and 

explicit solvent reorganization moves29. Osmotic ensemble Monte Carlo schemes that use 

fractional ions and Wang-Landau approaches have also proven themselves to be useful in 

simulations of simple aqueous electrolytes30,31.

Nonequilibrium candidate Monte Carlo (NCMC) can achieve high acceptance rates

More recently, nonequilibrium candidate Monte Carlo (NCMC) has been shown to be an 

effective solution to the problem of low acceptance rates when inserting or deleting 

particles32. In contrast to an instantaneous Monte Carlo (MC) proposal in which an inserted 

particle is switched instantaneously on and may clash with other solvent or solute particles, 

in an NCMC proposal, the particle is switched on slowly as the system is allowed to relax 

via some form of dynamics. NCMC uses a modified acceptance criteria that incorporates the 

nonequilibrium work to ensure that the resulting endpoints sample from the equilibrium 

distribution. With well-tuned nonequilibrium protocols, NCMC acceptance rates can be 

astronomically higher than their instantaneous MC counterparts32. In work simulating 

biomolecules at constant-pH, for example, Roux and coworkers have demonstrated how 

NCMC is effective at achieving high acceptance rates for NCMC proposals that also 

transmute an ion to/from a water molecule to maintain net charge neutrality of the 

system33,34.

While calibration of the effective chemical potential for the water and ion forcefields and 

simulation parameters at hand is nontrivial, this technical challenge can be satisfyingly 
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addressed with existing technologies: Self-adjusted mixture sampling (SAMS)35, a form of 

adaptive expanded ensemble sampling36, can be used to conveniently achieve uniform 

sampling of all relevant salt concentrations in a single simulation, while the Bennett 

acceptance ratio (BAR) can optimally extract estimates of the relevant free energy 

differences from all NCMC proposals along with good estimates of statistical error and 

minimal bias37-39. Independent simulations at each salt concentration could be performed 

separately, with nonequilibrium switching trajectories used to estimate relative free energies 

between different numbers of salt pairs. However, SAMS helps more rapidly decorrelate the 

configurations of ions and, in principle, allows a single simulation to be used for calibration.

An NCMC osmostat can be used alongside thermostats and barostats

Here, we present a new approach that makes use of NCMC to insert/delete salt pairs with 

high acceptance probability in a manner that correctly models the statistical mechanics of 

exchange with a macroscopic salt reservoir. The osmostat needs to be calibrated once for the 

specified solvent and ion models, simulation parameters, and thermodynamic conditions 

(temperature, pressure, pH, etc.). Following calibration, the osmostat is used in a manner 

similar to a Monte Carlo barostat, attempting to modify the system composition (and hence 

interaction potential) at regular intervals to ensure sampling from a target probability density 

that models a system in equilibrium with a macroscopic salt reservoir (Figure 2). Similar to a 

Monte Carlo barostat19,40, the osmostat moves can be integrated alongside molecular 

dynamics simulations and other Monte Carlo schemes to sample from equilibrium 

distributions with specified thermodynamic control parameters. This composability is a 

general feature of Markov chain Monte Carlo moves, which provide a useful framework for 

designing modular algorithms for biomolecular simulation41.

How do salt environments vary in realistic biomolecular simulations?

Once we have developed and validated this tool, we use it to ask biophysical questions about 

the nature of salt environments around biological macromolecules: What is the average salt 

concentration in the simulation volume, and how does it compare to bulk? Which heuristic 

scheme, if any, most closely approximates the local salt concentration: macroscopic 

concentration times total cell volume or solvent volume, or mole fraction of water 

molecules? How much does the local salt concentration and ionic strength vary in “typical” 

biomolecular simulation conditions for different classes of biomolecular systems, such as 

proteins and nucleic acids? And can a Monte Carlo osmostat reduce correlation times for 

ions over that seen in standard MD simulations, such as the slow correlation times in ion 

environments around nucleic acids25? We consider some test systems that represent different 

classes of common biomolecular simulations: TIP3P42 (and TIP4P-Ew43) water boxes, 

dihydrofolate reductase (DHFR), the apo kinase Src, and the Drew-Dickerson B-DNA 

dodecamer25 as a typical nucleic acid.

Outline

This paper is organized as follows: First, we review the theory behind (semi)grand canonical 

ensembles that model the fluctuations experienced by small subvolumes surrounding 

biomolecules. Second, we describe the algorithmic design of the osmostat used to allow salt 

concentrations to fluctuate dynamically. Finally, we apply the osmostat to address 
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biophysical questions of interest and discuss the nature of salt distributions and their 

fluctuations.

Theory and methodology

An NCMC osmostat for sampling ion fluctuations in the semigrand ensemble

An osmostat is like a thermostat or barostat but allows the number of salt pairs in the 

simulation box to change dynamically under the control of a conjugate thermodynamic 

parameter—here, the chemical potential of salt. Salt pairs can be thought of as being 

exchanged with a macroscopic reservoir, with the free energy to add or remove salt to this 

reservoir described by the applied chemical potential. In principle, an osmostat could be 

implemented by including a number of noninteracting (“ghost”) molecules in the simulation 

volume, turning their interactions on and off to allow the number of active salt molecules to 

fluctuate dynamically; alternatively, new salt molecules could be introduced or removed 

dynamically using reversible-jump Monte Carlo (RJMC) methods44. In either case, solvent 

cavity formation to accommodate ions would almost certainly require nonequilibrium 

protocols that employ soft-core potentials and significant tuning of these insertion/deletion 

protocols to achieve high acceptance rates.

To simplify implementation for the ions most commonly used in biomolecular simulations 

(such as NaCl or KCl), we instead choose to exchange the identities of water molecules and 

salt ions, where our conjugate thermodynamic parameter Δμ2·H2O–NaCl (which we will 

abbreviate as Δμ) will represent the difference in chemical potential between withdrawing an 

NaCl molecule from the reservoir while returning two H2O molecules. Because solvent 

cavities are not being created or destroyed—only modified slightly in size—this should 

provide superior phase space overlap between initial and final states.

We denote the total number of water molecules and ions as N, and define the identities of the 

water molecules and ions with the vector θ = (θ1, θ2, …, θN) with θi ∈ {−1, 0, +1} to 

denote anions (θi = −1), water (θi = 0), and cations (θi = +1), respectively (with the potential 

to extend this to divalent ions by adding −2, +2). This choice of labeling allows us to define 

the total number of Na+ ions as

N
Na+(θ) = ∑

i

N
δ( + 1, θi), (1)

the total number of Cl− ions as

N
Cl−

(θ) = ∑
i

N
δ( − 1, θi), (2)

and the number of water molecules as
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NH20(θ) = ∑
i

N
δ(0, θi), (3)

where δ(x, y) denotes the Kronecker delta, which is unity when x = y and zero otherwise, 

and sums run from i to N. Note that the total number of waters and ions, N ≡ NNa+(θ) + 

NCl−(θ) + NH20(θ), is fixed, and does not depend on θ. We define the total charge number of 

the biomolecules, excluding counterions, as z.

When z ≠ 0, counterions will be added to ensure that the total charge of the simulation 

system is zero. The system can be neutralized by any of choice of θ that satisfies n(θ) = −z, 

where the total charge due to ions is given by

n(θ) = ∑
i

N
θi . (4)

As neutralizing the system will lead to unequal numbers of Na+ and Cl−, we define the 

amount of salt as the number of neutral pairs,

NNaCl(θ) ≡ min{N
Na+(θ), N

Cl−
(θ)} . (5)

The semigrand ensemble models salt exchange with a macroscopic salt 
reservoir—When our osmostat is combined with a scheme that samples the isothermal-

isobaric (N, p, T) ensemble, we formally sample the semigrand-isothermal-isobaric 

ensemble (Δμ,N, p, T). The associated equilibrium probability density is given by

π(x, θ; Δμ, N, p, T) = 1
Ξ(Δμ, N, p, T)δ(n(θ), − z)e

−β U(x, θ) + pV(x) + ΔμNNaCl(θ)
, (6)

where the Kronecker delta δ(n(θ),−z) imposes net charge neutrality, β ≡ 1/kBT is the inverse 

temperature, and Ξ(Δμ, N, p, T) is the normalizing constant, given by

Ξ(Δμ, N, p, T) = ∑
θ

δ(n(θ), − z)∫ dx e
−β U(x, θ) + pV(x) + ΔμNNaCl(θ)

, (7)

where the outer sum is over all identity vectors and the integral is over all configuration 

space. For brevity, the dependence of π and Ξ on z will be omitted. It is also possible to 

express the probability density of the system as a function of the total number of cations and 

anions, rather than as function of θ. This can be achieved by summing π(x, θ; Δμ, N, p, T) 
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over all identity vectors that preserve the neutral charge of the system and NNaCl(θ) at some 

constant value NNaCl′ :

π(x, NNaCl′ ; Δμ, N, p, T) = ∑
θ

δ(NNaCl(θ), NNaCl′ )π(x, θ; Δμ, N, p, T)

∝ N !
N

Na+′ !N
Cl−
′ !NH20′ !e

−β U(x; NNaCl′ ) + pV(x) + ΔμNNaCl′
,

(8)

where U(x; NNaCl′ ) is the potential energy for a system with fixed particle identities that 

contains NNaCl′  salt pairs. The factorial prefactors account for the degeneracy number of 

identity vectors θ that satisfy the constraintsNNaCl(θ) = NNaCl′  and n(θ) + z = 0.

Gibbs sampling provides a modular way to sample from the semigrand 
ensemble—Gibbs sampling framework can be used to create a modular simulation scheme 

in which the osmostat updates molecular identities infrequently while some MCMC scheme 

(such as Metropolis Monte Carlo or Metropolized molecular dynamics) updates particle 

positions using fixed particle identities:

x ~ π(x ∣ θ, N, p, T) ∝ e−β U(x, θ) + pV(x) (9)

θ ~ π(θ ∣ x, Δμ, N, p, T) ∝ e
−β U(x, θ) + ΔμNNaCl(θ)

(10)

By embedding this approach in a Gibbs sampling framework, it allows the osmostat to 

readily be combined with other sampling schemes that make use of a Gibbs sampling 

framework such as replica exchange and expanded ensemble simulations45.

Instead of instantaneous MC switching to propose changes in the chemical identities θ at 

fixed configuration x, nonequilibrium candidate Monte Carlo (NCMC) is used to propose 

updates of chemical identities and positions simultaneously as sufficiently long switching 

trajectories can sampling efficiencies that are orders of magnitude larger than instantaneous 

proposals32:

x ~ π(x ∣ θ, N, p, T) ∝ e−β U(x, θ) + pV(x) (11)

x, θ ~ π(x, θ ∣ N, p, T , Δμ) ∝ e
−β U(x, θ) + pV(x) + ΔμNNaCl(θ)

(12)
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NCMC uses a modified Metropolis-Hastings acceptance protocol in which the appropriate 

total work for switching is accumulated during the nonequilibrium proposal and used in the 

acceptance criterion.

