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Abstract
Metformin is currently considered as a promising anticancer agent in addition to its anti-diabetic effect. To better individual-
ize metformin therapy and explore novel molecular mechanisms in cancer treatment, we conducted a pharmacogenomic
study using 266 lymphoblastoid cell lines (LCLs). Metformin cytotoxicity assay was performed using the MTS assay. Genome-
wide association (GWA) analyses were performed in LCLs using 1.3 million SNPs, 485k DNA methylation probes, 54k mRNA
expression probe sets, and metformin cytotoxicity (IC50s). Top candidate genes were functionally validated using siRNA
screening, followed by MTS assay in breast cancer cell lines. Further study of one top candidate, STUB1, was performed to elu-
cidate the mechanisms by which STUB1 might contribute to metformin action. GWA analyses in LCLs identified 198 mRNA
expression probe sets, 12 SNP loci, and 5 DNA methylation loci associated with metformin IC50 with P-values<10�4 or<10�5.
Integrated SNP/methylation loci-expression-IC50 analyses found 3 SNP loci or 5 DNA methylation loci associated with met-
formin IC50 through trans-regulation of expression of 11 or 26 genes with P-value<10�4. Functional validation of top 61 can-
didate genes in 4 IPA networks indicated down regulation of 14 genes significantly altered metformin sensitivity in two breast
cancer cell lines. Mechanistic studies revealed that the E3 ubiquitin ligase, STUB1, could influence metformin response by
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facilitating proteasome-mediated degradation of cyclin A. GWAS using a genomic data-enriched LCL model system, together
with functional and mechanistic studies using cancer cell lines, help us to identify novel genetic and epigenetic biomarkers
involved in metformin anticancer response.

Introduction
Metformin is a widely used antidiabetic drug with very low inci-
dence of side effect. In the last decade, many in vitro, in vivo, and
retrospective epidemiological studies have suggested metfor-
min could be a highly promising chemopreventive and chemo-
therapeutic agent for many types of cancer, particularly in
cancer patients with type 2 diabetes (T2D) (1–5). It might be re-
lated to the risk factors shared between T2D and cancer (6).
Therefore, there are many ongoing clinical trials to assess met-
formin’s anticancer effect at antidiabetic therapeutic doses (4).
There are two well-known mechanisms related to the antican-
cer action of metformin: one is the indirect inhibition of the
PI3K-mTOR signalling pathway through the reduction of insulin
level; the other is the direct inhibition of the mitochondrial re-
spiratory complex I, which could cause energetic stress via
LKB1/AMPK dependent and/or independent pathway (7,8).
In addition, metformin could also cause cell cycle arrest and
promote apoptosis (9,10). However, the therapeutic effect of
metformin in cancer remains unclear (11,12) and there are
no pharmacogenomic biomarkers for selecting responsive
patients.

Most pharmacogenomic (PGx) studies of metformin were
performed in T2D patients with glycemic response (HbA1c level)
as a response endpoint. Considerable inter-individual variabil-
ity exists with glycemic response, and one-third of T2D patients
fail metformin treatment (13,14). A genome-wide complex trait
analysis (GCTA) estimated that the heritability for glycemic re-
sponse to metformin was 20–34%, which might involve many
individual variants with minor effects (14). Further genome-
wide association (GWA) analysis identified one SNP, rs11212617,
located in the ATM gene that was associated with glycemic re-
sponse (15). This association has been replicated in several ad-
ditional European populations (16). The variable glycemic
response might be partially due to the considerable variation in
plasma metformin drug level. One study reported that the
mean metformin concentrations range from 0.4 to 1.3 mg/l after
1000 mg twice daily (13). Many pharmacogenetic studies on
metformin pharmacokinetic (PK) pathway genes provide sub-
stantial evidence that genetic variations in organic cation trans-
porters (OCT1-3) encoded by SLC22 family genes (SLC22A1-3)
and multidrug and toxin extrusion proteins (MATE1-2) encoded
by SLC47 family genes (SLC47A1-2) are associated with metfor-
min anti-diabetic response (17–25). Recently, Goswami et al re-
ported that genetic polymorphisms in transcription factors
(such as SP1) that regulated expression of these transporters
were also associated with metformin PK and HbA1c change (13).
Moreover, genetic variations in pharmacodynamic (PD) pathway
genes have also been found to be associated with metformin re-
sponse such as LKB1 and AMPK (26). However, metformin is not
FDA approved as an anticancer agent. As a result, there are very
few clinical studies available to investigate the pharmacoge-
nomics of metformin as an anticancer agent. One study of 44
patients with castration-resistant prostate cancer (CRPC) identi-
fied that the SNP rs622342 in OCT1was associated with reduced
metformin-related toxicity and an increased risk of tumour pro-
gression (27). In addition to germline genetic variation, somatic
mutations in cancer cells have also been reported to be related

to metformin sensitivity such as genetic mutations in mito-
chondrial respiratory complex I and LKB1/AMPK deficiency
caused by genetic mutations in these genes (28,29).

Here we took advantage of an in vitro EBV-transformed lym-
phoblastoid cell line model (LCL), ‘Human Variation Panel’, to
investigate metformin anticancer response by exploring addi-
tional new molecular mechanisms and identifying novel germ-
line genetic and epigenetic biomarkers involved in metformin
response. The LCL system contains 287 cell lines with enriched
multi-omics data including 1.3 million genotyped and 5.4 mil-
lion imputed SNPs, 54K mRNA expression probe sets, and
485,577 DNA methylation probes. We have previously used this
system for many other PGx biomarker discovery studies as well
as for functional studies of clinical GWAS signals (30–32). In this
study, we first performed metformin cytotoxicity assay and cal-
culated IC50 as a metformin response phenotype. GWA analy-
ses were then performed using SNP vs IC50, expression vs IC50,
and methylation vs IC50, respectively. Since SNP and methyla-
tion might influence metformin cytotoxicity through the regula-
tion of gene expression, integrated SNP-expression-IC50 and
methylation-expression-IC50 analyses were also performed.
After ingenuity pathway analysis (IPA) of the top 65 candidate
genes identified through the integrated analysis, 61 genes in 4
IPA networks were selected for functional validation in breast
cancer cell lines using siRNA knockdown followed by MTS as-
say. We found knockdown of 25 genes altered metformin sensi-
tivity in MDA-MB 231 and 14 were replicated in Hs578T cells.
Furthermore, one of the top candidates, STUB1, an E3 ubiquitin
ligase that is involved in the proteasome dependent degrada-
tion of many proteins (33), was found to influence metformin
sensitivity through its function as an E3 ubiquitin ligase for cy-
clin A.

