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Abstract

Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time 

domain measurement of the impulse response (the free induction decay) consisted of sampling the 

signal at a series of discrete intervals. For compatibility with the discrete Fourier transform, the 

intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval 

sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect 

time dimension, extension to multidimensional experiments employed the same sampling 

techniques used in one dimension, similarly subject to the Nyquist condition and suitable for 

processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral 

estimates from short data records were already well understood, and despite techniques such as 

linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by 

practical constraints on measuring time. The advent of methods of spectrum analysis capable 

processing nonuniformly sampled data has lead to an explosion in the development of novel 

sampling strategies that avoid the limits on resolution and measurement time imposed by uniform 

sampling. In this chapter we review the fundamentals of uniform and nonuniform sampling 

methods in one and multidimensional NMR.

Introduction

With the advent of Fourier Transform NMR introduced by Richard Ernst and Weston 

Anderson in 1966, the measurement of NMR spectra has principally involved the 

measurement of the free induction decay (FID) following the application of a broad-band RF 

pulse to the sample[1]. The FID is measured at regular intervals, and the spectrum obtained 

by computing the discrete Fourier transform (DFT). The accuracy of the spectrum obtained 

by this approach depends critically on how the data is sampled. In the application of this 

approach to multidimensional NMR experiments, the constraint of uniform sampling 

interval imposed by the DFT incurs substantial sampling burdens. The advent of non-Fourier 
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methods of spectrum analysis that do not require data sampled at uniform intervals have 

enabled the development of a host of nonuniform sampling strategies. In this chapter we 

review the fundamentals of sampling, both uniform and nonuniform in one and multiple 

dimensions. We then survey recently-developed nonuniform sampling methods that have 

been applied to multidimensional NMR, and consider prospects for new developments. 

While non-Fourier methods of spectrum analysis are indispensible for nonuniformly 

sampled data, they have been reviewed elsewhere.

Fundamentals: Sampling in One Dimension

Implicit in the definition of the complex discrete Fourier transform (DFT)

f n = 1
N ∑

k = 0

N − 1
dke−2πikn/N (1)

is the periodicity of the spectrum, which is apparent by setting k to N in eq. (1). Thus the 

component at frequency nΔt/N is equivalent to (and indistinguishable from) the components 

at (n/NΔt) +/− (m/Δt), m= 1, 2, … This periodicity makes it possible to consider the DFT 

spectrum as containing all positive frequencies with zero frequency at one edge, or 

containing both positive and negative frequencies with zero frequency at (actually near) the 

middle. The equivalence of frequencies in the DFT spectrum that differ by a multiple of 1/Δt 

is a manifestation of the Nyquist sampling theorem, which states that in order to 

unambiguously determine the frequency of an oscillating signal from a set of uniformly 

spaced samples, the sampling interval must be at least 1/Δt. (For additional details of the 

DFT and its application in NMR, see [2].)

In the description of the DFT given by eq. (1) is that the data samples and DFT spectrum are 

both complex. Implicit in this description is that two orthogonal components of the signal 

are sampled at the same time, referred to as simultaneous quadrature detection. Most modern 

NMR spectrometers are capable of simultaneous quadrature detection, but early instruments 

had a single detector, so only a single component of the signal could be sampled at a time. 

With so-called single-phase detection, the sign of the frequency is indeterminate. 

Consequently the carrier frequency must be placed at one edge of the spectral region and the 

data must be sampled at 1/2Δt to unambiguously determine the frequencies of signals 

spanning a bandwidth 1/Δt.

The detection of two orthogonal components permits the sign ambiguity to be resolved 

while sampling at a rate of 1/Δt. This approach, called phase sensitive or quadrature 

detection, enables the carrier to be placed at the center of the spectrum. Simultaneous 

quadrature detection is commonly achieved by mixing a detected sinusoidal signal 

oscillating at a reference frequency and the same signal phase shifted by 90° degrees, or a 

cosinusoidal reference. The output of the phase-sensitive detector is two signals, differing in 

phase by 90°, containing frequency components of the original signal oscillating at the sum 

and difference of the reference frequency with the original frequencies. The sum frequencies 
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are typically filtered out using a low-pass filter. While quadrature detection enables the sign 

of frequencies to be determined unambiguously, while sampling at 1/dT, it requires just as 

many data samples as single-phase detection since it samples the signal twice at each 

sampled interval, while single-phase detection samples one at each sampled interval

Oversampling

The Nyquist theorem places a lower bound on the sampling rate, but what about sampling 

faster? It turns out sampling faster than the reciprocal of the spectral width, called 

oversampling, can provide some benefits. One is that the oversampling increases the 

dynamic range, the ratio between the largest and smallest (nonzero) signals that can be 

detected[3; 4]. Analog-to-digital (A/D) converters employed in most NMR spectrometers 

represent the converted signal with fixed binary precision, e.g. 14 or 16 bits. A 16-bit A/D 

converter can represent signed integers between −32768 and +32767. Oversampling by a 

factor of n effectively increases the dynamic range by sqrt(n). Another benefit of 

oversampling is that it prevents certain sources of noise that are NOT band-limited to the 

same extent as the systematic (NMR) signals from being aliased into the spectral window.

How long should one sample?

For signals that are stationary, that is their behavior doesn’t change with time, the longer you 

sample the better the sensitivity and accuracy. For normally-distributed random noise, the 

signal-to-noise (S/N) ratio improves with the square root of the number of samples. NMR 

signals are rarely stationary, however, and the signal envelope typically decays exponentially 

in time. For decaying signals, there invariably comes a time when collecting additional 

samples is counter-productive, because the amplitude of the signal has diminished below the 

amplitude of the noise, and additional sampling only serves to reduce S/N. The time 1.3xR2, 

where R2 is the decay rate of the signal, is the point of diminishing returns, beyond which 

additional data collection results in reduced sensitivity[5]. It makes sense to sample at least 

this long in order to optimize the sensitivity per unit time of an experiment. But limiting 

sampling to 1.3xR2 results in a compromise. That’s because the ability to distinguish signals 

that have similar frequencies increases the longer one samples. Intuitively this makes sense 

because the longer two signals with different frequencies evolve, the greater the difference in 

their values at a specific time. Thus resolution, the ability to distinguish closely-spaced 

frequency components, is largely related to the longest time sample.