The chemical potential Δμ must be calibrated to model macroscopic salt 
concentrations—Simulating a system that is in chemical equilibrium with an infinitely 

large saline reservoir at a specified salt concentration first requires the calibration of the 

chemical potential Δμ. There are multiple ways that one could compute the necessary 

chemical potential. For instance, one could approximate the reservoir with a sufficiently 

large box of water, and narrow-in on the chemical potential that produces the desired salt 

concentration using stochastic approximation or the density control method recommended 

by Speidal et al. 46. However, this requires carrying out separate calibration calculations for 

each desired macroscopic concentration. Instead, we aim to construct a simple calibration 

procedure by computing the free energies to insert salt pairs into a sufficiently large box of 

water. We then use these free energies to analytically compute macroscopic salt 

concentrations over a wide range of chemical potentials, providing a relationship that can be 

numerically inverted. This procedure need be done only once for a specified ion and water 

model, though it may need to be repeated if the method used to compute long-range 

electrostatic interactions is modified.

Our calibration method is similar in principle to that of Benavides et al. 47, who estimated 

the chemical potential of NaCl by calculating the free energy to insert NaCl to over a range 

of concentrations. However, unlike47—where the goal was to estimate the solubility of NaCl

—our interest in estimating the chemical potential lies solely in its ability to determine the 

chemical potential of the osmostat saline reservoir corresponding to the desired macroscopic 

salt concentration in order to induce the appropriate salt distribution on microscopic 

simulation systems.

Our approach to calibration computes the free energies to add NNaCl ∈ {1, 2, … ,NNaCl, max} 

salt pairs to n initially pure box of water. We limit our free energies calculations to insert 

NaCl up to some maximum NNaCl, max ≪ N for practical convenience. No constraint is 

placed on the amount of salt that can be added in osmostat simulations—instead, the value 

of NNaCl, max impacts the accuracy with which the osmostat can reproduce high macroscopic 

salt concentrations. We define the absolute dimensionless free energy of a system with 

NNaCl salt pairs at pressure p and temperature T as f(NNaCl, N, p, T),

f (NNaCl, N, p, T) ≡ − ln
Z(NNaCl, N, p, T)

Z(0, N, p, T) , (13)

where the partition function Z(NNaCl′ , N, p, T) is given by

Z(NNaCl′ , N, p, T) = ∑
θ

δ(NNaCl(θ), NNaCl′ )∫ dx e−β U(x, θ) + pV(x) (14)
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= N !
N

Na+′ !N
Cl−
′ !NH20′ !∫ dx e

−β U(x; NNaCl′ ) + pV(x)
, (15)

where the number of water molecules NH2O′ = N′ − 2 ⋅ NNaCl′ . For convenience, we define 

relative free energies as

Δ f (NNaCl, N, p, T) ≡ f (NNaCl + 1, N, p, T) − f (NNaCl, N, p, T) . (16)

For simplicity, we shall use f(NNaCl) and Δf(NNaCl) as abbreviations to equations 13 and 16, 

respectively. The free energies f(NNaCl) can then be used to calculate the average number of 

salt pairs as a function of the chemical potential Δμ,

NNaCl Δμ, N, p, T
= Ξ(Δμ, N, p, T)−1 ∑

NNaCl = 0

NNaCl,max
NNaCl e

− f (NNaCl) + βΔμNNaCl (17)

where the semigrand partition function Ξ(Δμ, N, p, T) (the same one from equation 7) can 

be compactly written as

Ξ(Δμ, N, p, T) = ∑
NNaCl = 0

NNaCl,max
e

− f (NNaCl) + βΔμNNaCl (18)

Knowledge of f(NNaCl) will also provide a convenient estimate of the macroscopic salt 

concentration. We define the macroscopic salt concentration as the mean salt concentration 

of a system in the thermodynamic limit, and derive in Appendix 2 the following expression 

for the macroscopic concentration that is amenable to computational analysis:

c Δμ, N, p, T =

∑
NNaCl = 0

NNaCl,max
NNaCl e

− f (NNaCl) + βΔμNNaCl

∑
NNaCl = 0

NNaCl,max
V NNaCl, N, p, T e

− f (NNaCl) + βΔμNNaCl

, (19)

where V NNaCl, N, p, T is the average volume for a fixed NNaCl. The macroscopic 

concentration c Δμ, N, p, T is a monotonic function of the chemical potential Δμ. Therefore—

provided one has estimates of f(NNaCl) and V NNaCl, N, p, T—the value of the chemical 
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potential Δμ(c) that yields a desired macroscopic concentration c Δμ, N, p, T can be obtained 

by numerically inverting equation 19.

Free energies for salt insertion can be efficiently computed using SAMS—One 

could estimate the free energies f(NNaCl) NNaCl ∈ {0, 1, … , NNaCl, max} using a NNaCl, max 

− 1 equilibrium calculations of the relative free energies Δf(NNaCl) or the recently developed 

grand canonical integration technique48,49. As the latter requires a priori knowledge of the 

approximate scaling of the chemical potential with the concentration, we instead opt to use 

the recently proposed self-adjusted mixture sampling (SAMS)35 method to facilitate the 

calculation of the free energies from a single simulation. SAMS is a development on the 

method of expanded ensembles36 (sometimes known as serial tempering50) and generalized 

Wang-Landau algorithms51,52. It is a stochastic approximation scheme that produces 

unbiased estimates of the free energies (unlike Wang-Landau) that—in the asymptotic limit

—have the lowest variance out of all other stochastic approximation recursion schemes35. It 

can be used to sample over a discrete state space and simultaneously estimate the relative 

log-normalizing constant for each state. For our calibration simulations, the discrete states 

correspond to the number of salt pairs in the systems NNaCl ∈ {0, 1, … , NNaCl, max} and the 

log-normalizing constant are the desired free energies f(NNaCl). By dynamically altering a 

series of biasing potentials, one for each state, the SAMS algorithm asymptotically samples 

the discrete states according to user specified target weights35. When the target weights are 

uniform over the state space—as we choose herein to ensure the uncertainties in the 

estimated free energies are approximately equal—the biasing potentials are themselves 

estimates of the free energies f(NNaCl). Thus, SAMS can, in principle, calculate all f(NNaCl) 

in a single simulation more efficiently and conveniently than numerous independent 

equilibrium free energy calculations.

As we describe below, our osmostat employs NCMC, which allows us to calculate the salt-

insertion free energies by processing all of the NCMC protocol work values in the SAMS 

simulations with BAR, even from the attempts that are rejected. BAR requires samples of 

forward and reverse work samples of salt insertion and deletion attempts to compute 

Δf(NNaCl) and its statistical uncertainty for NNaCl ∈ {0, 1, … , NNaCl, max}37-39. These 

relative free energies can then be summed to estimate f(NNaCl) and corresponding statistical 

uncertainties. Our calibration simulations therefore exploit the sampling efficiency of SAMS 

and the estimation efficiency of BAR.

In general, the chemical potential Δμ will need to be recalibrated if the practitioner changes 

temperature, pressure, water or ion forcefield models, nonbonded treatment, or anything that 

will affect f(NNaCl) or V NNaCl, N, p, T. A sufficiently large water box must be used when 

calculating f(NNaCl) to reach a regime in which f(NNaCl) is insensitive to changes in 

simulation size; as we will show, our calibration simulations achieve this size insensitivity 

even for modest water boxes of a few thousand molecules.

The osmostat maintains electrostatic neutrality—To use PME21, a popular choice 

for accurate long-range electrostatics, charge neutrality of the entire system needs to be 

maintained to avoid the artifacts induced by application of a uniform background 
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neutralizing charge22. Even if an alternative long-range electrostatics treatment is employed 

(e.g. reaction field electrostatics or other non-Ewald methods53), there is, in general, 

approximate equality between the total number of negative charges and positive charges in 

biological microenvironments as they approach macroscopic lengthscales (see Figure 1 left). 
From a purely theoretical perspective, the existence of a thermodynamic limit a system with 

a net charge depends on the particular details of the system54. For these reasons, we ensure 

that our proposals always maintain charge neutrality by inserting or deleting a neutral Na+ 

and Cl− pair.

We insert and delete a salt pair by converting Na+ and Cl− ions to two water molecules (see 

Figure 3). These moves convert the nonbonded forcefield parameters (partial changes q, 

Lennard-Jones radii σ, and Lennard-Jones potential well-depths ϵ) of the water and ion 

parameters. The Na+ and Cl− ions are given the same topology, geometry, and number of 

atoms as the water model used for the simulation. Irrespective of the choice of water model, 

the nonbonded ion parameters are placed on the water oxygen atom, and the hydrogen atoms 

or additional charge sites (such as in TIP4P) have their nonbonded interactions switched off. 

The manner in which salt and water are transmuted to one another are is described in 

Appendix 3. The mass of the ions is set as the same as water, which has no impact on the 

equilibrium configuration probability density, though it may distrupt the kinetics (which are 

not of interest here).

Nonequilibrium candidate Monte Carlo is used to enhance sampling efficiency
—A benefit of exchanging ion and water nonbonded forcefield parameters is that this 

procedure avoids the need to create new cavities in solvent, a difficulty that significantly 

complicates particle creation and destruction techniques. Nevertheless, instantaneous Monte 

Carlo attempts to interconvert salt and water will be overwhelmingly rejected as it is highly 

unlikely that the dipoles of the molecules that surround a transmuted ion—usually solvent—

will be orientated in a manner that favorably solvates the new charge. This effect is 

compounded by the long-range nature of Coulombic interactions. The acceptance 

probability for salt insertion and deletion would improve drastically if the dipoles and 

locations of the solvent could be redistributed during an MCMC attempt. Previously, Shelly 

and Patey developed a configuration bias Monte Carlo technique for the insertion and 

deletion of ions in grand canonical Monte Carlo29. Their method reorients dipoles in a shell 

surrounding the inserted or deleted ion, which improved the sampling efficiency by over two 

orders of magnitude29.

Here, we use nonequilibrium candidate Monte Carlo (NCMC) 32, a technique that is closely 

related to sequential Monte Carlo and annealed importance sampling55,56, to automatically 

relax systems around inserted or deleted ions, thereby boosting acceptance rates and 

sampling efficiencies to values far higher than reported elsewhere.