Results
Genome-wide association studies (GWAS) using LCL

Metformin cytotoxicity
Metformin cytotoxicity studies were performed to determine
the range of variation in metformin response among all
266 LCLs. IC50 was calculated to represent metformin cytot
oxicity. The range of metformin IC50s among all 266 LCLs was
0.440–46.289 mmol/l, and the median value was 2.319 mmol/l.
There was no significant difference in metformin IC50s between
genders (P-value¼ 0.566) or among races (P-value¼ 0.484)
(Supplementary Material, Fig. S1).

GWA analysis with expression vs. IC50 values
To identify genes whose expression levels might be associated
with metformin response, correlation analysis was performed
using 54K gene expression probe sets and metformin IC50 val-
ues. The association analysis identified that 198 probe sets rep-
resenting 171 unique annotated genes were correlated with
metformin IC50 with P value< 10�4 and q value< 0.02. The top
two probe sets representing genes RPL5 and FIBP remained sig-
nificant after Bonferroni correction (Supplementary Material,
Table S1, Fig. 1A). With regard to all known membrane
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Figure 1. Metformin genome-wide association analyses with (A) mRNA expression/(B) SNP/(C) DNA methylation in the LCLs. The y-axis represents the –log10 (P-value)

for the association of individual expression array probe set/SNP/DNA methylation probe. All of the data are plotted on the x-axis based on the chromosomal locations

of their genes, SNPs or DNA methylation probes.
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transporters involved in metformin pharmacokinetics (7,34),
the expression levels were low in the LCLs (Supplementary
Material, Table S2). Further analysis of all possible SLC and ABC
transporters showed that the expression of SLC38A10 and
SLC25A36 were associated with metformin IC50 with P val-
ue< 10�4 (Supplementary Material, Table S1).

GWA analysis with SNP vs. IC50 values
To identify SNPs associated with metformin response, GWA
analysis was performed using metformin IC50 values and 1.3
million SNPs. As shown in Figure 1B and Supplementary
Material, Table S3, 18 SNPs were found to be associated with
metformin IC50 with P-value< 10�5 and 1772 SNPs with
P-value< 10�3. The SNP with the lowest P-value of 1.01� 10�6

(r¼ -0.300, MAF¼ 0.209) was the rs7368844 SNP located on chro-
mosome 2. Another five adjacent SNPs were also found to be as-
sociated with metformin IC50 with P-value< 10�5 (Fig. 1B,
Supplementary Material, Table S6). Linkage disequilibrium (LD)
analysis of these 6 SNPs in each of the 3 ethnic groups showed
that all the SNPs with MAF>0.05 were in strong LD in CA and
HCA (D’� 0.962, r2�0.737), while in a slightly less significant LD
in AA (D’� 0.835, r2�0.230) (Supplementary Material, Table S4).
Further imputation analysis was performed in the region of
200 kb up-/downstream of the most significant SNP, rs7368844
using 1000 genome as a reference. Two adjacent imputed SNPs
(rs2950163 and rs7559267) were more significant than the geno-
typed SNP rs7368844 (P-value¼ 2.49� 10�7 and 9.38� 10�7, re-
spectively, (Supplementary Material, Table S5). According to the
UCSC database, there were two long noncoding RNAs
(LINC01105, LOC400940) and one miRNA (MIR7158) located in
this SNP locus region on chromosome 2 (200 kb up-/downstream
of the most significant SNP, rs7368844). The expression of these
two non-coding RNAs in our LCLs was not available. We looked
at the GTEX and found that LINC01105 and MIR7158 were not
expressed in EBV-transformed lymphocyte and no information
was available for LOC400940. Therefore, we could not determine
the cis-eQTL relationships for these SNPs. Moreover, the trans-
eQTL analysis was conducted using all 54k mRNA expression
probe sets, and none of the expression probe sets was found to
be associated with the most significant 6 observed SNPs on
chromosome 2 with P-value< 10�4 (Supplementary Material,
Table S7).

Integrated analysis with SNP, mRNA and IC50 values
Since SNPs might affect metformin response through the influ-
ence on gene expression level, similarly like a previous study
(31), we performed integrated SNP Locus-mRNA-IC50 analysis.
We focused on 83 SNPs from 12 SNP loci and 198 top mRNA ex-
pression probe sets that were associated with metformin IC50
with P-value<10�3 or<10�4, respectively (Supplementary
Material, Table S1, Supplementary Material, Table S6,
Supplementary Material, Fig. S2A). Each SNP locus was defined
as a 50 kb region containing at least 1 SNP with P-value< 10�5

and 1 SNP with P-value< 10�3. Seven SNPs located in three SNP
loci were found to be associated with the mRNA expression of
11 genes with P-value< 10�4, and these 11 gene expression
levels were also associated with metformin IC50 with
P-value< 10�4 (Supplementary Material, Table S7). All 7 SNPs
were trans-correlated with the expression of 11 genes. Five
SNPs in strong linkage disequilibrium (LD) with each other
(r2>0.9) located on chromosome 16 were tran-associated with 6
out of these 11 gene expression (P-value< 10�4), including

genes, THAP7, BAG1, STARD3, and SH3BGRL3, etc
(Supplementary Material, Table S7).

Imputation analysis of 200 kb up/downstream of the SNP
(rs4889609) that were most significantly associated with met-
formin IC50 values in this chromosome 16 SNP locus identified
additional SNPs. There were 70 SNPs including genotyped
and imputed SNPs associated with metformin IC50 with
P-value< 10�2 in this region. None of the imputed SNPs was
more significantly associated with metformin IC50 values than
the observed SNP, rs4889609 (Supplementary Material, Table S8).
SNP rs4889609 was located at approximately 18 kb upstream of
STX4 gene, and ENCODE data suggested that it might lie in an
enhancer element. The association analysis in LCLs showed a
trend of association of this rs4889609 SNP with the expression of
STX4 gene (P-value¼ 0.107), which was also positively correlated
with the expression of STARD3 and SH3BGRL3 genes (P¼ 2.
95�10�6 and 2.04� 10�3), respectively. The other three SNPs
(rs35468353, rs11862744, rs17839567) in this chromosome 16 SNP
locus, in strong LD with the SNP rs4889609, were found to be
trans-associated with the expression of STARD3 and SH3BGRL3
genes with P-value< 10�4, respectively (Supplementary
Material, Table S7). These three SNPs were located at approx-
imately 5–6.5 kb downstream of STX4 gene, and also showed
a trend of association with the expression of STX4 gene
(P-value< 0.10). The expression of STARD3 and SH3BGRL3 genes
were negatively correlated with metformin IC50 with
P-value< 10�4, respectively (Supplementary Material, Table S7).