Sampling in Multiple Dimensions

While the FTNMR experiment of Ernst and Anderson was the seminal development behind 

all of modern NMR spectroscopy, it wasn’t until 1971 that Jean Jeener proposed a strategy 

for parametric sampling of a virtual or indirect time dimension that formed the basis for 

modern multidimensional NMR[6], including applications to magnetic resonance imaging 

(MRI). In the simplest realization, an indirect time dimension can be defined as the time 

between two RF pulses applied in an NMR experiment. The FID is recorded subsequent to 

the second pulse, and because it evolves in real time its evolution is said to occur in the 

acquisition dimension. A given experiment can only be conducted using a single value of the 

time interval between pulses, but the indirect time dimension can be explored by repeating 
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the experiment using different values of the time delay. When the values of the time delay 

are systematically varied using a fixed sampling interval, the resulting spectrum as a 

function of the time interval can be computed using the DFT along the columns of the two-

dimensional data matrix, with rows corresponding to samples in the acquisition dimension 

and columns the indirect dimension. Generalization of the Jeener principle to an arbitrary 

number of dimensions is straightforward, limited only by the imagination of the 

spectroscopist and the ability of the spin system to maintain coherence over an increasingly 

lengthy sequence of RF pulses and indirect evolution times.

Quadrature detection in multiple dimensions

Left ambiguous in the discussion above of multidimensional NMR experiments is the 

problem of frequency sign discrimination in the indirect dimensions. Because the indirect 

dimensions are sampled parametrically, i.e. each indirect evolution time is sampled via a 

separate experiment, the possibility of simultaneous quadrature detection is not available. 

Quadrature detection in the indirect dimension of a two-dimensional experiment nonetheless 

can be accomplished by using two experiments for each indirect evolution time to determine 

two orthogonal responses. This approach was first described by States, Haberkorn, and 

Ruben, and is frequently referred to as the States method[7]. Alternatively, oversampling 

could be used by sampling at twice the Nyquist frequency while rotating the detector phase 

through 0°, 90°, 180°, and 270°, an approach called time-proportional phase incrementation 

(TPPI). A hybrid approach is referred to as States-TPPI. Processing of States-TPPI sampling 

is performed using a complex DFT, just as for States sampling, while TPPI employs a real-

only DFT.

Sampling limited regime

An implication of the Jeener strategy for multidimensional experiments is that the length of 

time required to conduct a multidimensional experiment is directly proportion to the total 

number of indirect time samples (times two for each indirect dimension if States or States-

TPPI sampling is used). In experiments that permit the spin system to return close to 

equilibrium by waiting on the order of T1 before performing another experiment, sampling 

along the acquisition dimension effectively incurs no time cost. Sampling to the Rovnyak 

limit (1.3x T2*) in the indirect dimensions places a substantial burden on data collection, 

even for experiments on proteins with relatively short relaxation times. Thus a three 

dimensional experiment for a 20 kDa protein at 14 Tesla (600 MHz for 1H) exploring 13C 

and 15N frequencies in the indirect dimensions would require 2.6 days in order to sample to 

1.3xT2* in both indirect dimensions. A comparable four-dimensional experiment with two 
13C (aliphatic and carbonyl) and one 15N indirect dimensions would require 137 days. As a 

practical matter, multidimensional NMR experiments rarely exceed a week, as 

superconducting magnets typically require cryogen refill on a weekly basis. Thus 

multidimensional experiments rarely achieve the full potential of the resolution afforded by 

superconducting magnets. The problem becomes more acute a very high magnetic fields. 

The time required for data collection in a multidimensional experiment to fixed maximum 

evolution times in the indirect dimensions increases with the increase in magnetic field 

raised to the power of the number of indirect dimensions. The same four-dimensional 

protein NMR experiment performed at 21.2 T (900 MHz for 1H), sampled to 1.3xT2*, 
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would require about 320 days. NUS approaches have made it possible to conduct high 

resolution 4D experiments that would otherwise be impractical (Mobli et al.)

While methods of spectrum analysis capable of super-resolution exist, that is, methods that 

can achieve resolution greater than 1/tmax, the most common of these, linear prediction (LP) 

extrapolation, has substantial drawbacks. LP extrapolation is used to extrapolate signals 

beyond the measured interval. While this can dramatically suppress truncation artifacts 

associated with zero-filling as well as improve resolution, because LP extrapolation 

implicitly assumes exponential decay it can lead to subtle frequency bias when the signal 

decay is not perfectly exponential[8]. This bias can have detrimental consequences for 

applications that require the determination of small frequency differences, such as 

determination of residual dipolar couplings (RDCs).

Non-Fourier methods of spectrum analysis

The DFT strictly speaking, requires data sampled at uniform intervals. Thus the 

development of nonuniform sampling methods to avoid the sampling limited regime in 

multidimensional NMR closely parallels the development of non-Fourier methods of 

spectrum analysis capable of treating data that have been collected at nonuniform intervals. 

One of the first methods to be employed in NMR in conjunction with nonuniform sampling 

is maximum entropy (MaxEnt) reconstruction[9; 10]. MaxEnt reconstruction seeks that 

spectrum containing the least amount of information that is still consistent with the 

measured data. It makes no assumption regarding the nature of the signal, and thus is 

suitable for application to signals characterized by non-exponential decay (non-Lorentzian 

line shapes). A host of similar methods employ functionals other than the entropy to 

regularize the spectrum, for example the l1-norm[11; 12]. Another class of methods that can 

reconstruct frequency spectra from data that are sampled nonuniformly assume a model for 

the data. Bayesian[13] and maximum likelihood[14; 15] (MLM) methods both assume the 

signal can be described as a sum of exponentially decaying sinusoids, and can be used either 

to reconstruct a frequency spectrum or to determine a list of frequency components and their 

characteristics; for this reason these methods are often described as being parametric. A 

method that is intermediate between the parametric methods that assume a model for the 

signal and regularization methods that do not, is a method called multidimensional 

decomposition[16] (MDD). It assumes that frequency components in multidimensional 

spectra can be decomposed into a vector product of one-dimensional lineshapes. The 

approach is related to principle component analysis, and has been utilized in the field of 

analytical chemistry and chemometrics (where it is called PARAFAC[17]); a unique 

decomposition exists only for spectra that have three or more dimensions.