In NCMC, a Monte Carlo attempt is divided into a nonequilibrium protocol that drives the 

system through many intermediate states. Candidate configurations are generated by driving 

a chosen set of variables (thermodynamic or configurational) through these intermediate 

states whilst allowing unperturbed degrees of freedom to relax via dynamical propagation in 

response to the driving protocol. The total amount of work that is accumulated between 

Ross et al. Page 11

J Phys Chem B. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interleaved steps of perturbation (of the variables of interest) and propagation (of the 

unperturbed degrees of freedom) is used to accept or reject the candidate configuration. 

Good NCMC acceptance rates can be achieved for a reasonable choice of nonequilibrium 

protocol; often, a parametric protocol is specified and the total protocol length (or NCMC 
switching time) is tuned to be long enough to ensure a system is sufficiently relaxed with 

respect to the completed perturbation but short enough to be efficient.

In our NCMC osmostat, the nonbonded parameters of the ions and water molecules being 

exchanged are linearly interpolated into a series of equally spaced alchemical states. Each 

perturbation step along the alchemical path was followed by a fixed number of time-steps of 

Langevin dynamics where the configurations of the whole system were integrated (see 

Figure 3). A full description of our Monte Carlo and NCMC procedure is provided in 

Appendix 3. Here, NCMC propagator uses the same Langevin integrator as used in 

equilibrium sampling to ensure there was no significant mismatch between the sampled 

densities. Our particular choice of Langevin integrator (described below) was used to avoid 

the long correlation times that results from fully Metropolized molecular dynamics 

integrators and to mitigate the configuration sampling bias that is incurred by 

unmetropolized finite time-step integrators.

We use an integrator that minimizes configuration sampling bias—Care must be 

taken to ensure that the total work is properly accumulated in NCMC, as incorrect 

accumulation of work or the use of alternative definitions will lead to erroneous computation 

of the acceptance probability and simulation results. For time reversible MCMC integrators, 

such as with generalized Hamiltonian Monte Carlo (GHMC), the total work is the protocol 
work: the sum of the instantaneous potential energy changes that result from each 

perturbation during the driving process57. If the system is relaxed in-between perturbations 

using propagators that do not leave the target distribution invariant, such as unmetropolized 

Langevin integrators, NCMC can drive systems to undesirable nonequilibrium steady states, 

whose statistics may differ from equilibrium. On top of the work that is already performed 

by the driving protocol, propagators that do not satisfy microscopic reversibility can also be 

considered to perform work on a system57. This work, known as the shadow work, must 

either be minimized or eliminated (i.e., via Metropolizing the dynamics) for NCMC to 

sample very close to, or exactly, from the target probability density.

The issue of shadow work accumulation is not limited to propagators in NCMC. Indeed, all 
finite time-step molecular dynamics integrators incur a discretization error that results in 

biased sampling when used without metropolization. While configuration sampling errors do 

not occur with GHMC, the correct acceptance criterion requires that the momenta of all 

particles are reversed upon rejection (or acceptance) of a proposal. The reversal of momenta 

results in a simulation ‘retracing its steps’, thereby significantly increasing correlation times 

and decreasing sampling efficiencies. Hamiltonian Monte Carlo sampling can suffer from 

even longer correlation times, as momenta are randomized for each trial, irrespective of 

whether the previous move was accepted or not. This problem can be mitigated by using 

GHMC reduced momentum flipping schemes that still rigorously sample from the target 

distribution58-60. Correlation times are minimized by GHMC schemes that do not reverse 

momenta at all, although this incurs sampling bias61.
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Recently, Leimkuhler and Matthews have proposed an unmetropolized Langevin dynamics 

technique that incurs minimal configuration sampling bias62. The minimal error is achieved 

using a particular numerical scheme to update the positions and momenta at each time-step. 

Denoting half time-step velocity updates as V, half time-step position updates as R, and the 

addition of an Ornstein-Uhlenbeck process as O (the Brownian motion “kick”), the 

symmetry in the VRORV splitting scheme leads to a particularly favorable cancellation of 

configuration sampling error. Leimkuhler and Matthews also found that than VRORV 

exhibited the lowest error on configuration dependent quantities, such as the potential 

energy, in biomolecular simulations compared to other symmetric splittings. As Langevin 

dynamics with VRORV splitting samples very closely to the true configuration Hamiltonian, 

we expect its neglect within NCMC moves designed to sample configurational properties to 

induce very little error in sampled configurational densities. For this reason, we used the 

protocol work to accept or reject proposals from NCMC in our osmostat.

Salt concentration and ionic strength

Ionic strength influences the effective salt concentration—We are interested in 

quantifying the variation of the instantaneous salt concentration c in our osmostated 

biomolecular simulations, where

c(x, θ) = 1
V(x) NNaCl(θ) . (20)

Although the salt concentration of the saline reservoir, i.e. the macroscopic concentration, is 

known precisely and controlled by the user, the presence of a biomolecule in a simulation, 

along with any neutralizing counterions, may lead to significant differences in the mean salt 

concentration in the simulation volume from the macroscopic salt concentration. In contrast, 

the mean salt concentration in an initially pure box of water should match the macroscopic 

salt concentration of the reservoir if the chemical potential used in the osmostat is accurately 

calibrated.

The Debye-Hückel theory of electrolytes provided an early, analytical treatment of dilute 

ionic solutions using continuum electrostatics. In Debye-Hückel theory, the ionic strength I 
of a system, which for our simulations is

I(x, θ) = 1
2

1
V(x) z2 + ∑

i = 1

N
θi

2 , (21)

is used to predict how the effective concentrations, or activities, of ions are affected by the 

presence of electrolytes in the solution. The key insight of Debye-Hückel theory is that—

because of electrostatic screening—the ionic strength tempers the activity of ions, such that 

increasing the ionic strength of a solution lowers the effective concentration of electrolytes. 

Although Debye-Hückel theory is too simplistic to be used to accurately predict the salt 

concentration in biomolecular simulations, the ionic strength may still provide insight into 

the salt concentrations that we will observe in our osmostated simulations. Thus, we will 

Ross et al. Page 13

J Phys Chem B. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



investigate the variation of the ionic strength as well as the salt concentration. As a large 

charge number of the biomolecule z will dominate I for small simulation volumes, we will 

also consider the variation of ionic strength of the solvent only, i.e., by neglecting z2 in 

equation 21.

Simulation packages add different amounts of salt—There is diversity in the way 

that current practitioners of all-atom biomolecular simulations add salt (salinate) to systems 

during the preparation stages of simulations. While it is common that only neutralizing 

counterions are added, a number of workflows elect not to add counterions at all23. Salt pairs 

may be added, or not added at all, and when they are added, simulation packages use 

differing definitions of salt concentration, such that each package can add different numbers 

of salt pairs to the same system even if the desired salt concentration is the same. All 

packages ignore the presence of neutralizing counterions when adding salt. In this study, we 

are concerned with quantifying the accuracy of some of the most popular salination 

techniques.

Given a target salt concentration of ct, a popular method to add salt—exemplified by the 

Gromacs package17—uses the initial volume of the system V(x0) to count the required 

number of pairs. We determine the number of salt pairs that would be added by this strategy 

as

NNaCl
V = V(x0)ct , (22)

where ⌊y⌋ denotes the floored value of y. We are interested in assessing the accuracy of the 

corresponding concentration of salt cV(x) = NNaCl
V ∕ V(x). Preparation tools such as 

CHARMM-GUI18 add salt based on the initial volume of the solvent V(x0, H2O), which we 

reproduce with

NNaCl
S = V(x0, H2O)ct , (23)

to estimate the corresponding concentration cS(x) = NNaCl
S ∕ V(x) that would occur for all 

later configurations. Estimates that use strategies similar to equations 22 and 23 are sensitive 

to initial volume of the system; if salt is added before the volume is sufficiently equilibrated, 

the salt concentration during the simulation can deviate significantly from the target 

concentration. In contrast, packages such as OpenMM19,20, use the ratio of salt pairs to 

water molecules in bulk solvent to add

NNaCl
R =

NH2O

cH2O
ct , (24)
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salt pairs, where cH2O is concentration of bulk water, for which 55.4 M is used by OpenMM. 

The corresponding salt concentration cR(x) = NNaCl
R ∕ V(x), as well as cV(x) and cS(x) will be 

compared to the concentration of salt that results from the application of our osmostat to 

help inform future simulation strategies.

Simulation details

Systems considered in the study

The primary aims of this study are to quantify and understand how the concentration of salt 

and ionic strength vary around typical biomolecules, to assess the accuracy of methods that 

insert salt in typical simulation strategies, and to ascertain whether an NCMC osmostat can 

decorrelate biomolecule:ion interactions faster than fixed-salt dynamics. To meet these aims, 

we considered four biological systems that are representative of those that are commonly 

simulated with molecular dynamics: pure water, dihydrofolate reductase (DHFR), the apo 
kinase Src, and the Drew-Dickerson B-DNA dodecamer palindromic sequence. All systems 

were taken from the OpenMMTools [0.11.1] set of test systems63, such that each system has 

a different provenance.

Dihydrofolate reductase (DHFR) is a small, globular enzyme that has frequently been used 

as a model system in molecular simulations. The DHFR structure used here was taken from 

the joint Amber-CHARMM (JAC) benchmark (obtained from the Amber 14 benchmark 

archive64). The protein structure was stripped of hydrogen atoms, and using tleap65, was 

re-protonated at pH 7 and solvated in an orthorhombic box of TIP3P waters that had a 

clearance of at least 10 Å. The Amber 14SB forcefield from the AmberTools 16 package 

was used for the protein65. As an initial relaxation of the system, the solvated system was 

minimized and propagated for 3 ps with Langevin dynamics.

The tyrosine kinase Src, a member of the non-receptor tyrosine kinase family, was selected 

for this study as an example of a prototypical drug target. The apo Src structure was taken 

from the OpenMMtools testsystems data set and resolvated with TIP3P in an 

orthorhombic box that was at least 10 Å away from the protein. As part of the preparation, 

the energy of system was minimized and subsequently relaxed using 3 ps of Langevin 

dynamics to remove any bad contacts. Further equilibration was performed as detailed 

below. The original system was not suitable for simulation with the osmostat as fixed 

neutralizing counterions were present in the system. The OpenMMtools structure was 

downloaded from the Protein Data Bank, identification code 1YI6, and prepared using 

PDBFixer66 and protonated at pH 7. The small molecule in the binding site was also 

removed during the preparation. The Amber 14SB forcefield from the AmberTools 16 

package was used for the simulations65.