Integrated analysis with DNA methylation, mRNA and IC50 values
DNA methylation array data, including 485,577 methylation
probes, were obtained for all the LCLs by the Infinium
HumanMethylation450 BeadChip. Quality control (QC) was per-
formed for all of these probes prior to conducting statistical
analysis. Specifically, we removed 39,790 probes either located
at/near SNP or not annotated as ‘cg’ probes, and 990 probes with
a call rate< 0.98. Therefore, 444,797 probes were used in the
genome-wide association analysis and 210 DNA methylation
probes were found to be associated with metformin IC50 with P
value< 10�4 (Fig. 1C, Supplementary Material, Table S9). The top
two probes, cg11072570 and cg05390473, were associated with
metformin IC50 with P-value of 4.00� 10�8 and 1.10� 10�7 re-
spectively, and remained significant after Bonferroni correction
(Fig. 1C, Supplementary Material, Table S9).

Since SNP might affect DNA methylation status and in turn,
gene expression level, we looked at the top 210 DNA methyla-
tion probes (P-value<10�4) and the top 1772 SNPs
(P-value<10�3), that were associated with metformin IC50 re-
spectively, and we found that none of the SNPs were located in
the region of the DNA methylation probes (Supplementary
Material, Table S3 and S9). This was likely due to the removal of
36659 methylation probes located at/near 38688 SNPs during
our QC process for methylation probes. To make sure that we
did not miss any SNPs that might be functional, we specifically
examined the top 1772 SNPs and found 3 SNPs (rs11126017,
rs12763379, and rs7934876) were in the region of DNA methyla-
tion probes were associated with metformin IC50 with
P-value<10�3. In addition, we identified additional 2266 SNPs
that were strongly correlated with these top 1772 SNPs with
r2>0.9. Among these 2266 SNPs, two SNPs (rs2274245 and
rs4809373) were also in the region of DNA methylation probes.
Since we removed any methylation probes harbouring or near
an SNP due to previous finding suggesting that the detected
DNA methylation level could be affected by SNPs in the region
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of methylation probes (35), the cis SNP-methylation relationship
for these five SNPs could not be determined . We further con-
ducted the integrated correlation analysis of these five SNPs
with all 54k mRNA expression probe sets and metformin IC50 in
LCLs. SNP rs12763379 in intron 3 of the PYROXD2 gene was
trans-correlated with expression of GIMAP2 gene with P-value
of 1.96� 10�5, which was also associated with metformin IC50
with P-value of 3.22� 10�3. SNP rs12763379 was also found to be
positively cis-correlated with expression of PYROXD2 gene in
multiple tissues (including breast tissue) from GTEX data, al-
though no significant correlation was found in our LCLs and
GTEX EBV-transformed lymphocyte, which might be related to
the low expression of PYROXD2 gene in these cells.

Next we focused on the integrated methylation-mRNA-IC50
analysis (Supplementary Material, Fig S2B). Like the SNP analy-
sis, we focused on the DNA methylation loci (Supplementary
Material, Table S10). Each DNA methylation locus was defined
as a region (based on Illumina annotation) containing at least
two methylation probes located in the region containing a
known gene that was associated with metformin IC50 with P
value< 10�4, the gene was expressed in the LCLs, and the DNA
methylation probes were cis-correlated with the gene expres-
sion with P-value< 10�4. Based on the criteria, we identified 5
methylation loci, in which 5 genes were located nearby. In addi-
tion to the cis correlation, we also wanted to determine the
tans-correlation for these 5 methylation loci. We then corre-
lated the 15 methylation probes in these 5 DNA methylation loci
with the top 198 mRNA expression probe sets that were associ-
ated with metformin IC50 (P-value< 10�4) and identified 11
methylation probes in these 5 DNA methylation loci were trans-
correlated with mRNA expression of 26 genes (Supplementary
Material, Table S11, Supplementary Material, Fig. S2B). The ex-
pression of these 26 genes was also correlated with metformin
IC50 as well as the expression of those 5 genes within the meth-
ylation loci with P-value< 10�4, respectively (Supplementary
Material, Table S11). The mRNA expression for 3 of these 5
genes (DUSP5, HOXB2, and MAP2K6) were found to be associated
with metformin IC50 with moderate P-value<10�2. Finally,
methylation-mRNA-IC50 analysis of all top 210 DNA methyla-
tion probes and 54K mRNA expression probe sets identified an-
other gene, CDC42BPA, which contained only one methylation
probe (cg03890680) that was cis-associated with its own gene
expression and metformin IC50 with P-value< 10�4. The expres-
sion of CDC42BPA gene was also correlated with metformin IC50
with moderate P-value< 10�2.

Functional validation of candidate genes in breast
cancer cell lines

Since nongenetic factors (such as EBV transformation) might
confound the results of these association studies and gene regu-
lation is tissue specific (31), we performed the functional valida-
tion study using siRNA knockdown, followed by MTS assay for
selected candidates in breast cancer cell lines to confirm the top
association results from the LCLs.

We found that only two mRNA expression probe sets and
two DNA methylation probes were associated with metformin
IC50 with Bonferroni corrected P-value<0.05 through the GWAS
using these 266 LCLs. Therefore, for the purpose of functional
validation, we used arbitrary and less stringent P-value cut-offs
to select top candidate genes based on the strategy we defined
(Fig. 2). We have applied a similar strategy in many of our previ-
ous works using the LCLs (30,31,36). The selection criteria were

gene expression associated with metformin IC50 with at least
one probe set with P-value<10�5 or one probe set with
P-value< 10�4 and one probe set with P-value<10�3; genes lo-
cated in SNP loci or DNA methylation loci; integrated SNP-
mRNA-IC50 analysis or integrated Methylation-mRNA-IC50
analysis with P value<10�4; as well as one gene (CDC42BPA)
from methylation analysis. After checking the specificity, ex-
pression level, and variation in expression level of these probe
sets in all the LCLs, 65 top candidate genes were selected for
Ingenuity Pathway analysis (IPA). IPA analysis identified four
IPA networks including 61 out of the 65 top genes. The four net-
works included cellular development, cellular assembly and or-
ganization, cell death and survival, and cellular function and
maintenance (Supplementary Material, Fig. S3).