“DFT” of NUS data and point-spread function

From the definition of the DFT, it is clear that the Fourier sum can be modified by evaluating 

the summand at arbitrary frequencies, rather than uniformly spaced frequencies. Kozminksi 

and colleagues have proposed utilizing this approach for computing frequency spectra of 

NUS data[18], however it strictly speaking no longer is properly called a Fourier 

transformation of the NUS data. Consider the special case where the summand in eq. 1 is 
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evaluated for a subset of the normal regularly-spaced time intervals. An important 

characteristic of the DFT is the orthogonality of the basis functions (the complex 

exponentials),

∑
n = 0

N − 1
e−2πi(k − k′)n/N = 0, k ≠ k′ (2)

When the summation is carried out over a subset of the time intervals, that is. Some of the 

values of n indicated by the sum in eq. 2 are left out, the complex exponentials are no longer 

orthogonal. An implication is that frequency components in the signal interfere with one 

another when the sampling is nonuniform.

Consider now NUS data sampled at the same subset of uniformly spaced times, but 

supplemented by the value zero for those times not sampled. Clearly the DFT can be applied 

to this augmented data, but it is not the same as “applying the DFT to NUS data”. It is a 

subtle distinction, but important one. What is frequently referred to as the DFT spectrum of 

NUS data is not the spectrum of the NUS data, but the spectrum of the zero-augmented data. 

The differences between the DFT of the zero-augmented data and the spectrum of the signal 

are mainly the result of the choice of sampled times, and are called sampling artifacts. While 

the DFT of zero-augmented data is not the spectrum we seek, it can sometimes be a useful 

approximation if the sampled times are chosen carefully to diminish the sampling artifacts.

The application of the DFT to NUS data has parallels in the problem of numerical 

quadrature on an irregular mesh, or evaluating an integral on a set of irregularly-spaced 

points[19]. The accuracy of the integral estimated from discrete samples is typically 

improved by proper judicious choice of the sample points, or pivots, and by weighting the 

value of the function being integrated at each of the pivots. For pivots (sampling schedules) 

that can be described analytically, the weights correspond to the Jacobian for the 

transformation between coordinate systems (as for the polar FT, discussed below). For 

sampling schemes that cannot be described analytically, for example those given with a 

random distribution, the Voronoi area (in two dimensions; volume in three dimensions, etc.) 

provides a useful set of weights[20]. The Voronoi area is the area occupied by the set of 

points around each pivot that are closer to that pivot than to any other pivot in the NUS set.

Under certain conditions the relationship between the DFT of the zero-augmented NUS data 

and the true spectrum has a particularly simple form. If the sampling is restricted to the 

uniformly-spaced Nyquist grid (also referred to as the Cartesian sampling grid) and there 

exists a real-valued sampling function with the property that when it multiplies a uniformly 

sampled data vector, element-wise, the result is the zero-augmented NUS data vector, then 

the DFT of the zero-augmented NUS data is the convolution of the DFT spectrum of the 

uniformly sampled data with the DFT of the sampling function. The sampling function has 

the value 1 for times that are sampled and zero for times that are not sampled. The DFT of 

the sampling function is variously called the point-spread function (PSF), the impulse 

response, or the sampling spectrum.
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The PSF provides insight into the locations and magnitudes of sampling artifacts that result 

from NUS, and it can have an arbitrary number of dimensions, corresponding to the number 

of dimensions in which NUS is applied. The PSF typically consists of a main central 

component at zero frequency, with smaller non-zero frequency components. Because the 

PSF enters in to the DFT of the zero-augmented spectrum through convolution, each non-

zero frequency component of the PSF will give rise to a sampling artifact for each 

component in the signal spectrum, with positions relative to the signal components that are 

the same as the relationship of the satellite peaks in the PSF. The amplitudes of the sampling 

artifacts will be proportional to the amplitude of the signal component and the relative height 

of the satellite peaks in the PSF. Thus the largest sampling artifacts will arise from the 

largest-amplitude components of the signal spectrum. The effective dynamic range (ratio 

between the magnitude of the largest and smallest signal component that can be 

unambiguously identified) of the DFT spectrum of the zero-augmented data can be directly 

estimated from the PSF for a sampling scheme as the ratio between the amplitude of the 

largest non-zero frequency component to the amplitude of the zero-frequency component.

Using NUS approaches to reconstruct a fully-dimensional spectrum invariably introduces 

sampling artifacts that are characteristic of the NUS strategy employed. Characteristic ridge 

artifacts emanating from peaks in BPR spectra that were initially believed to be artifacts of 

back projection were instead demonstrated to be characteristic of radial sampling by using 

MaxEnt reconstruction to process radially-sampled data: the MaxEnt spectrum contained 

essentially identical ridge artifacts. While spectral reconstruction methods attempt to 

diminish sampling artifacts in the reconstructed spectrum, their ability to suppress sampling 

artifacts is limited by the presence of noise. It is thus important to have an understanding of 

the nature of sampling artifacts that is independent of the method used to reconstruct the 

spectrum. Provided that sampling is restricted to a uniform Cartesian grid (arbitrary 

sampling schemes can be treated using successively fine grids) and one can define a real-

valued sampling function that has the value one when a sample is collected and zero when it 

is not collected, sampling artifacts arise from the convolution of the impulse response or 

point-spread function (PSF) with the true spectrum. The PSF is simply given by the DFT of 

the sampling function. PSFs typically exhibit a major peak at zero frequency, with satellite 

peaks of varying intensity at nonzero frequencies. Using the DFT to process NUS data, the 

resulting spectrum corresponds exactly to the convolution of the PSF with the true spectrum 

(Fig. 1). Methods such as MaxEnt reconstruction suppress the magnitude of sampling 

artifacts, but they appear at the same locations as found in the DFT spectrum (Fig 2).