The Drew-Dickerson dodecamer (CGCGAATTGCGC) is a classic model DNA system. The 

B-DNA structure of the Drew-Dickerson dodecamer was downloaded from the Protein Data 

Bank (identification code 4C64). The structure was stripped of ions and solvated in a box of 

TIP3P water to ensure at least 9 Å of clearance around the DNA. To test the effect of the 

amount of solvent on the distribution of salt and ions, the structure was also solvated in a 
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box of TIP3P water that had a clearance of at least 16 Å around the DNA. As with the apo 
kinase Src, the system was energy minimized and subsequently relaxed using 3 ps of 

Langevin dynamics. As described below, further equilibration was also performed. The 

Amber OL15 forcefield from the AmberTools 16 package was used for the DNA67.

General simulation details

Simulations were performed with OpenMM [7.1.0]20. The osmostat was implemented 

within the open-source package SaltSwap [0.5.2] that was written for the purpose of this 

publication. Simulations utilized either TIP3P42 or TIP4P-Ew43 water models, and Joung 

and Cheatham parameters were used for Na+ and Cl− ions68. Unless otherwise stated, the 

amount of salt in a simulation was initialized by salinating the system according to equation 

24 with the macroscopic concentration as the target concentration ct.

For all simulations, long-range electrostatic interactions were treated with particle mesh 

Ewald (PME), with both direct-space PME and Lennard-Jones potentials making use of a 10 

Å cutoff; the Lennard-Jones potential was switched to zero at the cutoff over a switch width 

of 1.5 Å to ensure continuity of potential and forces. PME used a relative error tolerance of 

10−4 at the cutoff to automatically select the α smoothing parameter, and the default 

algorithm in OpenMM was used to select Fourier grid spacing (which selected a grid 

spacing of ~0.8 Å in each dimension). All bonds to hydrogen were constrained to a within a 

fractional error of 1 × 10−8 of the bond distances using CCMA69,70, and waters were rigidly 

constrained with SETTLE71. OpenMM’s long-range analytical dispersion correction was 

used to avoid pressure artifacts from truncation of the Lennard-Jones potential. Simulations 

were run at 300 K with a Monte Carlo barostat with 1 atm external pressure and Monte 

Carlo update interval of 25 steps. Equilibrium and NCMC dynamics were propagated using 

high-quality Langevin integrators taken from the OpenMMTools [0.11.1] package, with a 2 

fs timestep and collision rate of 1 ps−1. Integrators used deterministic forces and OpenMM’s 

mixed single and double precision implementation. In addition to the dynamics used to 

prepare the systems, every simulation was briefly thermalized using 4 ps of dynamics. 

Where stated, additional simulation data was discarded from the start of simulations using 

the automatic procedure in the pymbar timeseries module as detailed in72. As described 

above, positions and velocities were updated using the VRORV splitting scheme (also 

known as BAOAB) to mitigate the configuration space error in equilibrium sampling and 

NCMC proposals that result from unmetropolized Langevin dynamics62

The insertion or deletion of salt was attempted every 4 ps using the procedure described in 

Appendix 3. All ions used the same number of atoms, topology, and geometry as the water 

model used in the simulation. As illustrated in Figure 3, the “insertion” of an ion was 

achieved by switching the nonbonded parameters of the water oxygen atom to either Na+ or 

Cl− and by simultaneously switching the nonbonded parameters of the water hydrogen 

atoms (along with any extra charge sites) to zero—the “deletion” of an ion involved the 

reverse procedure. With the exception of the simulations where the NCMC protocol was 

optimized, the NCMC protocol was 20 ps long, and consisted of 1000 perturbation steps, 

where each perturbation followed by 10 steps of Langevin integration with a 2 fs timestep. 

The pseudo-code for the entire NCMC osmostat, including how it is combined with 
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molecular dynamics can also be found in Appendix 3. Unless otherwise stated, the NCMC 

protocol length is not accounted for in the reported lengths of the simulations.

The simulations were analyzed with open source scripts that used a combination of numpy 

1.13.173, scipy 0.19.174, pymbar 3.0.175, MDTraj 1.8.076, VMD 1.9.477 (see Code and data 
availability); the saltswap conda package provided automatically installs the dependencies 

needed to run the simulation scripts. Plots and figures were produced using Matplotlib 

2.0.278 and Inkscape 0.91.

Calibration of the chemical potential

The chemical potential was calibrated in cubic boxes of TIP3P water and TIP4P-Ew water. 

Both boxes initially had edge lengths of 30 Å with water molecules at roughly the same 

density as bulk water; the box of TIP3P water contained 887 molecules and the box of 

TIP4P-Ew water contained 886 molecules. Ten 80 ns SAMS simulations were performed on 

each box, and were targeted to sample uniformly over salt pairs NNaCl(θ) ∈ {0,1,…, 20}. 

The insertion or deletion of salt was attempted every 4 ps. Half of the simulations were 

initialized with 0 salt pairs, whereas the other half were initialized with 20 salt pairs. The 

maximum number of salt pairs NNaCl,max was chosen to be 20 in these calibration 

simulations because the corresponding salt concentration (roughly 1.2 M) is beyond the 

concentrations in biological microenvironments that are typically considered. (Note that the 

maximum amount of 20 salt pairs applies only to these calibration simulations—the 

osmostat simulations with solutes have no such maximum number of salt pair limitation.) 

The volumes of the boxes at each salt occupancy were recorded during the SAMS 

simulations in order to estimate V NNaCl, N, p, T (henceforth abbreviated as V NNaCl
). The 

SAMS simulation procedure automatically provides on-line estimates of the free energies 

f(NNaCl), which, along V NNaCl
, are required to calibrate the chemical potential. The 

protocol work from all of the NCMC insertion and deletion attempts were post-processed 

with BAR (using the pymbar package75) to provide additional estimates of f(NNaCl) along 

with statistical uncertainties.

To assess whether f(NNaCl) and V NNaCl
 had been accurately calculated, larger boxes of 

TIP3P and TIP4P-Ew water were simulated for 32 ns at a range of chemical potentials Δμ. 

The mean salt concentrations from the simulations were compared to concentrations 

predicted using equation 19 with the estimated values for f(NNaCl) and V NNaCl
. The boxes 

of these validation simulations were initially 50 Å in length, and contained 4085 TIP3P and 

4066 TIP4P-Ew water molecules. These simulations were initialized without any salt present 

in the systems.

Optimization of the NCMC protocol

We consider only two parameters in optimizing the nonequilibrium protocol used in NCMC 

proposals: the total number of times the potential is perturbed, T, and the number of 

Langevin steps that occur before and after each perturbation, K. Generally, we expect the 

acceptance probability to increase as the overall perturbation is broken into smaller pieces—
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as T increases. Increasing the number of propagation steps following each perturbation, K, 

also improves the acceptance probability in a manner that is dependent on the computational 

efficiency details of the simulation code. To quantify the trade-off between acceptance 

probability and compute time, we define the NCMC efficiency E(T, K) as

E(T , K) = A (T , K)
C(T , K) , (25)

where 〈A〉(T, K) is the average acceptance probability and C(T, K) is the average computer 

time per insertion/deletion attempt. All simulations were performed and timed on single 

Nvidia GTX-1080 GPUs. The total protocol length of an NCMC attempt is equal to T × K 
multiplied by the Langevin integration timestep, which is 2 fs in this case.

Simulations using various NCMC protocols lengths were performed on cubic boxes of 

TIP3P and TIP4P-Ew that had initial edge lengths of 30 Å. The simulations sampled 

configurations for a total of 32 ns (excluding the NCMC sampling) and had NCMC protocol 

lengths up to 40 ps for different combinations of total perturbation steps T and propagation 

steps K. The insertion or deletion of salt was attempted every 4 ps, such that there were a 

total of 8000 insertion/deletion attempts for each simulation. The efficiency of each protocol 

E was estimated relative the efficiency of instantaneous insertion and deletion. Shelly and 

Patey also used the ratio of the average acceptance probability to the compute time to 

estimate the efficiency of their configuration bias ion insertion scheme relative to 

instantaneous insertions29. In this work, no effort was made to optimize the alchemical path.

Quantifying the scaling behavior of the osmostat

To investigate the sampling efficiency of our osmostat under physiological conditions, 

DHFR was simulated with macroscopic concentrations of 100 mM, 150 mM, and 200 mM. 

Each simulation was 30 ns long and there were three repeats per macroscopic concentration. 

Equation 24 was used to add an initial amount of salt to the simulation. The timeseries 

module in pymbar75 was used to estimate the autocorrelation function of salt concentration 

as well as the integrated autocorrelation time for each macroscopic salt concentration.

It is important to establish how the distributions of salt concentration and salt numbers scale 

with the number of water molecules in the system and the macroscopic concentration. To 

this end, we simulated different sizes of water boxes with macroscopic concentrations of 100 

mM, 150 mM, and 200 mM. Each simulation was repeated three times.

Estimating the efficiency of ion configuration sampling with NCMC

Ponomarev et al. previously used the Drew-Dickerson DNA palindromic sequence to 

quantify the rate of convergence of spatial ion distributions in DNA simulations25. Three 

osmostated simulations and three fixed-salt simulations of the Drew-Dickerson dodecamer 

were performed for 60 ns with a macroscopic salt concentration of 200 mM. As the insertion 

or deletion of salt was attempted every 4 ps, there was a total of 15,000 attempts. The fixed 

salt simulations used the same ion topologies and masses as those used by the osmostat, are 

were added to the system using the scheme summarized by equation 24. The autocorrelation 
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of ion:phosphate interaction occupancies were estimated from the osmostated and fixed-salt 

simulations using the open-source analysis scripts that accompany this manuscript.

Quantifying the salt concentration around biomolecules

Three 30 ns simulations of apo Src kinase were performed, with salt insertion or deletion 

attempted every 4 ps, using a macroscopic concentration of 200 mM. The amount of salt that 

was initially added to this system was calculated using equation 24. These simulations, as 

well as those of TIP3P water, DHFR, and the DNA dodecamer described above, were used 

to analyze the distributions of salt concentration (equation 20), ionic strength (equation 21), 

and the concentrations of salt that would occur for the heuristic salination schemes described 

in equations 22, 23, and 24.

To further understand the scaling behavior of the distributions of salt concentration with 

system size, and to assess the extent of finite size effects on the ion spatial distributions 

around DNA, additional simulations were performed on DNA. The Drew-Dickerson DNA 

dodecamer was resolvated in a box of TIP3P water that was at least 16 Å away from the 

molecule. Three repeats of 45 ns long osmostated and fixed-salt simulations were 

performed, with the insertion or deletion of salt was attempted every 4 ps. The salt 

concentration distribution was estimated, as were the Na+ and Cl− spatial distributions 

around the DNA.

Results

SAMS simulations and BAR estimates accurately capture salt insertion free energies.