We then functionally validated 61 candidate genes within
these 4 IPA networks using two breast cancer cell lines, MDA-
MB 231 and Hs578T cells (Supplementary Materials, Figs S4 and
S5, Table 1). First, siRNA screening followed by MTS assay was
performed for all the 61 candidate genes in one breast cancer
cell line, MDA-MB 231. We found that knockdown of 25 genes
significantly desensitized breast cancer cells to metformin
treatment. These 25 genes validated in MDA-MB231 cell in-
cluded 13 genes from the expression-IC50 association analysis,
three genes from the SNP locus-IC50 association analysis, five
genes from the integrated SNP locus-mRNA-IC50 analysis and
nine genes from the integrated methylation locus-mRNA-IC50
analysis. The reduced sensitivity after knockdown experiments
for 22 genes identified from the expression-IC50 or integrated
SNP locus/methylation locus-mRNA-IC50 analyses was consis-
tent with the association direction in LCLs. Although it was dif-
ficult to validate the direction of the three genes (MID1IP1,
POMP, STX4) from the SNP locus-IC50 analysis, the reduced met-
formin sensitivity after knocking down STX4 gene was consis-
tent with a positive correlation between the expression of STX4
gene and the expression of STARD3 and SH3BGRL3 genes. We
further computed the percentage of variation in metformin IC50
that might be explained by all the genomic features associated
with these 25 genes. We found that the variation of the 29 ex-
pression probe sets, 13 SNPs and 11 DNA methylation probes re-
lated to these 25 genes could explain 25% of variation in
metformin IC50 values. In addition, we also took the individual
profile including top IC50-associated 12 SNP loci, 198 expression
probe sets or five methylation loci to determine their contribu-
tion to the observed variation. We found that a higher percent-
age of variation (43%) in the metformin IC50 of LCLs was
explained by the 83 SNPs from all 12 SNP loci, which might par-
tially due to the fact that SNPs might influence functions
through multiple regulations including expression, epigenom-
ics, protein function and protein–protein interactions. Fourteen
out of those 25 genes were confirmed to desensitize cells to
metformin after knockdown using another breast cancer cell
line, Hs578T (Supplementary Material, Fig. S5).

STUB1 influences metformin response through acting as
an E3 ligase for cyclin A

Among the 14 genes that were validated in two breast cancer
cells, STUB1 gene is one of the top candidates from the expres-
sion vs IC50 analysis. Its expression in LCLs was negatively as-
sociated with metformin IC50 (p value¼ 5.71� 10�5)
(Supplementary Material, Table S1). It is well known that STUB1
(STIP1 homology and U-box containing protein 1), also called
CHIP (C terminus of Hsc70-interacting protein), is an E3
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ubiquitin ligase. It contains a tetratricopeptide repeat (TPR) at
the N terminus mediating the interaction with Hsc/Hsp70, and a
U-box domain at the C terminus with E3 ubiquitin ligase activity
(33). In both breast cancer cell lines, RNA interference experi-
ments showed that knockdown of STUB1 significantly
desensitized cells to metformin treatment (Fig. 3A, left panel;
and Fig. 3B, upper panel), and overexpression of STUB1 signifi-
cantly sensitized cells to metformin treatment (Fig. 3A, right
panel; Fig. 3B, lower panel). Metformin could induce cell cycle
arrest in the G0-G1 phase, resulting in a significant decrease of
cells in S phase as well as a decrease of cyclin A and cyclin D
protein level (9,37,38). Here we provided evidence that STUB1
could influence cell cycle through promoting the degradation of
cyclin A, which might be a novel mechanism involved in the
STUB1 regulation of metformin response.

We first determined the effect of STUB1 downregulation on
the protein levels of cyclins D, E and A, all of which play a criti-
cal role in G1/S transition (39). We found that STUB1 knockdown
resulted in a significant increase in cyclin A protein level and a
decrease in cyclin D protein level while the cyclin E level was
not affected (Fig. 4A). The decrease in cyclin D level might be
due to the increase in cell proportion in S phase (40). qRT-PCR
experiments showed no significant change in cyclin A mRNA
levels (Fig. 4B). In STUB1-/- MEF cells, we also observed an in-
crease in cyclin A protein level without a significant change in
mRNA level (Fig. 4B and D). Therefore, given the known function
of STUB1 as an E3 ligase, we hypothesized that STUB1 might al-
ter metformin response through promoting proteasome-
mediated degradation of cyclin A. The endogenous immunopre-
cipitation experiments performed in the MDA-MB 231 cells
showed an interaction between STUB1 and cyclin A (Fig. 4C).
To demonstrate that STUB1 polyubiquitinated cyclin A, cyclin A
was immunoprecipitated in wild-type (WT) and STUB1-/- MEF
cells. STUB1-/- MEF cells showed a significant reduction in

polyubiquitinated cyclin A when compared to WT STUB1 MEF
cells (Fig. 4E). Furthermore, treatment of proteasome inhibitor
MG132 in WT STUB1 MEFs rescued STUB1-induced degradation
of cyclin A (Fig. 4D).

The degradation of cyclin A mediated by STUB1 suggests
that the effect of STUB1 on metformin response may depend on
cyclin A. To test this hypothesis, we first examined whether
STUB1 would have any effect on cell cycle. We found that
knockdown of STUB1 in MDA-MB 231 and Hs578T breast cancer
cells significantly increased the proportion of cells in S phase
while metformin treatment resulted in a reduction of cells in S
phase (Fig. 5A and B). STUB1 knockdown could reverse the ef-
fect of metformin on cells in S phase compared with control
(Fig. 5A). To further investigate whether the effect of STUB1 on
metformin response was mediated through cyclin A, cell cycle
distribution was analysed following cyclin A knockdown in
STUB1 knockdown cells treated with or without metformin.
Knockdown of both cyclin A and STUB1 significantly decreased
the proportion of cells in S phase comparing with knockdown
STUB1 alone in both metformin treated and nontreated two
breast cancer cells (Fig. 5A and B). Additionally, overexpression
of STUB1 significantly decreased the proportion of cells in S
phase (Fig. 5A and B), while overexpression of both cyclin A and
STUB1 significantly increased the proportion of cells in S phase,
a reversed phenotype when compared to overexpression of
STUB1 alone (Fig. 5A and B). Since STUB1 regulated cell cycle
through cyclin A, we tested whether cyclin A might be the key
factor mediating the effects of STUB1 on metformin response.
We silenced cyclin A in STUB1 knockdown cell, and found that
knocking down both cyclin A and STUB1 re-sensitized cells to
metformin treatment compared with STUB1 knockdown alone
in both MDA-MB 231 and Hs578T cells (Fig. 3A and B).
Conversely, overexpressing both cyclin A and STUB1 desensi-
tized cells to metformin treatment compared with STUB1

Figure 2. Schematic diagram of the strategy used to select genes for functional validation. Genome-wide association studies were performed using metformin IC50

with 1.3 million SNPs, 54K expression probe sets or 485K DNA methylation probes. Integrated SNP/Methylation-Expression-IC50 analyses were performed using SNP

loci that contained at least 1 SNP with P-value<10�5 and 1 SNP with P-value<10�3, or DNA methylation loci that located in the expressed gene region and contained at

least two probes associated with metformin IC50 with P-value<10�4, 54K expression probe sets and metformin IC50 to identify SNP loci/methylation loci associated

with metformin IC50 through their influence on gene expression. Ingenuity pathway analysis (IPA) was performed for the top 65 candidate genes. Finally 61 genes

within 4 IPA networks were selected for functional validation studies using siRNA screening approach in breast cancer cell lines. * One gene, CDC42BPA, was also in-

cluded in the top 65 candidates, which contained one methylation probe associated with its own gene expression and metformin IC50 with P-value<10�4, and which

gene expression was associated with metformin IC50 with P-value< 10�2.
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Table 1. A total of 61 candidate genes selected for siRNA screening followed by MTS assay