In addition to helping to specify the frequencies of sampling artifacts (which will depend on 

the frequencies contained signal being sampled as well as the sampling scheme), the PSF 

helps to specify the magnitudes of the sampling artifacts. Since they arise though 

convolution of the PSF with the spectrum of the signal, the magnitudes of the sampling 

artifacts will be related to the magnitudes of the satellite (non zero frequency peaks) in the 

PSF. In the DFT spectrum of the zero-augmented NUS data, the height of largest sampling 

artifacts will be determined by the height of the satellites in the PSF relative to the height of 

the central (zero-frequency) component, so that the PSF effectively determines the dynamic 

range (ratio between the strongest and weakest signal components that can be determined 

unambiguously) for which sampling artifacts will be small than the weakest signal 
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component. While MaxEnt or other methods of spectrum analysis that attempt to deconvolve 

the PSF can improve the dynamic range, sampling schemes with PSFs containing smaller 

satellite peaks (relative to the central component) will give rise to smaller sampling artifacts.

An implication of restricting the sampling function to being a real vector is that if quadrature 

detection is employed in the indirect dimensions, e.g. States-Haberkorn-Ruben, then all 

quadrature components must be sampled for a given set of indirect evolution times. If they 

are not all sampled, the sampling function is complex, and the relationship between the DFT 

of the NUS data, the DFT of the sampling function, and the true spectrum is no longer a 

simple convolution.

Nonuniform sampling: A brief history

The Accordion

It was recognized soon after the development of FT NMR that one way to avoid the 

sampling limited regime in multidimensional is to avoid collecting the entire Nyquist grid in 

the indirect time dimensions. The principal challenge to this idea was that methods for 

computing the multidimensional spectrum from nonuniformly sampled data were not widely 

available. In 1981 Bodenhausen and Ernst introduced a means of avoiding the sampling 

constraints associated with uniform parametric sampling of two indirect dimensions of 

three-dimensional experiments, while also avoiding the need to compute a mutldimensional 

spectrum from an incomplete data matrix, by coupling the two indirect evolution times [21]. 

By incrementing the evolution times in concert, sampling occurs along a radial vector in t1-

t2, with a slope given by the ratio of the increments applied along each dimension. This 

effectively creates an aggregate evolution time t = t1 + α*t2 that is sampled uniformly, and 

thus the DFT can be applied to determine the frequency spectrum. According to the 

projection-cross-section theorem, this spectrum is the projection of the full t1-t2 spectrum 

onto a vector with angle α in the f1-f2 plane. Bodenhausen and Ernst referred to this as an 

“accordion” experiment. Although they did not propose reconstruction of the full f1-f2 

spectrum from multiple projections, they did discuss the use of multiple projections for 

characterizing the corresponding f1-f2spectrum, and thus the accordion experiment is the 

precursor to more recent radial sampling methods that are discussed below. Because the 

coupling of evolution times effectively combines time (and the corresponding frequency) 

dimensions, the accordion experiment is an example of a reduce dimensionality (RD) 

experiment.

Random sampling

The 3D accordion experiment has much lower sampling requirements because it avoids 

sampling the Cartesian grid of (t1,t2) values that must be sampled in order to utilize the DFT 

to compute the spectrum along both t1 and t2. A more general approach than the accordion 

experiment is to eschew regular sampling altogether. A consequence of this approach is that 

one cannot utilize the DFT to compute the spectrum, so some alternative method capable of 

utilizing nonuniformly sampled data must be employed. In seminal work, Laue and 

collaborators introduced the use of maximum entropy (MaxEnt) reconstruction to compute 

the frequency spectrum from nonuniformly sampled data[22].
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In analogy with the concept of matched filter apodization for maximizing signal-to-noise 

ratio (S/N), Barna et al. utilized random sampling that was exponential biased to short times, 

so that the sampling distribution matched the decay of the signal envelope. The concept of 

biased random sampling was further generalized to J-modulated experiments (cosine-

modulated exponential decay) and constant-time experiments (no decay) by Schmieder et al. 

While the combination of biased random sampling and MaxEnt reconstruction provided 

high resolution spectra with dramatic reductions in experiment time compared to 

conventional uniform sampling because it employs samples collected at long evolution times 

without the need to sample all uniformly-spaced shorter times, the approach was not widely 

adopted, no doubt because neither MaxEnt reconstruction nor nonuniform sampling (NUS) 

was highly intuitive. Nevertheless a small cadre of investigators continued to explore novel 

NUS schemes in conjunction with MaxEnt reconstruction throughout the 1990’s.

RD, redux

The first RD experiment was the accordion experiment. In the original accordion experiment 

one indirect dimension represented chemical shift evolution while the second indirect 

dimension encoded a mixing time designed to measure chemical exchange. Although this 

experiment established the foundation for a host of subsequent RD experiments, most of 

which deal exclusively with chemical shift evolution, its utility for measuring relaxation 

rates and other applications is still being developed [23; 24]. Even though it was clear from 

the initial description of the accordion experiment that the method was applicable to any 3D 

experiment, it was nearly a decade before it was applied to a 3D experiment where both 

indirect dimensions represented chemical shifts [25; 26]. This application emerged as a 

consequence of newly-developed methods for isotopic labelling of proteins that enabled 

multinuclear, multidimensional experiments, with reasonable sensitivity, for sequential 

resonance assignment and structure determination of proteins. The acquisition of two 

coupled frequency dimensions, however, introduces some difficulties. The main problem is 

that the two dimensions being co-evolved are mixed and must be deconvoluted before any 

useful information can be extracted. Since the evolution linearly combines the two 

dimensions, their frequencies are “mixed” in the spectrum in a linear manner as well. The 

number of resonances observed in the lower dimensional spectrum depends on the number 

of linked dimensions. Thus, if two dimensions are linked, the RD spectrum will contain two 

peaks per resonance of the higher dimensional spectrum, whereas if three dimensions are 

coupled each of the above two peaks will be split by the second frequency resulting in four 

resonances and so on. The position of the peaks in the spectrum can be used to extract the 

true frequency of the resonances in the spectrum. The problem obviously becomes more 

complicated as the number of resonances is increased. If overlap can be avoided, however, it 

is possible to drastically reduce experimental time. Among the weaknesses of this approach 

are sensitivity losses, associated with both peak splitting and relaxation losses, which 

effectively limit the number of dimensions that can be coupled for a given molecular size.