In order to estimate the chemical potential Δμcorresponding to a desired macroscopic salt 

concentration, we must have precise estimates of both free energies to insert salt into a box 

of water containing NNaCl salt molecules, f(NNaCl), and the average saline box volume as a 

function of NNaCl, V NNaCl
, for NNaCl ∈ {0, 1, … , NNaCl, max}. Figure 4 (upper left) 

depicts the computed relative free energy difference for inserting an additional salt pair into 

a box of water molecules already containing NNaCl salt molecules for both TIP3P and 

TIP4P-Ew for NNaCl ∈ {0, … , 19}. The relative free energies were estimated with BAR 

using all nonequilibrium work values for salt pair insertion/deletion NCMC proposals, 

irrespective of whether the proposal attempt was accepted or not, from ten SAMS 

simulation. Although SAMS also provides online estimates for f(NNaCl) over this same 

range35, these online estimates were found to have significantly higher variance than the 

BAR estimates (see Figure A5.1), so we make use of BAR-derived estimates of f(NNaCl) 

derived from SAMS simulations throughout.

The primary accuracy of the calibration simulations lies in their ability to reproduced desired 

salt concentrations in bulk water. Nevertheless, it is encouraging to note that calculated free 

energy to insert one NaCl pair in a box of TIP3P and TIP4P-Ew are broadly in agreement 

with previous computational estimates and experimental measurements. As implied by 

equation 16, the free energy to insert the first salt pair, Δf(NNaCl = 0), can be expressed as 

the difference in hydration free energy between NaCl and two water molecules. Assuming 

the hydration free energy of TIP3P and TIP4P-Ew water to be −6.3 kcal/mol79, we estimate 
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the hydration free energy of NaCl to be −171.73 ± 0.04 kcal/mol and −170.60 ± 0.04 

kcal/mol in TIP3P and TIP4P-Ew water, respectively. Using a different treatment of long-

rang electrostatics but same ion parameters as this study, Joung and Cheatham calculated the 

individual hydration free energies of Na+ and Cl− in TIP3P and TIP4P-Ew, which can be 

summed to approximate the hydration free energy of NaCl68. These hydration free energies 

(−178.3 kcal/mol in TIP3P −177.7 kcal/mol in TIP4P-Ew) are within 5% of our estimates. 

For comparison, estimates of standard NaCl hydration free energies based on experimental 

data are −170.4 kcal/mol80, −171.8 kcal/mol81, and −177.8 kcal/mol82.

The chemical potential for a macroscopic salt concentration can be reliably determined

The salt insertion free energies and average volumes in Figure 4 upper left provide a way to 

relate the chemical potential Δμ to macroscopic salt concentration c  via equation 19. 

Figure 4 upper right shows the predicted macroscopic salt concentration for a range of 

chemical potentials Δμ computed using equation 19. The average salt concentration in a 

saline box 〈c〉 should equal the predicted macroscopic concentration for sufficiently large 

saline boxes if the chemical potential has been properly calibrated. To verify the accuracy of 

the calculated values for f(NNaCl) and V NNaCl
, simulations of water boxes, that initially 

had no salt present, were performed using an osmostat with different fixed chemical 

potentials and the average salt concentrations in the simulations were estimated (Figure 4; 

upper right). These boxes of TIP3P and TIP4P-Ew waters contained 4085 and 4066 

molecules respectively, whereas the TIP3P and TIP4P-Ew boxes used to estimate f(N) and 

V NNaCl
 contained 887 and 886 molecules respectively. As Figure 4 upper right shows, the 

macroscopic concentrations c  predicted using equation 19 fall within the statistical error of 

the average concentrations 〈c〉 determined from the fixed-Δμ simulations.

Although Δμ is the thermodynamic control parameter for osmostated simulations, 

experimental wetlab conditions instead generally specify the macroscopic salt concentration 

c  rather than Δμ. As the relationship between Δμ and c  is monotonic, as illustrated by 

Figure 4 upper right, we can numerically invert equation 19 to enable practitioners to choose 

the desired macroscopic salt concentration and extract the required Δμ for the osmostat to 

model equilibrium with the macroscopic salt concentration c .

The average salt concentration is highly sensitive to chemical potential

The macroscopic salt concentration c Δμ for a fixed chemical potential Δμ is a highly 

sensitive and nonlinear function of the chemical potential (Figure 4; upper right) for both 

water models. Small changes to the chemical potential, on the order of 1 kT, can alter the 

mean concentration by hundreds of millimolar. Correspondingly, to accurately model a given 

macroscopic concentration c, the function Δμ(c) must be very precisely calibrated.

Different water models have distinct chemical potentials for the same salt concentration

Strikingly, both the value and shape of c Δμ is very sensitive to choice of water model 

(Figure 4; upper right). For instance, a Δμ of about 316 kT results in a mean salt 

concentration in TIP3P water that is approximately 500 mM, compared to approximately 
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200 mM in TIP4P-Ew water for the same value of Δμ. These features highlight the 

importance of specifically calibrating the chemical potential for each water and ion model as 

well as estimating f(NNaCl) and V NNaCl
 to a sufficient degree of precision. Figure A5.2 

shows that for TIP3P and the treatment of long-rang interactions used herein, the free 

energies f(NNaC1) for each NNaCl ∈ {0, 1, … , 20} need to be determined to a standard error 

of 4 kcal/mol to consistently determine the macroscopic concentration to an inaccuracy of at 

least about 80 mM for 1 mM ≤ c  ≤ 1000 mM. The average standard error achieved in the 

calibration simulations for the free energies f(NNaC1) is 0.02 kcal/mol, which determines the 

concentration to an inaccuracy no larger than about 1 mM.

NCMC greatly enhances the sampling efficiency of salt insertion and deletion moves

We estimate that instantaneous salt insertion and deletion moves have acceptance 

probabilities of 3.0 × 10−51 [95% CI: 5.0 × 10−66, 9.0 × 10−51] and 1.0 × 10−46 [95 % CI: 

3.0 × 10−64, 4.0 × 10−46] in TIP3P and TIP4P-Ew water respectively, implying that the 

implementation of an osmostat is practically impossible using such naive moves. In contrast, 

we found that in our longest protocol, NCMC insertion/deletion attempts achieved 

acceptance probabilities of about 30% in TIP3P water and approximately 15% in TIP4P-Ew 

water (see the lower left of Figure 4). Although the acceptance probability increases 

monotonically with the length of the protocol, so does the computational cost and time for 

each attempt. The efficiency, defined in equation 25, quantifies the trade-off between the 

acceptance rate and computational expense. Figure 4 lower right shows that NCMC 

protocols in TIP3P water that are between 15 ps and 30 ps in length are the most efficient for 

our procedure. For this reason, all subsequent simulations used TIP3P water and a 20 ps 

long NCMC protocol. In addition, it was found that 10 propagation steps (at 2 fs) between 

each perturbation was found to be the most computationally efficient for our simulation code 

SaltSwap [0.5.2] and OpenMM [7.1.0] (see Figure A5.3). Further optimization of the 

NCMC protocol would be required for NCMC attempts in TIP4P-Ew to achieve sampling 

efficiencies that are competitive with those in TIP3P water.

An NCMC osmostat can rapidly equilibrate the salt concentration in biomolecular systems

Figure 5 shows example salt concentration trajectories around DHFR as well as plots of the 

corresponding autocorrelation functions for three biologically plausible macroscopic salt 

concentrations. The autocorrelation times for the three macroscopic salt concentrations are 

on the order of 1 ns, implying that our osmostated simulations should be at least tens of 

nanoseconds long to generate sufficient uncorrelated samples of salt concentrations. 

Importantly, the magnitude of the instantaneous salt concentration fluctuations increases 

with the macroscopic salt concentration, which causes an increase in the correlation time as 

our osmostat implementation proposes the insertion/deletion of one salt pair a at a time. As a 

result, more attempts are required to explore salt concentration distributions of higher 

variance. This suggests that inserting or deleting multiple salt pairs in each attempt could 

improve the sampling efficiency of our osmostat at higher macroscopic salt concentrations, 

though longer NCMC insertion/deletion protocols would likely be required to achieve 

similar acceptance probabilities.
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Fluctuation magnitude grows with system size and macroscopic salt concentration

Figure 6 upper left demonstrates that for a pure box of saline and fixed macroscopic salt 

concentration, increasing the number of molecules in the system increases both amount of 

salt and the spread of the salt number distribution; in contrast, Figure 6 (upper right) reveals 

that the distribution of the concentration remains centered around the macroscopic 

concentration, but the variance decreases. Both of these trends are to be expected from 

statistical mechanics (see Appendix 2). The salt concentration distribution for the smallest 

water box (with 2094 molecules) in Figure 6 (upper right) can be seen to be highly 

multimodal. Each peak corresponds a particular number of salt pairs in the system; there are 

so few water molecules in this system that changing NNaCl, by one results in a large jump in 

the concentration. Figure 6 (bottom left and right) highlight that for a system with a fixed 

number of water molecules, the number of salt pairs increases in proportion with the 

macroscopic concentration.

Salt concentrations vary significantly in typical biomolecular systems

Figure 7 shows the distribution of salt concentration and ionic strength for 3 typical 

biomolecular systems: DHFR, apo Src kinase, and the Drew-Dickerson DNA dodecamer. 

The distributions in a box of TIP3P are also shown for reference. The fluctuations of the salt 

concentration around the macromolecules are substantial: 95% of all salt concentration 

samples fall within a range of 90.2 mM for DHFR, 87.7 mM for Src kinase, and 135.6 mM 

for the DNA dodecamer system. We expect these values to be indicative of the natural 

variation in salt concentration in the local environments of real biomolecules.

Simulations containing charged biomolecules can experience salt concentrations that 
deviate systematically from the macroscopic concentrations

The DHFR, apo Src kinase, and the Drew-Dickerson DNA dodecamer structures have net 

charges of −11 |e|, −6 |e| and −22 |e|, respectively. The net charge of the DNA dodecamer is a 

result of the phosphate group on each of the nucleotides (with each of the eleven phosphate 

groups carrying −1 |e| charge), whereas the net charges on DHFR and Src kinase are due to 

an excess of glutamate and aspartate residues over arginine, histidine, and lysine residues. 

Neutralizing Na+ ions were added to both systems to avoid the uniform background charge 

that would be applied automatically with PME electrostatics. Like the other ions in our 

osmostat, these counterions had transmutable identities.