Basis for selection MTS assay

ID Gene symbol IPA
Network

Exp-IC50
analysis

SNP-IC50
analysis

Methy-IC50
analysis

SNP-Exp-IC50
analysis

Methy-Exp-IC50
analysis

MDA-MB
231

Hs578T

1 ADD1 4 <10�5, <10�27, <10�5,
<10�13, <10�4

2 AES 3 <10�5

3 AGPAT1 3 <10�4 resistant
4 ATP2A3 4 <10�5 resistant
5 AUTS2 3 <10�5

6 BAG1 1 <10�5, <10�4, <10�4

7 BAG6 (BAT3) 1 <10�4

8 VPS51
(C11orf2)

2 <10�5 resistant resistant

9 C14orf105 3 <10�5

10 C16orf58 2 <10�5

11 CCDC88B 2 <10�5

12 CD99 4 <10�5

13 CDC25B 1 <10�5 <10�5, <10�27, <10�5,
<10�4, <10�5

resistant resistant

14 CDC42BPA* 4 <10�14, <10�5, <10�2 resistant
15 CDK16

(PCTK1)
1 <10�4 <10�5, <10�4, <10�4

16 CDK8 1 <10�5

17 CIZ1 2 <10�5

18 CLTB 1 <10�4

19 CNNM3 4 <10�5, <10�27, <10�9,
<10�18, <10�4

resistant resistant

20 CYB5R2 3 <10�5 <10�5, <10�27, <10�9,
<10�19, <10�5

21 CYTH2
(PSCD2)

4 <10�5, <10�27, <10�7,
<10�11, <10�4

resistant

22 DIS3 2 <10�4

23 DUSP5 1 <10�5

24 EPS8 4 <10�5 <10�5, <10�27, <10�36,
<10�44, <10�5

25 ESCO1 3 <10�4

26 ESD 2 <10�4

27 FAM107B 3 <10�5, <10�11, <10�4,
<10�7, <10�4

resistant resistant

28 FAM111B 2 <10�4

29 FASTK 3 <10�5

30 FIBP 2 <10�6

31 FXYD5 4 <10�4 resistant
32 HOXB2 1 <10�4

33 HOXB7 1 <10�4 <10�5, <10�27, <10�6,
<10�12, <10�4

resistant resistant

34 INTS5 3 <10�5 <10�3, <10�4, <10�5 resistant
35 IRF1 1 <10�5, <10�23, <10�7,

<10�13, <10�4

36 ITGAL 1 <10�5

37 MAP2K6 1 <10�5

38 MED12 1 <10�4

39 MED16 1 <10�4

40 MID1IP1 3 <10�5 resistant resistant
41 NFYC 3 <10�5

42 POMP 3 <10�5 resistant resistant
43 PPDPF

(C20orf149)
2 <10�4

44 PPP2R4 1 <10�4 <10�5, <10�18, <10�4,
<10�7, <10�4

45 PRDX5 3 <10�4

46 PRKD2 4 <10�5 resistant

(continued)
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overexpression alone (Fig. 3A and B). Together, these results in-
dicate that STUB1 influences metformin response through its
functioning as an E3 ligase for cyclin A.

Discussion
Many preclinical studies suggest that the antidiabetic drug,
metformin, could be used as an anticancer agent (5). Large
inter-individual variation in glycemic response to metformin
treatment has been observed in the clinic, which might be
partly due to the genetic variation in the metformin PK and PD
pathway genes (14,18–27,41–45). However, the anti-cancer activ-
ity of metformin as well as the pharmacogenomic aspect of
metformin in anti-cancer treatment remains unclear. In this
study, we took advantage of the in vitro EBV-transformed LCL
model to study the pharmacogenomics of metformin as an anti-
cancer agent. This model contains 266 LCLs with enriched mul-
tiple omics data and has been successfully used in many
pharmacogenomic studies to identify and understand the con-
tribution of germline SNPs or genes to variation in metformin
response, particularly genes involved in the pharmacodynamics
side. Many previous studies suggested metformin could cause
G1/G0 cell cycle arrest (9,37,38), therefore, in our study the met-
formin response phenotype (IC50 values) could be potentially
affected by the cell cycle status of LCLs at baseline. However,
this might not be a disadvantage since the variation among cells
might allow us to identify genes involved in metformin induced
cell cycle changes. It should be noted that some substantial
transcriptional differences have been reported between in vitro
cell line model and primary tissue, and it may also be affected

by long-time cell culture (46,47). In our previous study, we have
described the validity of our study design by comparing methyl-
ation profiles between our LCLs and other tissue origins like the
breast, lungs and colon using the TCGA data. We found no sig-
nificant difference in these analyses between LCLs and other
tissues (48). Obviously, all the results from in vitro cell line model
have to be warranted by future studies using additional in vitro
or in vivo models. Finally, it should be also noted that LCLs are
not cancer cells per se and somatic genomic alterations that
strongly influence response to metformin will be missed in
screens like this.

Based on the genome wide analysis of SNPs, methylation,
basal gene expression, and metformin IC50 data, our study
identified 198 top mRNA expression probe sets, 12 SNP loci, and
5 DNA methylation loci associated with metformin IC50 with P-
value<10�4 or<10�5, respectively (Fig. 1, Supplementary
Materials, Tables S1, S6, S10). Integrated SNP loci/methylation
loci-mRNA expression-IC50 analysis indicated that 3 SNP loci
was associated with metformin IC50 through trans-regulation
of 11 gene expression levels with P-value<10�4 (Supplementary
Material, Table S7), and 5 DNA methylation loci through trans-
regulation of expression for 26 genes with P-value<10�4

(Supplementary Material, Table S11). Ingenuity pathway analy-
sis of top 65 candidate genes identified 61 genes clustered
within 4 networks (Fig. 2, Supplementary Material, Fig. S3),
which provided us with new insights into additional mecha-
nisms that might be involved in metformin response. It should
be noted that in order to have a reasonable power, we per-
formed GWAS using 266 LCLs from all three different ethnic
groups and adjust for the ethnicity. We understand that we

Table 1.. (continued)