An extension of RD was presented by Kim and Szyperski [27] in 2003 in which they used a 

“G-matrix” to appropriately combine the hypercomplex data of arbitrary dimensionality to 

produce “basic spectra”. These spectra are much less complicated than the RD projections 

and the known relationship between the various patterns can be used to extract true chemical 
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shifts (via nonlinear least-squares fitting). Combination of the hypercomplex planes enables 

recovery of some sensitivity that is otherwise lost in RD approaches due to peak splitting. A 

disadvantage is that the data is not combined in a higher dimensional spectrum so that the 

sensitivity is related to that of each of the lower dimensional projections rather than the 

entire dataset. GFT-NMR was developed contemporaneously with advances in sensitivity 

delivered by higher magnetic fields and cryogenically cooled probes, providing sufficient 

sensitivity to make GFT experiments feasible for the first time, albeit using very 

concentrated protein samples (the GFT method was demonstrated on a 2 mM sample of 

ubiquitin).

Broader appreciation for NUS was stimulated by a series of papers by Kupce and Freeman, 

in which they utilized back-projection reconstruction (BPR) from a series of experiments 

employing radial sampling in t1/t2 to reconstruct the fully-dimensional f1/f2/f3 spectrum[28; 

29; 30; 31; 32]. While the data sampling was equivalent to that employed by the accordion, 

GFT, and RD experiments, the use of back-projection (by analogy to computerized 

tomography) demonstrated the connection with the 3D spectrum conventionally obtained by 

uniform sampling and DFT. Despite some drawbacks to radial sampling (discussed below), 

the BPR approach was important because it provided a useful heuristic for more general 

NUS approaches.

The principle underlying radial sampling in 3D experiments generalizes to higher 

dimensions. For example, coupling of three indirect evolution times results in a projection of 

three dimensions onto a vector with one angle specifying the orientation with respect to the 

t1/t2 plane, and one specifying the angle with respect to the t2/t3 plane. Two very similar 

approaches for circumventing sampling limitations associated with uniform sampling in 

higher-dimensional experiments have been introduced that to achieve high resolution while 

employing prior knowledge to design sampling angles. Chemical shift distributions expected 

for proteins can be used to determine a set of radial sampling angles (projection angles) that 

will optimally resolve potential overlap. Identification of frequencies in the projected 

spectra, together with knowledge of the projection angles, can be used to determine the 

(unprojected) frequencies in the orthogonal coordinate system of the fully-dimensional 

experiment.

In addition to GFT and BPR, a host of other methods can be applied to radially-sampled 

data; like BPR, these methods reconstruct the fully-dimensional spectrum. Zhou and 

colleagues employed radial FT[28] to process data collected along concentric rings in t1/

t2[29]. Maximum likelihood methods that fit a model (typically consisting of a sum of 

exponentially-damped sinusoids) can also be used to analyze radially sampled data, as can 

regularization methods that do not model the signal (e.g. l1-norm, MaxEnt).

The NUS explosion

Since the turn of the 21st century, there has been a great deal of effort to develop novel NUS 

strategies for multidimensional NMR. A recurring theme has been the importance of 

irregularity or randomness. Approaches involving various analytic sampling schemes 

(triangular, concentric rings, spirals), as well as novel random distributions (Poisson gap) 
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have been described. These will be described after first discussing some characteristics of 

NUS that all these approaches share.

General aspects of nonuniform sampling

We will contrast different approaches to NUS that have been applied to multidimensional 

NMR in a moment, but we first discuss some characteristics of NUS that are general and 

apply to all NUS approaches.

On-grid vs. off-grid sampling

NUS schemes are sometimes characterized as on-grid or off-grid. Schemes that sample a 

subset of the evolution times normally sampled using uniform sampling at the Nyquist rate 

(or faster) are call on-grid. In schemes such as radial, spiral or concentric ring, the samples 

do not fall on the same Cartesian grid. As pointed out above, however, one can define a 

Cartesian grid with spacing determined by the precision with which evolution times are 

specified. Alternatively, “off grid” sampling schemes can be approximated by “aliasing” 

(this time in the computer graphics sense) the evolution times onto a Nyquist grid, without 

greatly impacting the sampling artifacts (Fig. 3).

Bandwidth and aliasing

Bretthorst was the first to carefully consider the implications of NUS for bandwidth and 

aliasing[30; 31]; his important contribution was published in a rather obscure proceedings 

volume, but more recently a version has been published in a more widely-accessible 

publication. Among the major points Bretthorst raises is that sampling artifacts 

accompanying NUS can be viewed as aliases. This is demonstrated in Figure 4 below, where 

the spectrum obtained using uniform but deliberate undersampling is contrasted with the 

DFT spectrum for NUS data of the same signal.

Sampling artifacts are spectral aliases

However as Bretthorst has pointed out, when the sampling (evolution) times are specified 

with finite precision (as they are in all commercial instruments), one can always define a 

uniform grid on which all the samples will fall. This grid spacing will generally be finer than 

the Nyquist grid. The largest grid spacing sufficient to fully encompass an arbitrary NUS 

scheme is given by the greatest common divisor (GCD) of the sampled times, which is at 

least as large as the precision and may be larger depending on the sampling scheme. As the 

samples are not uniform, the Nyquist sampling theorem does not apply, so strictly speaking 

there is not a bandwidth limiting the frequencies that can be unambiguously determined.

NUS artifacts are a form of aliasing, which can be appreciated by considering uniform 

undersampling as a form of NUS. Fig. 4 illustrates a one-dimensional spectrum computed by 

applying the DFT to a synthetic signal sampled at the Nyquist interval (panel A) and twice 

the Nyquist interval (panel B). The signal sampled at twice the Nyquist interval has one alias 

of the true signal. Panel C depicts the DFT spectrum of a signal sampled nonuniformly. Note 

the strongest sampling artifact occurs precisely at the location of the undersampling artifact. 
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Higher order sampling artifacts can be ascribed to aliases due to undersampling by greater 

degrees.