Figure 7 shows that in our osmostated simulations of the macromolecules, the average salt 

concentration is on average less than the macroscopic salt concentration. This is particularly 

apparent with the DNA dodecamer, which has a mean concentration of 128.0 [121.5, 134.5] 

mM (where the quantity in brackets denotes the 95% confidence interval of the mean 

concentration). The salt concentration distribution in the DHFR and Src kinase systems are 

centered closer to the macroscopic concentration of 200 mM, with estimated means of 174.0 

[164.4, 180.4] and 176.3 [171.6, 189.5] mM, respectively. To compute these statistical 

estimates and confidence intervals, no data was discarded at the start of the simulation, and 

approximately statistically independent concentration samples were extracted using the 

pymbar timeseries module75.
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The larger number of water molecules in the Src kinase system is partly the reason why its 

mean concentration is closer to the macroscopic value than the DNA dodecamer. Bulk-like 

conditions anchor the sampled salt concentrations about the macroscopic concentration; the 

more water molecules and salt pairs there are, the smaller the effect a macromolecule has on 

the salt concentration relative to the whole system. Figure 8 inset highlights this 

phenomenon with the DNA dodecamer; the mean salt concentration moves closer to the 

macroscopic value when more water molecules are added to the simulation.

The accuracy of heuristic salination schemes is system dependent

On its own, the excluded volume of the macromolecule will reduce the number of salt pairs 

that can occupy the simulation volume compared to bulk saline. So, as we define the salt 

concentration as the number of salt pairs over the total volume of the system (equation 20), 

one would expect there to be a lower salt concentration than the macroscopic value. The 

preparation schemes that are typically used to add salt in fixed-salt simulations that account 

for this effect use either the volume of the solvent (equation 23), or the ratio of the number 

of salt pairs to water molecules (equation 24). As a result, these methods are closer to the 

mode of the concentration distributions in the osmostated simulations than the heuristic 

method that uses the total volume of the system (equation 22). The volume-based methods 

are sensitive to how equilibrated the volume is when salt is added, and, in Figure 7, the 

volume at the start of the production simulation was used to estimate the amount of salt that 

would be added with equations 22 and 23. The salt-water ratio method (equation 24) has no 

such volume dependence, which is partly why it is a better predictor for the salt 

concentration than the others.

The ionic strength exceeds the salt concentration for charged macromolecules

In addition to the distributions of salt concentrations, Figure 7 also shows the ionic strength 

of the saline buffer. While the ionic strength is used in analytical models to estimate the 

activities of ionic species83, the only discernible common feature of the ionic strength in our 

simulations is that it tends to be greater than the salt concentration, which is predominantly 

due to the presence of neutralizing counterions. The estimated mean ionic strength of the 

saline buffer in the macromolecular systems are 208.2 [198.2, 213.6] mM for DHFR, 189.0 

[179.5,196.4] mM for Src kinase, and 263.4 [256.6,269.8] for the DNA dodecamer. It is 

important to note that the calculated ionic strength can be much larger when the contribution 

of the macromolecule is included: the estimated ionic strengths for the whole of the DHFR, 

Src kinase, and DNA systems are 551.0 [541.0, 556.4] mM, 263.6 [253.8, 270.8] mM, and 

3241.6 [3227.3, 3244.7] mM respectively. These high values, particularly for the DNA 

system, is because the ionic strength is proportional to the square of the charged number of 

the ionic solute. It could be more informative to consider the macromolecule and the 

counterions that are bound to it as a single, aggregate macro-ion, such that the contribution 

to the ionic strength would be lessened83; however, as there is no clear boundary between 

bound and unbound ions (see Figure 8), this approach is conceptually difficult.

The osmostat accurately represents the local salt concentration around DNA

The aim of our osmostat is to replicate the local ion concentrations that would occur around 

biomolecules when embedded in large saline reservoirs. However, the use of periodic 
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simulation cells and the addition of neutralizing counterions constrains length scale at which 

charges are screened (the Debye length) to be less than or equal to the length scale of the 

periodic cell. An artificial constriction of the Debye length would be finite size effect that 

would limit the accuracy of the salt concentrations from osmostated simulations. Figure 8 

shows the total charge contained within ever increasing distances from the Drew-Dickerson 

DNA dodecamer for two simulation box sizes. The smallest box was constructed by 

solvating the DNA up to a minimum distance of 9 Å away from the DNA (4296 water 

molecules), whereas the larger box resulted from solvating up to a distance of 16 Å from the 

DNA (9276 water molecules). If the Debye length was significantly affected by the periodic 

cell size of the smallest simulation, there would be large discrepancies between the charge 

distributions around the DNA of the smallest box and the larger box. Figure 8 indicates that 

if such discrepancies exists, they are small, and are not found to be statistically significant in 

our analysis.

Shown first in Figure 7 (lower right), the osmostated simulation of the Drew-Dickerson 

DNA dodecamer experienced significantly lower NaCl concentrations than the applied 200 

mM macroscopic NaCl concentration. This difference highlights how the local ionic 

environment of a solute can be strikingly different from bulk saline. Increasing the amount 

of water in the simulation diminishes the relative effect that DNA has on perturbing the salt 

concentration distribution of the whole system. Figure 8 (inset), shows that increasing the 

number of water molecules in the system from 4296 to 9276 molecules partially masks the 

local salt concentration around the DNA, such that the total salt concentration over the 

whole system is closer to the macroscopic concentration of 200 mM.

The NCMC osmostat can efficiency of ion-biomolecule interactions

To compare the computational efficiency of NCMC ion sampling to that of fixed-salt MD 

simulations, the autocorrelation functions of cation-phosphate interactions were estimated 

from the DNA dodecamer simulations. Cation-phosphate interactions were recorded as 

every time a cation was within 5 Å of the phosphorous atoms in adenine nucleotides. This 

cutoff was chosen following the DNA convergence analysis of Ponomarev et al.25. The 

autocorrelation function of these interactions measures the probability that a cation that is 

initially within the distance cutoff will also be present after a given amount of time. As our 

osmostat uses NCMC to add and remove ions, one would expect the osmostat interaction 

autocorrelation function to decay significantly faster than that from the fixed salt simulations 

when only considering the molecular dynamics—Figure 9 shows that this is indeed the case.

When the simulation time from NCMC is not considered, the phosphate-cation interaction 

autocorrelation function from the osmostat simulations decays significantly faster than the 

fixed salt simulations (Figure 9). The corresponding integrated autocorrelation times for 

osmostated simulations and fixed-salt simulations are 0.11 [0.09, 0.13] ns and 0.29 [0.23, 

0.36] ns respectively. As each accepted NCMC move has propagated the configurations of 

the whole system, the faster decorrelation of DNA-ion interactions could be a result of these 

extra propagation steps, as opposed to the fact that ions are being inserted and deleted. As 

described in the methods, a salt insertion or deletion attempt occurs every 4 ps, and an 

NCMC attempt involves 20 ps of dynamics. The average acceptance probability in the DNA 
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simulations was calculated to be 11.9 [11.7, 12.2] %. Therefore, the osmostated simulations 

propagate the system 1.6[≈(0.119×20 ps + 4 ps)/4 ps] times as much dynamics than fixed 

salt simulations. Multiplying the osmostated integrated autocorrelation time by this factor 

results in a value that remains significantly less than the integrated autocorrelation time from 

the fixed salt simulations. Figure 9 right shows the osmostated autocorrelation function 

when the timescale has been multiplied by the effective NCMC sampling factor (1.6). 

Despite the application of this factor, the fixed-salt autocorrelation function can be seen to 

decay significantly slower than the stretched osmostated autocorrelation function. Thus, the 

increased sampling efficiency observed in the osmostated simulations cannot be explained 

by the extra dynamics sampled in the NCMC simulations. This implies that the random 

insertion and deletion, not the NCMC that was used to enhance the move efficiency, is 

responsible for the rapid decorrelation of ion interactions observed in the DNA osmostated 

simulations.

The total number of NCMC timesteps (including from rejected moves) can be used to 

account for the additional computational burden of the NCMC osmostat in the phosphate-

cation autocorrelation times. There is an additional 20 ps of dynamics for every insertion/

deletion attempt, irrespective of whether the proposal was accepted or not. As each 

attempted is preceded by 4 ps of equilibrium dynamics, our osmostated simulations have 6 

(= (20 ps + 4 ps)/4 ps) times as timestep evaluations than the fixed-salt simulations. 

Multiplying the mean integrated autocorrelation time from the osmostat simulations by this 

factor yields an effective autocorrelation of 0.65 [0.55, 0.75] ns. Although this estimate now 

exceeds the upper confidence interval of the fixed-salt integrated autocorrelation time (0.29 

[0.23, 0.36] ns), there is only approximately 0.1 ns difference between the lower and upper 

confidence intervals. Figure 9 also shows the osmostat phosphate-ion autocorrelation 

function when the all the NCMC propagation steps (including rejected moves) are accounted 

for. One can see that for below ~1 ns, the 95% confidence intervals of the autocorrelation 

functions overlap with those of fixed-salt autocorrelation function. These results imply the 

dynamic NaCl sampling achieved by our osmostat has a similar cost effectiveness—with 

regards to ion sampling—than fixed-salt simulations, with the additional benefit of sampling 

realistic salt concentrations.

Discussion

In this work, we have implemented an osmostat that dynamically samples the NaCl 

concentration in biomolecular simulations. The osmostat couples a simulation cell to a saline 

reservoir at a fixed macroscopic concentration and allows the salt concentration in the 

simulation to fluctuate about its equilibrium value. We have applied our osmostat to 

simulations of dihydrofolate reductase (DHFR), apo Src kinase, and the Drew-Dickerson B-

DNA dodecamer (CGCGAATTGCGC), and found that the mean salt concentration can 

differ significantly from the amount salt added by common molecular dynamics 

methodologies. In addition, we found that the salt concentration fluctuations were large, 

being of the same order of magnitude as the mean. These results show that the ionic 

composition around biomolecules can be highly variable and system dependent.
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The insertion and deletion of salt was greatly enhanced by nonequilibrium candidate Monte 

Carlo (NCMC), to the extent that the protocol used in our simulations was approximately 5 

× 1046 times more efficient than instantaneous attempts in TIP3P water. The Drew-

Dickerson B-DNA dodecamer is a palindromic sequence that facilitated a study of the 

convergence of ion distributions around the DNA. We found that, despite the additional 

computational expense of the NCMC osmostat, the sampling and computational efficiency 

of DNA:ion interactions remained comparable to fixed-salt simulations. However, it is 

important to note that made no effort to optimize the NCMC protocols beyond selecting an 

appropriate total switching time for NCMC moves—it is possible that further optimization 

of these protocols using recent techniques based on mapping geodesics in the 

thermodynamic metric tensor space84-88 can lead to increased efficiency.