Basis for selection MTS assay

ID Gene symbol IPA
Network

Exp-IC50
analysis

SNP-IC50
analysis

Methy-IC50
analysis

SNP-Exp-IC50
analysis

Methy-Exp-IC50
analysis

MDA-MB
231

Hs578T

47 PTP4A2 4 <10�5, <10�4, <10�4,
<10�10, <10�4

48 REEP5 2 <10�5, <10�7, <10�5,
<10�4, <10�4

resistant resistant

49 SBF1 1 <10�4 resistant
50 SCAMP2 2 <10�5

51 SH3BGRL3 2 <10�4, <10�4, <10�4 resistant resistant
52 STARD3 3 <10�4, <10�4, <10�4 resistant
53 STUB1 1 <10�4 resistant resistant
54 STX4 1 <10�5 resistant resistant
55 TBCB 2 <10�4 resistant resistant
56 TFRC 1 <10�5, <10�27, <10�9,

<10�17, <10�4

57 THAP7 1 <10�5 <10�4, <10�4, <10�5 resistant
58 TNRC6B 2 <10�4

59 TRIO 4 <10�5, <10�27, <10�5,
<10�9, <10�4

resistant

60 USP21 4 <10�6 <10�5, <10�4, <10�6 resistant resistant
61 ZNF496 2 <10�5, <10�27, <10�5,

<10�8, <10�4

resistant resistant

Note: P-values under ‘Basis for selection’ indicate the association significance of individual candidate genes with metformin IC50 found by given association

analysis. The P-values under ‘SNP-expression-IC50 analysis’ were for SNP-IC50, SNP-expression and expression-IC50 association analyses of individual

candidate genes (Supplementary Material, Table S7). The P-values under ‘Methylation-expression-IC50 analysis’ were for Methy1-IC50, Methy1-Exp1, Methy1-

Exp2, Exp1-Exp2, and Exp2-IC50 analyses of individual candidate genes (Supplementary Material, Table S11). * CDC42BPA, the P-values were for methylation-expres-

sion, methylation-IC50, and expression-IC50 association analyses of CDC42BPA gene. For the MTS assay, ‘resistant’ indicates that the gene knockdown desensitized

metformin cytotoxicity when compared with control siRNA. All of the experiments with significant changes were performed in triplicate and were replicated at least

three times.
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Figure 3. STUB1 regulated metformin sensitivity through cyclin A. MDA-MB 231 and Hs578T cells were transfected with negative control, STUB1, and cyclin A siRNA;

MDA-MB 231 and Hs578T cells were transfected with empty vector, STUB1, and cyclin A plasmids. (A) MTS cytotoxicity assay was performed. (B) Knockdown efficiency

and overexpress efficiency were assessed by qRT-PCR and western blot.
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might have missed ethnic specific signals. However, considering
the power, we choose the strategy described here. Like all model
systems, the LCL system used in our study has limitations. EBV
transformation might cause chromosomal instability and cellu-
lar changes in the LCLs. Variation in drug response in LCLs
could be affected by nongenetic factors such as cell growth rate
or baseline ATP levels (31). In addition, the regulation of gene
expression is tissue specific. Previous studies indicated metfor-
min might be a potential treatment for triple negative breast
cancer (49). Therefore, to functionally validate the initial associ-
ation results obtained using LCLs, we conducted knockdown for
the top 61 candidate genes selected based on the IPA using
siRNA screening, followed by MTS assay in two different breast
cancer cell lines, MDA-MB 231 and Hs578T cells. Knockdown ex-
periments showed that downregulation of 25 genes significantly
altered metformin sensitivity in MDA-MB 231 cells (Table 1,
Supplementary Material, Fig. S4). 14 out of 25 genes also showed
the same effect on metformin response in Hs578T cells (Table 1,
Supplementary Material, Fig. S5).

Many previous studies suggest that in preclinical models,
high concentrations of metformin are required to achieve an
anticancer effect (4,8,50). In our study, high concentrations of
metformin were also required to kill LCLs and breast cancer
cells. Therefore, many concerns have been raised with regard to
how effective metformin is as an anti-cancer agent at antidia-
betic therapeutic concentrations. Even though the treatment
concentration is low, the concentration in the target cancer tis-
sues might vary based on the expression of metformin trans-
porters (4,8). Furthermore, because of the low incidence of
metformin related side effects, it would be possible to increase
the metformin dose as an anticancer therapy or as part of a
combination treatment that would be evaluated in future clini-
cal trials (4,8). In addition, the required high metformin concen-
tration might be partially due to the high glucose level in the
cell culture medium. It has been suggested that under high

glucose condition, metformin-induced energetic stress could
cause a cytostatic effect, and reduce energy consumption and
improve cell survival, whereas under low glucose condition,
metformin treatment leads to an energetic crisis and causes a
cytotoxic effect (51). In this study, all of our experiments were
performed in a regular cell culture medium that has a high glu-
cose compared with physiological glucose concentration.
Therefore, the effect we observed would be warranted after fu-
ture confirmation at physiological concentration of glucose.

As one of the top candidates, STUB1, showed resistance to
metformin treatment in breast cancer cells when knockdown
(Fig. 3A and B). STUB1 is known as a U-Box E3 ubiquitin ligase.
STUB1 together with HSP70 and HSP90 play a critical role in
ubiquitin-mediated protein degradation (33). Previous studies
indicated that STUB1 promotes LKB1-mediated activation of
AMPK through inducing conformational change of AMPKa subu-
nit (52). However, it also acts as an E3 ligase involved in
proteasome-mediated LKB1 degradation (53). We also found
that depletion of STUB1 by siRNA in MDA-MB 231 cells could de-
crease the phosphorylation of AMPK (Fig. 4F), suggesting that
this effect was not through STUB1’s effect on the protein degra-
dation of LKB1. In this study, we showed that STUB1 interacted
with cyclin A and provided evidence that STUB1 influenced
metformin response through its function as an E3 ligase for cy-
clin A. Cyclin A-CDK2 plays a critical role in G1 to S transition,
in which high expression of cyclin A promotes an increase of
cells in S phase (39). Our experiments showed that STUB1
knockdown in MDA-MB 231 cells resulted in an increased pro-
portion of cells in S phase by flow cytometry, which could be re-
versed by knocking down cyclin A (Fig. 5). We observed the
same phenomena on metfomin cytotoxicity, indicating the ef-
fect of STUB1 on metformin response is through the regulation
of cyclin A degradation (Fig. 3). Down regulation of STUBl also
resulted in a significant increase of cyclin A at the protein level,
but not at the mRNA level (Fig. 4A and B). We also found that

Figure 4. STUB1 functions as an E3 ligase for cyclin A. MDA-MB 231 cells were transfected with negative control or STUB1 siRNA, and treated with 20 mM metformin for

24 h. STUB1þ/þand STUB1-/- MEFs were gifts from Dr. Patterson. (A) The protein levels of Cyclin A, E, and D1 in cell lysates were detected by western blot. (B) The mRNA

level of Cyclin A was examined by qRT-PCR. (C) Endogenous interaction between STUB1 and Cyclin A was detected in MDA-MB 231 cells. (D) Cyclin A protein level was

determined in MEFs after MG132 treatment. (E) Cyclin A Ub assay was performed in wild-type and STUB1-/-MEFs. (F) The level of phospho-AMPK T172 was detected by

western blot.
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Figure 5. STUB1 regulated cell cycle through clyclin A. MDA-MB 231 and Hs578T cells were transfected with negative control, STUB1, and cyclin A siRNA; MDA-MB 231

and Hs578T cells were transfected with empty vector, STUB1, and cyclin A plasmids. (A) Cell cycle profile in MDA-MB 231 cell line was analysed by flow cytometry.