Since sampling artifacts are aliases, then they can be diminished by increasing the effective 

bandwidth. One way to do this is to decrease the GCD. As shown above the GCD need not 

correspond to the spacing of the underlying grid. Introducing irregularity is one way to 

decrease the GCD to the size of the grid, and this helps to explain the usefulness of 

randomness for reducing artifacts from nonuniform sampling schemes. The ability of 

randomness to reduce NUS aliasing artifacts is depicted in Fig. 5. The left panels depict a 

two-dimensional sampling scheme (top) in which the data is undersampled by a factor of 

four in each dimension, leading to multiple instances of each true peak in the DFT spectrum 

(bottom). The middle and right panels illustrate the effect of increasing amounts of 

randomness incorporated into the sampling scheme on the spectral aliases. The 

incorporation of randomness can suppress artifacts in otherwise regular sampling schemes, 

such as radial sampling, as shown in Fig. 6.

Another way to increase the effective bandwidth is to sample from an oversampled grid. We 

saw earlier that oversampling can benefit uniform sampling approaches by increasing the 

dynamic range. When employed with NUS, oversampling has the effect of shifting sampling 

artifacts out of the original spectral window. This effect is shown in Fig. 7.

A menagerie of sampling schemes—While the efficacy of a particular sampling 

scheme depends on a host of factors, including the nature of the signal being samples, the 

PSF provides a useful first-order tool for comparing sampling schedules. Figure 8 illustrates 

examples of several common two-dimensional NUS schemes, together with PSFs computed 

for varying levels of coverage (30%, 10%, and 5%) of the underlying uniform grid. Some of 

the schemes are off-grid schemes, but they are approximated here by mapping onto a 

uniform grid. As noted previously, on-grid approximation of off-grid sampling schemes 

coupled with reconstruction methods such as MaxEnt gives results that are very similar of 

off-grid sampling. The PSF gives an indication of the distribution and magnitude of 

sampling artifacts for a given sampling scheme; schemes with PSFs that have very low 

values other than the central component give rise to weaker artifacts. Of course the PSF 

alone does not tell the whole story, because it does not address relative sensitivity. For 

example, while the random schedule has a PSF with very weak side-lobes, and gives rise to 

fewer artifacts than a radial sampling scheme for the same level of coverage, it has lower 

sensitivity for exponentially decaying sinusoids than a radial scheme (which concentrates 

more samples at short evolution times where the signal is strongest). Thus more than one 

metric is needed to assess the relative performance of different sampling schemes.

Random and biased random sampling

Exponentially-biased random sampling was the first general NUS approach applied to 

multidimensional NMR[22]. By analogy with matched filter apodization (which was first 

applied in NMR by Ernst, and maximizes the S/N of the uniformly-sampled DFT spectrum), 

Laue and colleagues reasoned that tailoring NUS so that the signal is sampled more 

frequently at short times, where the signal is strong, and less frequently when the signal is 
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weak, would similarly improve S/N. They applied an exponential bias to match the decay 

rate of the signal envelope; we refer to this as envelope-matched sampling (EMS). 

Generalizations of the approach to sine-modulated signals, where the signal is small at the 

beginning, and constant-time experiments, where the signal envelope does not decay, were 

described by Schmieder et al.[32; 33]

Triangular

Somewhat analogous to the rationale behind exponentially-biased sampling, Delsuc and 

colleagues employed triangular sampling in two time dimensions to capture the strongest 

part of a two-dimensional signal[34]. The approach is easily generalized to arbitrary 

dimension.

Radial

Radial sampling results when the incrementation of evolution times is coupled, and is the 

approach employed by GFT, RD, and back-project reconstruction methods. Radial sampling 

has also found application in MRI. When a fully-dimensional spectrum is computed the 

from a set of radial samples (e.g. BPR, radial FT, MaxEnt), the radial sampling vectors are 

typically chosen to somewhat uniformly span the orientations from 0° to 90°. When the 

fully-dimensional spectrum is not reconstructed, but instead the individual one-dimensional 

spectra (corresponding to projected cross sections through the fully-dimensional spectrum) 

are analyzed separately, the sampling angles are typically determined using a knowledge-

based approach (HIFI, APSY[35; 36]). Prior knowledge about chemical shift distributions in 

proteins is employed to sequentially select radial vectors to minimize the likelihood of 

overlap in the projected cross section.

The successes of methods like RD, GFT, and BPR notwithstanding, when the aim is to 

reconstruct the fully-dimensional spectrum, radial sampling is a rather poor approach 

compared to less regular sampling schemes. When the aim is not to reconstruct the fully 

dimensional spectrum, but to analyze projections separately, a complete separate and 

dedicated infrastructure for the analysis is required (which comprises much of the effort 

behind GFT, HIFI, and APSY approaches). The advantage of reconstructing the fully 

dimensional spectrum is the data is isomorphic with spectra computed using conventional 

uniform sampling methods, and the abundance of graphical and analysis tools that exist for 

multidimensional NMR data can be used to visualize and quantify the spectra. This includes 

XEASY[37], NMRDraw[38], NMRviewJ[39], Sparky[40], and a host of automated scripts 

for “strip” plots and sequential assignment of proteins. Fig. 9 compares the use of radial 

sampling with exponentially biased random sampling in two indirect dimensions, using 

MaxEnt reconstruction to compute the 3D spectrum. The top panels depict contour plots 

using 1, 2, and 3 radial sampling vectors (from left to right). Below each panel are shown 

contour plots for spectra computed using biased random sampling using the same number of 

samples as the radial sampling example given directly above. The accuracy of the 

reconstruction of the 3D spectrum from a set of sparse samples is dramatically better when 

biased random sampling is used instead of radial sampling.
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Concentric rings—Coggins and Zhou introduced the concept of concentric ring sampling 

(CRS), and showed that radial sampling is a special case of CRS[29]. They showed that the 

DFT could be adapted to CRS (and radial sampling) by changing to polar coordinates from 

Cartesian coordinates (essentially by introducing the Jacobian for the coordinate 

transformation as weighting factors). Optimized CRS that linearly increases the number of 

samples in a ring as the radius increases and incorporates randomness were shown to 

provide resolution comparable to uniform sampling for the same measurement time, but 

with fewer sampling artifacts than radial sampling. They also showed that the discrete polar 

FT is equivalent to the result from weighted back projection reconstruction.