Potential applications

While the dependence of enzyme-substrate activity on ionic strength is well documented, the 

impact of salt concentration on protein-ligand binding affinity is much less clear. Recently, 

Papaneophytou et al. performed a systematic analysis on the effect of buffer conditions on 

the in vitro affinity of three complexes15, finding salt concentration dependence to be system 

dependent and largest for complexes that formed hydrophilic interactions. Our osmostat 

provides the opportunity to rigorously study the impact of salt concentration on protein-

ligand binding affinities in silico. We are interested to know if similar trends to what 

Papaneophytou et al. observed can be reproduced in all-atom binding free energies 

calculations, and whether binding free energy estimates differ significantly between 

simulations carried out with and without an osmostat. Free energy calculations on complexes 

whose association is sensitive to the concentration of salt are likely to be most affected by 

the osmostat, given the large fluctuations of concentration and the deviation from the fixed-

salt values that occurred in our simulations (see Figure 7). The combination of self adjusted 

mixture sample (SAMS) and Bennett acceptance ratio (BAR) that we used to calibrate the 

chemical potential can also be used to estimate the difference between traditional and 

osmostated free energy calculations. If significant differences between binding free energy 

calculations in fixed-salt and osmostat simulations are observed, it is also possible to apply 

the same SAMS-BAR methodology to correct the free energy calculations that have been 

performed with fixed salt.

As our osmostat has been designed to reproduce realistic salt environments around 

biomolecules, it is well suited to study systems whose function are sensitive to the salt 

concentration, or biomolecules that are regulated by interactions with Na+ or Cl−. While our 

osmostat can efficiently sample ion binding to biomolecular surfaces, the sampling of deeply 

buried ion binding sites is likely to be no more than efficient than in typical molecular 

dynamics simulations due to the fact that our osmostat is implemented by swapping water 

with salt. To this end, the osmostat could be improved and generalized if position-biased 

insertions of fully-decoupled ghost molecules could be added to its sampling repertoire. An 

example of one such biasing scheme can be found in the biomolecular simulation package 

ProtoMS, where the grand canonical insertion and deletion of water are attempted in a pre-

defined region within proteins48,49. Previously, Song and Gunner studied the interplay 

between protein conformation, residue pKas, and ion binding affinity using a grand 
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canonical ion insertion scheme within the MCCE framework6. Their work provided 

structural insight into the often tight-coupling between ion and proton affinity as well as the 

pH sensitivity of ion binding, and highlights the power of specialized ion sampling schemes 

to rationalize and understand experimental measurements. The insertion of decoupled ghost 

molecules—while it would likely require more highly optimized alchemical protocols for 

insertion—would also permit generalizing the method to more complex salt or buffer 

molecules or other excipients.

Enhancing realism in molecular simulations

Because the pKa of protein residues are dependent on the ionic strength of the medium, a 

natural extension of the osmostat is to combine it with constant-pH simulations in explicit 

water. Previously, Chen and Roux coupled protonation state changes with the insertion and 

deletion of ions to maintain electrostatic neutrality33,34. The application of an osmostat to 

such transformations would allow for the macroscopic ion concentration—as well pH—to 

be rigorously maintained, and could be implemented in modular MCMC scheme that 

updates protonation states and ion identities in tandem.

This work only considers the concentration of NaCl, but both the formalism we introduce in 

the Theory section and the flexibility SaltSwap code-base can be readily extended to sample 

over biologically relevant salt mixtures by including additional monovalent species such as 

K+ and divalent species like Ca2+. More complex ions or buffer molecules, such as HCO3
−

would require a more significant extension to code (such as the insertion of ghost particles 

described earlier), and could be implemented by using a softcore alchemical NCMC 

pathway that converts the molecule between fully interacting and noninteracting states.

The combination of a multicomponent osmostat with a constant-pH methodology would 

allow for realistic physiological conditions to be better approximated in molecular 

simulations. While it is well appreciated that pathological tissue can be found with altered 

pH—tumor microenvironments can have low pH, while cancer cells can have elevated pH, 

for example89—pathologies can also disrupt healthy ion compositions5. The ability to 

reproduce specific ionic concentrations as well as pH would open the possibility of using 

molecular simulations to target compounds to specific microenvironments or achieve 

selectivity via salt-dependent environmental differences. Indeed, Spahn et al. recently used 

molecular simulations to develop an analgesic that selectively targets the μ-opioid receptors 

in damaged, low pH, tissues90.

Improving osmostat efficiency

We have demonstrated that our implementation of the NCMC osmostat was sufficient to 

sample equilibrium distributions of ions around biomolecules in practical simulation times. 

We have not yet extensively optimized the osmostat for computational or algorithmic 

efficiency beyond exploring NCMC protocol lengths (Figure 4 and Figure A5.3), such that 

there a number of ways that the computational efficiency could be further improved.

In our current implementation, which only proposes insertion/deletion of a single salt pair in 

each proposal, the correlation time for the instantaneous salt concentration increases with 
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increasing system size as the size of the equilibrium fluctuations also grow in terms of total 

numbers of ions (Figure 5). Inserting or deleting multiple ion pairs—likely using longer 

specialized NCMC protocols tuned to the number of ions being inserted or deleted—could 

help maintain efficiency. Adaptive MCMC proposals, currently in widespread use in the 

Bayesian inference community (e.g., PyMC91), could be used to automatically tune the 

number of ions proposed to be deleted or inserted based on the current concentration and the 

history of the sampler, provided care was taken to ensure the adaptation method maintained 

ergodicity and ensured the target density was properly sampled92. One of the earliest 

adaptive scheme was originally validated on unimodal distributions93, such that a discretized 

variant could be well suited to sampling the number of pairs.

Acceptance rates can also be increased by using proposals that do not simply select ions at 

random, but instead select ions that are more easily inserted/deleted based on some rapidly-

evaluated surrogate (such as their instantaneous Monte Carlo acceptance probabilities or the 

electrostatic potential on water and ion sites), provided this biased selection probability is 

accounted for in a modified Metropolis-Hastings acceptance criteria.

There is a great deal of potential to improve the efficiency of the NCMC protocol used for 

the insertion and deletion proposals. The current work uses a linear interpolation of the salt 

and water nonbonded parameters as the alchemical path and perturbations steps that are 

equally spaced with respect to the parameters, primarily because this is the simplest scheme 

to implement. The only optimization carried out here was tuning the total protocol length to 

be sufficiently long to achieve high acceptance rates but not so long that the overall 

efficiency would be diminished by further extending the protocol length (Figure 4). 

Optimized NCMC protocols can reduce protocol switching times required to achieve high 

acceptance rates, thereby increasing overall efficiency. The ability to quantify the 

thermodynamic length of the nonequilibrium protocol allows the problem of protocol 

optimization to be tackled rigorously. The thermodynamic length (an application of the 

Fisher-Rao metric to statistical mechanics94) is a natural, albeit abstract, measure of the 

distance traversed by a system during a thermodynamic driving process84.

Within this framework, optimal NCMC protocols are given by geodesics in a Riemannian 

metric tensor space86. The thermodynamic length of the NCMC protocol can be estimated in 

separate equilibrium simulations spaced along the alchemical path, or estimated directly 

from the protocol work values of the NCMC switching trajectories, including those from 

rejected proposals85. For optimizing a preselected alchemical path, spacing the perturbation 

steps to be equidistant with respect to the thermodynamic length can improve acceptance 

rates by reducing the total variance of the protocol work. As optimal paths are geodesics in 

thermodynamic space, the most efficient alchemical path for the insertion or deletion will 

likely be a nonlinear, rather than linear, interpolation of the water and ion nonbonded 

parameters. Previous efforts to optimize nonequilibrium paths have included directly solving 

for the geodesic87, sampling the protocol from an ensemble88, and by restricting the 

optimization to a family of functional forms95. The close relationship between 

thermodynamic length and the dissipation along the path also suggests that restricting the 

propagated dynamics to only the first few layers of the solvation shell around the transmuted 

molecules could also improve the NCMC protocol.

Ross et al. Page 28

J Phys Chem B. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

The philosophy of this work is that increasing the realism of biomolecular simulations will 

aid structural inference and improve the quantitative accuracy of predictions. We believe that 

the NCMC osmostat we have presented here will be a useful tool for probing the interactions 

of ions and biomolecules under more physiological conditions than considered in traditional 

molecular dynamics simulations. It is our hope that the application of the osmostat to 

protein-ligand binding free energy calculations and extending the method to more 

comprehensive ion compositions will improve its utility even further.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic illustrations of typical salt concentrations in mammalian environments and 
anions and cations being exchanged with a saline buffer in the region around a biomolecule.
Left: The ion compositions of intra- and intercellular mammalian environments are shown as 

millimolar equivalents (mM Eq), which is the ion concentration multiplied by the absolute 

charge of the ion. The primary contribution to the ionic-strength are monovalent ions (Na+, 

K+, Cl−), divalent cations (predominantly Mg2+), complex salt and buffer molecules, and 

charged proteins. In addition to the significant difference between the ionic composition of 

the cytoplasmic fluid and extracellular fluid, organelles can also have markedly different 

ionic concentrations to the cytoplasmic fluid1. Over large lengthscales, environments are 

approximately electrostatically neutral; electrostatic potentials across cell membranes are 

maintained by an imbalance of anions and cations that is minuscule relative to the total 

number ions2. Figure adapted from2 and3. Middle: In a very large system, where the number 

of water molecules and number of ions are fixed, significant fluctuations can occur in the 

ionic strength of the local environment of a biomolecule (in purple). The local environment 

is represented by a dashed line, within which the number of water molecules and ions 

fluctuate at equilibrium. Right: A simulation with an osmostat replicates the natural 

variations in ionic strength around a biomolecule that would occur if the system were 

embedded in an infinite saline reservoir at a fixed macroscopic salt concentration. Anions 

and cations (blue and orange spheres) are inserted and deleted (green stars) from the system 

using semigrand canonical Monte Carlo moves that exchange explicit water molecules for 

the ions in a manner that maintains total charge neutrality. The reservoir is completely 

defined by its thermodynamic parameters, which in this case include the difference in the 

chemical potential for two water molecules and NaCl, Δμ (= Δμ2·H2O–NaCl), pressure p, and 

temperature, T.
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Figure 2. Schematic illustration of the workflow used to calibrate and implement the osmostat.
(a) Self-adjusted mixture sampling (SAMS) simulations sample an entire range of salt pairs, 

NNaCl ∈ [0, NNaCl, max], in a sufficiently large box of water to model a saline reservoir. 