(B) Cell cycle profile in Hs578T cell line was analysed by flow cytometry.
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STUB1 physically interacted with cyclin A endogenously, and it
could promote ubiquitination of cyclin A (Fig. 4C–E). Taken to-
gether, our data indicated that STUB1 could impact metformin
response via its function as E3 ubiquitin ligase of cyclin A.
It suggests a potential novel mechanism with regard to STUB1
in the regulation of cyclin A, and in turn metformin response. In
addition, in our GWAS using LCLs, the mRNA expression level
of CCNA2 gene, cyclin A, was not associated with metformin
IC50, neither did any SNPs in the CCNA2 gene, which suggested
that cyclin A protein level, instead of mRNA level, might func-
tion as a biomarker predicting metformin response. Certainly,
STUB1 could regulate many downstream proteins, there could
be other mechanisms in additional to cyclin A may play a role
in metformin response.

In summary, our GWAS in LCLs identified 198 mRNA expres-
sion probe sets, 12 SNP loci, and five DNA methylation loci asso-
ciated with metformin IC50 with P-value<10�4 or<10�5. Our
functional validation studies in breast cancer cell lines vali-
dated 14 top candidate genes that significantly altered metfor-
min cytotoxicity in both MDA-MB 231 and Hs578T breast cancer
cell lines. A further mechanistic study of one top candidate
gene, STUB1, indicated that it affected metformin sensitivity
through its function as an E3 ligase for cyclin A. Currently we
are also conducting the follow-up mechanistic study for a few
other candidates. These results would provide additional in-
sight into novel mechanisms by which these genes might con-
tribute to variation in response to metformin as an anticancer
agent.

Methods
Cell culture and antibodies

As described in our previous publication (31), EBV-transformed
LCLs from 96 African-American (AA), 96 Caucasian-American
(CA), and 96 Han Chinese-American (HCA) unrelated subjects
(sample sets HD100AA, HD100CAU, HD100CHI) were purchased
from the Coriell Cell Repository with very low passage number
(Camden, NJ). These samples had been anonymized by NIGMS,
and all subjects had provided written consent for their experi-
mental use. This study was reviewed and approved by Mayo
Clinic Institutional Review Board. Human breast cancer cell
lines, MDA-MB 231 and Hs578T were newly obtained from the
American Type Culture Collection (Manassas, VA). Wild-type
(STUB1þ/þ) and STUB1-/- mouse embryonic fibroblast (MEF) cells
were gifts from Dr. Cam Patterson in the University of North
Carolina at Chapel Hill (54). LCLs were cultured in RPMI 1640
medium (Mediatech, Manassas, VA) supplemented with 15%
foetal bovine serum (FBS) (Mediatech). MDA-MB 231, Hs 578T,
and MEF cell lines were cultured in DMEM medium containing
10% FBS.

Antibodies against cyclin E, cyclin A, ubiquitin were pur-
chased from Santa Cruz Biotechnology (Dallas, TX). Antibody
against cyclin D was obtained from Abcam (Cambridge, MA).
Anti-STUB1 antibody was purchased from Bethyl Laboratories
(Montgomery, TX). Anti b-actin antibody was purchased from
Sigma-Aldrich (St. Louis, MO).

Cell proliferation assay

Metformin was purchased from Sigma-Aldrich (St. Louis, MO).
The drug was dissolved in PBS and aliquots of stock solutions
were frozen at �80�C. As described previously, cell proliferation
assays were performed in triplicate at each drug concentration.

Specifically, 90 ml of cells (5� 105 cells/ml) were plated into each
well of 96-well plates (Corning, Lowell, MA) (30) and were
treated with 10 ml of metformin at the final concentrations of 0,
0.001, 0.01, 0.25, 1, 2.5, 10, 100, 200 mmol/l. Seventy-2 h after
metformin treatment, 20 ml of CellTiter 96 AQueous Non-
Radioactive Cell Proliferation Assay solution (Promega
Corporation, Madison, WI) was added to each well and incu-
bated for an additional 3 h. Plates were then read in a Safire2
microplate reader (Tecan AG, Switzerland). Experiments were
successfully performed for 266 LCLs (89 AA, 85 CA and 92 HCA).
The cell proliferation assays for breast cancer cell lines were
conducted in a similar fashion except metformin was added af-
ter the cells were seeded overnight. The final concentrations of
metformin were 0, 1.25, 2.5, 12.5, 25, 50, 66.7, 75, 100 mmol/l for
MDA-MB 231 cells, and 0, 2, 10, 20, 30, 40, 50, 75, 100 mmol/l for
Hs578T cells.

Genome-wide SNPs in LCLs

As described previously (31), we genotyped DNA samples from
the LCLs in the Genotype Shared Resource (GSR) at Mayo Clinic
using Illumina HumanHap 550K and 510S BeadArrays, which
contained 561,298 and 493,750 SNPs, respectively. Publicly avail-
able Affymetrix SNP Array 6.0 Chip data for additional 643,600
SNPs were also obtained for the same cell lines. All the genotyp-
ing data are publicly available from NCBI Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo) under SuperSeries
accession No. GSE24277. SNPs that deviated from Hardy-
Weinberg Equilibrium (HWE) based on the minimum P-value
from an exact test for HWE and the stratified test for HWE
(P-values<0.001); SNPs with call rates<95%; or SNPs with minor
allele frequencies (MAFs)<5% were removed from the analysis.

Expression array assay in LCLs

Total RNA was extracted from each of the cell lines using
Qiagen RNeasy Mini kits (QIAGEN, Inc.). RNA quality was tested
using an Agilent 2100 Bioanalyzer, followed by hybridization to
Affymetrix U133 Plus 2.0 Gene-Chips. The expression array data
for all 54k probe sets was used in our previous studies (30,31)
and is publicly available from NCBI Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo) under SuperSeries accession
no. GSE24277 and accession No.GSE23120.