Spiral—Spiral sampling is used mainly in MRI, where it permits reduced exploration of k-

space (and thus a reduction of scan time).

Beat-matched sampling—The concept of matching the sampling density to the signal 

envelope, in order to sample most frequently when the signal is strong and less frequently 

when it is weak, can be extended to match finer details of the signal. For example, a signal 

containing two strong frequency components will exhibit beats in the time domain signal 

separated by the reciprocal of the frequency difference between the components. As the 

signal becomes more complex, with more frequency components, more beats will occur 

corresponding to frequency differences between the various components. If one knows a 
priori the expected frequencies of the signal components, one can predict the location of the 

beats (and nulls, or zero-crossings), and tailor sampling accordingly. The procedure is 

entirely analogous to EMS, except that the sampling density is matched to the fine detail of 

predicted time-domain data, not just the signal envelope. We refer to this approach as beat-

matched sampling (BMS). Possible applications where the frequencies are known a priori 

include relaxation experiments or multidimensional experiments in which scout scans or 

complementary experiments provide knowledge of the frequencies. In practice, BMS 

sampling schedules appear similar to EMS (e.g. exponentially biased) schedules, however 

they tend not to be as robust, as small difference in noise level or small frequency shifts can 

have pronounced effects on the location of beats or nulls in the signal.

Poisson gap sampling—Hyberts and Wagner [41] noted empirically that the distribution 

of the gaps in a sampling schedule are also important. Long gaps near the beginning or end 

of a sample schedule were particularly detrimental. They adapted an idea employed in 

computer graphics, Poisson gap sampling, to generate sampling schedules that avoid long 

gaps while ensuring the samples are randomly distributed. Similar distributions can be 

generated using other approaches, for example quasi-random (e.g. Sobolev) sequences. In 

addition to being robust, Poisson gap sampling schedules show less variation with the 

random deviate than other sampling schemes. A potential weakness of Poisson gap 

sampling, however, is that the minimum distance between samples must not be too small, 

otherwise aliasing can become significant.

Burst sampling—In burst or burst-mode sampling, short high-rate bursts are separated by 

stretches with no sampling. It effectively minimizes the number of large gaps, while 

ensuring that samples are spaced at the minimal spacing when sub-sampling from a grid. 

Maciejewski et al. Page 14

Top Curr Chem. Author manuscript; available in PMC 2018 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Burst sampling has found application in commercial spectrum analyzers and 

communications gear. In contrast to Poisson gap sampling, burst sampling ensures that most 

samples are separated by the grid spacing to suppress aliasing[42].

Nonuniform averaging

The concept underlying EMS or BMS can be applied the amount of signal averaging 

performed, in contexts where a significant number of transients are averaged to obtain 

sufficient sensitivity. In this sensitivity-limited regime, varying the number of transients in 

proportion to the signal envelope could be utilized in conjunction with uniform or 

nonuniform sampling in the time domain. An early application of this idea in NMR 

employed uniform sampling with nonuniform averaging, and computed the 

multidimensional DFT spectrum after first normalizing each FID by dividing by the number 

of transients summed at each indirect evolution time[43]. Although the results of this 

approach are qualitatively reasonable provided that the S/N is not too high, a flaw in the 

approach is that noise will not be properly weighted. A solution is to employ a method 

where appropriate statistical weights can be applied to each FID, e.g. MaxEnt or maximum 

likelihood reconstruction.

Random phase detection

We’ve seen how NUS artifacts are a manifestation of aliasing, and how randomization can 

mitigate the extent of aliasing. There is another context in which aliasing appears in NMR, 

and that is determining the sign of frequency components (i.e. the direction of rotation of the 

magnetization). An approach widely used in NMR to resolve this ambiguity is to 

simultaneously detect two orthogonal phases (simultaneous quadrature detection). When 

simultaneous quadrature detection is not feasible, for example in the indirect dimensions of 

a multidimensional experiment, oversampling by a factor of two together with placing the 

detector reference frequency outside the spectral window spanned by the signal can resolve 

the ambiguity (TPPI). Alternatively, two orthogonal phases can be detected sequentially 

(sequential quadrature detection). The total number of samples required to resolve the sign 

ambiguity is the same whether quadrature detection or oversampling is employed. Single-

phase detection using uniform sampling with random phase (random phase detection, RPD) 

is able to resolve the frequency sign ambiguity without oversampling, as shown in Fig. 9. 

This results in a factor of two reduction in the number of samples required, compared to 

quadrature or TPPI detection methods, for each indirect dimension of a multidimensional 

experiment. For experiments not employing quadrature or TPPI detection, it provides a 

factor of two increase in resolution for each dimension.

Optimal sampling?

Any sampling scheme, whether uniform or nonuniform, can be characterized by its effective 

bandwidth, dynamic range, resolution, sensitivity, and number of samples. Some of these 

metrics are closely related, and it is not possible to optimize all of them simultaneously. For 

example, minimizing the total number of samples (and thus the experiment time) invariably 

increases the magnitude of sampling artifacts. Furthermore, because a sampling scheme that 

is optimal for one signal will not necessarily be optimal for a signal containing frequency 
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components with different characteristics. Thus the design of efficient sampling schemes 

involves tradeoffs. Simply put, no single NUS scheme will be best suited for all experiments.