Nonequilibrium candidate Monte Carlo (NCMC) is used to achieve high acceptance rates 

during salt insertion/deletion attempts, in which an NaCl molecule is transformed into a pair 

of water molecules, or vice versa. (b) The Bennett acceptance ratio (BAR) estimator uses the 

work values from all NCMC proposals (including rejected proposals) to compute an optimal 

estimate of the (dimensionless) relative free energy, Δf(NNaCl) ≡ f(NNaCl + 1) − f(NNaCl), to 

add an additional NaCl salt pair to the box of saline as a function of the number of salt pairs 

already present, NNaCl. BAR allows f(NNaCl) to be estimated to a higher precision than the 

estimates from SAMS. (c) Once Δf(NNaCl) has been computed for the desired water/ion 

forcefield and simulation parameters governing the energy computation (such as long-range 

electrostatics treatment), the chemical potential Δμ that produces the desired macroscopic 

salt concentration c  is numerically computed using equation 19. (d) This same chemical 

potential Δμ is subsequently used as the thermodynamic parameter governing the osmostat 

to simulate a biomolecular system in equilibrium with an infinitely sized saline reservoir at 

the specified macroscopic salt concentration.
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Figure 3. Schematic illustration of the nonequilibrium candidate Monte Carlo (NCMC) 
alchemical protocol used to insert NaCl.
Two water molecules are chosen at random for transformation into Na+ (blue sphere) and Cl
− (orange sphere). Over a number of NCMC steps, the nonbonded parameters of each atom 

in the water molecules, namely the partial charges, q, Lennard-Jones energy well depths, ϵ, 

and Lennard-Jones separation parameters, σ, are transformed into the nonbonded parameters 

of the ions along a linear interpolation of the parameters. The hydrogen atoms and extra 

charge sites (if present) of the water model remain attached to the ions as non-interacting 

dummy atoms. The entire NCMC proposal is then accepted or rejected according to the 

probability given in equation 56. Note that osmostat NCMC moves are mixed with standard 

Langevin integration at a fixed timestep to obtain fully ergodic sampling. A full description 

of the Monte Carlo and NCMC procedure used here is provided in Appendix 3.
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Figure 4. Calibration of chemical potential Δμ for two different water models (TIP3P and 
TIP4P-Ew) and NCMC protocol optimization.
Top left, main: The relative free energy Δf(NNaCl)—estimated from the SAMS calibration 

simulations—to insert an Na+ and Cl− salt pair and remove two water molecules in boxes of 

TIP3P and TIP4P-Ew water as a function of the number of salt pairs NNaCl already present 

in the box (see equation 16). Top left, inset: The average volume V NNaCl
 of the saline box 

as a function of NNaCl, estimated from the SAMS calibration simulations. The TIP3P box 

contained a total of 887 molecules (including water and ions) and the TIP4P-Ew box 

contained 886 molecules. The relative free energies and 95% confidence intervals have been 

calculated using BAR and are smaller than the circular markers. Top right: Predicted 

relationship between the macroscopic salt concentration c  and chemical potential 

difference Δμ estimated with equation 19 for TIP3P and TIP4P-Ew (dark lines) compared to 

the average concentrations 〈c〉 estimated from equilibrium osmostat simulations of boxes of 
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water at specified chemical potentials (circles). There were 4085 and 4066 molecules in the 

boxes ofTIP3P and TIP4P-Ew water, respectively. Bootstrapping of BAR uncertainty 

estimates of f(NNaCl) and bootstrap uncertainties of V NNaCl
 were used to calculate 95% 

confidence intervals for the mean concentration curves—these fall inside the thick lines. 

Error bars on the average simulation concentrations show 95% confidence intervals, and 

have been estimated using bootstrap sampling of statistically independent subsamples of the 

simulation concentrations. For the osmostat simulations, equilibration times were 

automatically estimated and independent samples extracted using the timeseries module of 

pymbar 75. For these osmostat simulations, the shortest and largest estimated equilibration 

times were 0.2 ns and 26.9 ns respectively, with the largest equilibration time occurring for 

TIP3P simulation at the lowest Δμ—the staring salt concentration for this simulation was 

furthest from the equilibrium value. Bottom left: Average acceptance probability for salt 

insertion and deletion as a function of the NCMC protocol length. Simulations were run with 

a 200 mM osmostat in boxes of TIP3P (887 molecules) and TIP4P-Ew (886 molecules). The 

mean instantaneous MC acceptance probabilities for TIP3P and TIP4P-Ew are very small: 

3.0 × 10−51 [5.0 × 10−66, 9.0 × 10−51] and 1.0 × 10−46 [3.0 × 10−64, 4.0 × 10−46] 

respectively, (with 95% confidence intervals denoted in brackets). Bottom right: The 

efficiency (defined by equation 25) of the NCMC protocols relative to instantaneous 

insertion and deletion attempts in TIP3P for a 200 mM osmostat; all protocols are at least 

1045 times more efficient than instantaneous insertion and deletion. NCMC protocols of 

about 20 ps for TIP3P are optimal for our nonequilibrium procedure, though longer 

protocols are required to achieve similar efficiencies for TIP4P-Ew.
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Figure 5. Dynamic salt sampling for DHFR in TIP3P water at three macroscopic salt 
concentrations.
Left: Trajectories of the salt concentration in 30 ns simulations of DHFR in a boxes of 

TIP3P waters as a function of time for 100 mM, 150 mM, and 200 mM NaCl, along with 

distribution of equilibrium salt concentrations to right of the time-series plots. The 

distributions were estimated using a Gaussian smoothing kernel with bandwidth of 0.3 mM 

from all three simulation repeats at each macroscopic concentration. Before the insertion of 

NaCl, the simulation contained 7023 water molecules. Right: Normalized fluctuation 

autocorrelation functions and integrated autocorrelation times (τ) of salt concentrations for 

each simulation. Shaded regions and uncertainties on the autocorrelation time signify 95% 

confidence intervals calculated using bootstrap estimation from three independent 

simulations.
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Figure 6. Distribution of salt numbers and concentrations for TIP3P water boxes of varying size 
and macroscopic salt concentration
Top: Equilibrium distribution of salt numbers (NNaCl, left) and salt concentrations (c, right) 
as a function of the number of water molecules in the simulation. The applied macroscopic 

concentration was 150mM. blue As expected (see Appendix 2), at fixed macroscopic salt 

concentration, the magnitude of fluctuations in the number of salt pairs NNaCl grows with 

box size (left), whereas the magnitude in the concentration decreases with box size. The 

average salt concentration 〈c〉 remains fixed at the specified macroscopic concentration 

(right) showing that the calibrated chemical potential Δμ is invariant to box size provided the 

calibration box is selected to be sufficiently large to avoid finite-size effects. The small range 

of NNaCl in the 40 Å box results in a multimodal salt concentration distribution. Bottom: 
Equilibrium distribution of salt numbers (NNaCl, left) and salt concentrations (c, right) as a 

function of salt concentration for a water box containing 7128 waters.
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Figure 7. Equilibrium salt concentration distributions for various biomolecular systems 
simulated with a 200 mM osmostat.
Equilibrium salt concentration distributions (blue shaded area) are shown as a kernel density 

estimate of the probability density, along with the ionic strength of the solvent (light green 

shaded area with dotted lines). No samples of the salt concentration were discarded for these 

density estimates. For reference, the mean salt concentrations that would be achieved in 

three typical fixed-salt salination strategies are shown in transparent gray lines. The 

continuous line uses equation 22 and the total volume of first frame of the production 

simulation; the dashed line uses equation 23 and the volume of solvent at the start of the 

production simulation, and the dotted line uses equation 24 and the ratio of the number of 

salt pairs and water molecules. Illustrations of each system are also shown in the top right of 

each plot, with Na+ (purple) and Cl− (orange) densities from equilibrium 200 mM osmostat 

simulations shown around the three macromolecules. Isovalues for the each of 3D ion 

densities were chosen for visual clarity. Upper left: Box of TIP3P waters; Upper right: 
DHFR (dihydrofolate reductase) in TIP3P with isosurfaces containing 14.3% and 0.8% of 
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Na+ and Cl− densities, respectively; Lower left: apo Src kinase in TIP3P with isosurfaces 

containing 8.5% and 0.6% of the Na+ and Cl− densities, respectively; Lower right: Drew-

Dickerson DNA dodecamer in TIP3P with 8.9% of the Na+ density contained in the 

isosurface.
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Figure 8. Dependence of the charge screening length and salt concentration on simulation size 
for the Drew-Dickerson DNA dodecamer.
Main: The mean total charge within a minimum distance from the Drew-Dickerson DNA 

dodecamer for 200 mM NaCl osmostated simulations and 200 mM fixed salt fraction 

simulations. To compare the effect of solvent content on charge screening effects, the DNA 

dodecamer was solvated in water boxes of two different sizes. The smallest system had 

water added up to a distance no less than 9 Å away from the DNA dodecamer (adding 4296 

waters), whereas the larger was solvated up to a distance at least as large as 16 Å (adding 

9276 waters). As each simulation is electrostatically neutral, the total charge must decay to 

zero as the distance from the DNA dodecamer increases, but the rate at which this decay 

occurs provides insight into the lengthscales for which biomolecules accrete a neutralizing 

ion constellation. The charge distributions appear robust with respect to the size of the 

simulation cell, as all 95% confidence intervals (transparent colors) of the mean charge-

distance profiles overlap over all distances considered. The charge-distance profiles were 

estimated by counting the number of ions within fixed distances of the DNA dodecamer 
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every 1 ns and the confidence intervals were estimated by using boostrap sampling. Inset: 
Salt concentration probability densities estimated using kernel density estimation for 200 

mM osmostated simulations with different amounts of solvent. The simulation with the 

small solvent box (purple) recruits far fewer salt pairs from bulk on average (dotted black 

line denotes 200 mM), while the average salt concentration of the simulation with the larger 

solvent box (pink) is significantly less perturbed from bulk.
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Figure 9. Phosphate-cation normalized fluctuation autocorrelation functions for binary 
occupancies around a DNA palindrome.
The Drew-Dickerson DNA dodecamer (CGCGAATTGCGC) is a palindromic DNA 

sequence that has been traditionally been used as a demonstration of the slow convergence 

of ion distributions around the phosphate backbone of DNA. Phosphate-cation normalized 

fluctuation autocorrelation functions for binary occupancies in standard MD (thick green) 

and MD with dynamic ion sampling either neglecting the NCMC switching time (thick 

cyan), or the effective number of samples taken with accepted NCMC moves (dashed pink), 

or accounting for all NCMC MD steps whether the moves were accepted or not (dotted 

purple). The latter accounts for the total computational expense of our NCMC protocol. 

Shaded regions highlight 95% bootstrap confidence intervals, with bootstrap samples taken 

from all the adenine groups from the three simulations.
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