Concluding Remarks

The use of nonuniform sampling in all its guises is transforming the practice of 

multidimensional NMR, most importantly by lifting the sampling limited obstacle to 

obtaining the potential resolution in indirect dimensions afforded by ultra high-field 

magnets. Nonuniform sampling is also beginning to have tremendous impact in magnetic 

resonance imaging, where even small reductions in the time required to collect an image can 

have tremendous clinical impact. For all of the successes using NUS, our understanding of 

how to design optimal sampling schemes remains incomplete. A major limitation is that we 

lack a comprehensive theory able to predict the performance of a given NUS scheme a 

priori. This in turn is related to the absence of a consensus on performance metrics, i.e., 

measures of spectral quality. Ask any three NMR spectroscopists to quantify the quality of a 

spectrum and you are likely to get three different answers. Further advances in NUS will be 

enabled by the development of robust, shared metrics. An additional hurdle has been the 

absence of a common set of test or reference data, which is necessary for critical comparison 

of competing approaches. Once shared metrics and reference data are established, we 

anticipate rapid additional improvements in the design and application of NUS to 

multidimensional NMR spectroscopy.
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Fig. 1. 
The DFT of a decaying sinusoid (A, B) and a sampling function (C, D) and their 

multiplication in the time domain (E) resulting in their convolution in the frequency domain 

(F). The DFT of the sampling function (F) is the PSF.
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Fig. 2. 
(A) nuDFT vs. (B) MaxEnt reconstruction applied to the same data. The insert in B shows a 

10-fold expansion of the baseline.
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Fig. 3. 
(A) Radial sampling (left) on-grid and (right) off-grid. Dots represent the Nyquist grid, 

circles represent sampled data points. The solid lines indicate the angle of the radial vector 

(projection axis). (B) Reconstruction of radially sampled data; off-grid sampled data 

reconstructed using PR (left) and on-grid sampling reconstructed using MaxEnt (right). The 

insets depict the sampling scheme.
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Fig. 4. 
Examples of aliasing using uniform sampling. Panels A and B depict the DFT spectrum 

using uniform sampling for a single synthetic sinusoid; (A) at the Nyquist rate, (B) at one-

half the Nyquist rate. Panels C and D depict the nuDFT (DFT in which samples not 

measured are set to zero) for the same synthetic signal using nonuniform sampling from the 

Nyquist grid. In (C) an alias appears at the frequency expected using deliberate 

undersampling by a factor of 2, but with a height slightly less than the true (unaliased) peak. 

In (D) the alias is greatly diminished, a result of the greater number of samples in the NUS 

set spaced at the Nyquist interval.
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Fig. 5. 
MaxEnt spectra for synthetic two-dimensional data consisting of five exponentially decaying 

sinusoids plus noise. The left-most panels depict deliberate undersampling selecting every 

fourth point along both dimensions. The center and right panels depict blurred 

undersampling, RMS 0.625 and 1.25, respectively. White contour levels are plotted at 

multiples of 1.4 starting with 3% of the height of the highest peak.
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Fig. 6. 
1H/13C plane (15N chemical shift 121.96 ppm) from the HNCO spectrum of Ubiquitin, using 

data collected at 9.4 T (400 MHz for 1H) on a Varian Inova instrument. Spectra were 

computed using MaxEnt reconstruction and radial sampling using 5 projections with 

different amounts of random “blurring” of the sampling schedule (RMS zero (none), 0.625 

and 1.25, left to right). Top: sampling schedules. Bottom: MaxEnt spectra. Contour levels 

are chosen as in Fig. 5.
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Fig. 7. 
Effect of oversampling. The top panel shows the two peaks and their associated sampling 

artifacts and the middle and lower panels show the same peaks using 4X and 8X SW. The 

sampling artifacts are shifted to extreme frequencies at the cost of line broadening.
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Fig. 8. 
A menagerie of sampling schemes. The first column depicts examples of two-dimension 

sampling schemes that have been employed in NMR, for 30% coverage of a 128 × 128 

uniform grid (i.e. XXX samples out of 16384). Successive columns depict the PSF for 30%, 

10%, and 5% coverage. The PSFs are normalized to the value of the central component, and 

the color coding is depicted on the far right. Sampling schedules depicted include (c) circulr 

shell, (cr) randomized circular, (r) radial, (Poisson) Poisson gap, (rand) random, (EMS) 

envelope-matched, (BMS) beat-matched, (burst) bursty, and (triangle) triangular.
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Fig. 9. 
HNCO spectra of ubiquitin. Top panels show the addition of 0°, 90°, and 30° projections of 

the two jointly sampled indirect dimensions at a proton chemical shift of 8.14 ppm, 

reconstructed using back projection reconstruction. Each projection contains 52 complex 

points, thus the total number of complex points sampled, from left to right is 52, 104, and 

156. The lower panel shows MaxEnt reconstruction using the same number of complex data 

points, distributed randomly along the nitrogen dimension (constant time) and with a 

exponentially decreasing sampling density decay rate corresponding to 15 Hz in the carbon 

dimension. A 1D trace at the position of the weakest peak present in the spectrum is shown 

at the top of each spectrum (indicated by a dashed line). The insets depict the sampling 

scheme.
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Fig. 10. 
Two-dimensional f1/f2 cross-sections from four-dimensional N,C-NOESY data for the DH1 

domain of Kalirin. One dimensional cross sections parallel to the f1 axis at the f2 frequencies 

indicated by the colored lines are shown above each panel. Panel A is the real/real 

component of the two dimensional DFT spectrum using quadrature detection in all 

dimensions. Panel B is the DFT spectrum obtained using only the real/real/real component 

from the three indirect time dimensions of the time domain data. Panel C is the maximum 

entropy spectrum obtained using random phase detection. Panels B and C employ 1/8th the 

number of samples used in panel A.

Maciejewski et al. Page 29

Top Curr Chem. Author manuscript; available in PMC 2018 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Fundamentals: Sampling in One Dimension
	Oversampling
	How long should one sample?

	Sampling in Multiple Dimensions
	Quadrature detection in multiple dimensions
	Sampling limited regime

	Non-Fourier methods of spectrum analysis
	“DFT” of NUS data and point-spread function

	Nonuniform sampling: A brief history
	The Accordion
	Random sampling
	RD, redux
	The NUS explosion

	General aspects of nonuniform sampling
	On-grid vs. off-grid sampling
	Bandwidth and aliasing
	Sampling artifacts are spectral aliases
	A menagerie of sampling schemes

	Random and biased random sampling
	Triangular
	Radial
	Concentric rings
	Spiral
	Beat-matched sampling
	Poisson gap sampling
	Burst sampling

	Nonuniform averaging
	Random phase detection
	Optimal sampling?

	Concluding Remarks
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10