DNA methylation array assay in LCLs

As described previously (48), quality of genomic DNA was tested
by electrophoresis in a 1.3% agarose gel, picogreen quantifica-
tion, and nanodrop measurements. Bisulphate conversion of
genomic DNA was conducted using the EZ DNA Methylation Kit
(Zymo Research, Orange, CA) followed by hybridization on the
HumanMethylation450 BeadChip (Illumina). Raw methylation
data was normalized by three steps using the lumi package in
Bioconductor and R package (R Development Core Team 2009),
including colour bias adjustment, background level adjustment,
and quantile normalization across arrays. The methylation
level (b-value) for each of the 485,577 CpG sites was calculated
as the ratio of methylated signal divided to the sum of methyl-
ated and unmethylated signals plus 100. Quality control (QC)
was performed to remove probes not annotated as ‘cg’ probes,
probes located at or near an SNP, and probes with low call
rate (<0.98). Subjects with a call rate<0.98 and outlier
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probes/samples identified via principal component analysis
(PCA) were also removed from future analyses.

Transient transfection and RNA interference

siRNA pools for candidate genes and negative control were pur-
chased from Dharmacon (Chicago, IL). Reverse transfection of
siRNA was performed in 96-well plates with a seeding density
of 3000-5000 breast cancer cells, 0.3 mL of lipofectamineTM

RNAiMAX reagent (Life technology, Grand Island, NY), and
30 nmol/l siRNA pools for cell proliferation assay. For immuno-
blotting and cell cycle assays, the amount of transfection mix-
ture was scaled up proportionally based on the different cell
numbers required.

The STUB1 plasmid was purchased from Dharmacon
(Chicago, IL). Cyclin A plasmid, CycA-Venus-Flag (1305), was
purchased from Addgene (Cambridge, MA). Plasmids were
transfected with Lipofectamine 2000 (Invitrogen, Carlsbad, CA)
according the manufacture’s protocol.

Real-time quantitative reverse transcription-PCR
(qRT-PCR)

Total RNA was isolated from cultured cells using the Quick-
RNATM MiniPrep kit (Zymo Research), followed by qRT-PCR with
the Power SYBRVR Green RNA-to-CTM

T 1-Step Kit (AB Foster CA).
Specifically, primers purchased from QIAGEN or IDT were used
to perform qRT-PCR using the Stratagene Mx3005P Real-Time
PCR detection system (Stratagene). All experiments were per-
formed with human b-actin as an internal control. For MEF cell
lines, mouse b-actin was used as an internal control.

Immunoprecipitation and immunoblotting

As described previously (55), cells were lysed in NETN buffer
(20 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA, and 0.5%
Nonidet p-40) containing protease and phosphatase inhibitors
(Roche) on ice for 30 min. After centrifugation at 14,000 g for
10 min at 4�C, cell lysate were incubated with 4 mg of antibody or
normal IgG (Cell Signalling Technology) and protein A
Sepharose beads (Amersham Biosciences) overnight at 4�C. The
immunocomplexes were washed with NETN buffer for three
times. The precipitates were then eluted in SDS sample buffer
and separated by SDS-PAGE. Immunoblotting was performed
following standard procedures.

Cell cycle analysis

After treatment of control or 20 mM metformin for 24 h, cells
were trypsinized and washed by phosphate-buffered saline
(PBS). After fixation in ice-cold 70% ethanol overnight at 4�C,
cells were washed with PBS containing 1% BSA, and then resus-
pended in PBS containing 1% BSA, 20 mg/ml propidium iodine,
and 100 mg/ml RNase A. 50000 cells were collected for the Flow
cytometry assay per experiment using a FACSCalibur cytometer
(BD Biosciences). The percentage of cells in each phase of the
cell cycle was estimated with ModFit.

In vivo ubiquitination assay

As described previously (56), MEF cells were treated with MG132
(10 nM) for 12 h and then lysed in NETN buffer containing pro-
tease inhibitor, 20 mM Nethylmaleimide (NEM), and 1 mM

iodoacetamide. After centrifugation, the lysates were immuno-
precipitated with cyclin A antibody overnight at 4�C. The immu-
nocomplexes were washed with NETN buffer for three times.
The precipitates were eluted in SDS sample buffer and then sep-
arated by SDS-PAGE.

Statistical Methods
The metformin cytotoxicity phenotype IC50, indicating the drug
concentration that inhibits half of maximal cell growth, was cal-
culated based on a logistic model. Three different logistic func-
tions (a four parameter logistic model, a three parameter
logistic model with a fixed asymptote at 0%, and a three param-
eter logistic model with a fixed asymptote at 100%) were used to
fit the data with the R package ‘‘drc’’ (http://cran.r-project.org/
web/packages/drc/drc.pdf). The best model fit (i.e., lowest mean
square error) from the three logistic models was used to deter-
mine the cytotoxicity IC50 phenotype. As previously described
(31), prior to association analyses, the Van der Waerden (rank)
transformed IC50 and SNPs were adjusted for gender, race and
population stratification. Similarly, GCRMA normalized and log2

transformed mRNA expression array data were adjusted for
gender, race, population stratification, as well as batch effect.
For DNA methylation data, the logit of beta values were ad-
justed for age, gender and race using linear regression model,
followed by adding overall mean probe values back followed by
back transformation of the values using inverse logit function.
The final adjusted beta values on the [0,1] scale were used for
analysis.

The pair wised association among adjusted SNP, expression,
methylation and IC50 values were completed using Pearson cor-
relations. False Discovery Q-values were also computed for each
test. Genes and SNPs were annotated using NCBI Build 37. To in-
tegrate all the analysis data together, we used a similar ap-
proach as described previously. Specifically, we first identified
top SNP loci or methylation probes/loci associated with IC50,
then determined which expression probe sets were associated
with these SNPs/methylation probes, and finally determined
whether the expression probe sets associated with these SNPs/
methylation probes were also associated with metformin IC50
values. For the most significant locus on chromosome 2 and
SNP locus on chromosome 16, SNPs were imputed for a region
including 200 kb on either side of the most significant SNPs.
Imputation was performed using Beagle v3.3.1 with 1000 ge-
nome data (release of 11/23/2010) as the reference panel with
build37 annotation. Chromosomes were divided into 40MB re-
gions and BEAGLE v3.3.1 was ran on these 40MB regions of the
genome, plus a 1MB buffer region to the right and left of the
main region to provide buffer at the ends of regions as the ends
are generally imputed with poor quality. Imputation was run
with markers obtained from combining all populations. There
were a total of 1094 subjects in the reference group from differ-
ent populations. In addition, pairwise LD (D’ and R2 values) was
calculated using PLINK software (57). To identify SNPs that were
correlated with the top 1772 SNPs associated with metformin
IC50, Pearson correlation was calculated between each SNP and
the rest of SNPs on the same chromosome and r2>0.9 was used
as the cut-off. The pathway analysis for the top genes was per-
formed using Ingenuity Pathway Analysis (IPA; Ingenuity
Systems). The percentage of variation in the drug response phe-
notype explained by the combination of gene expression probe
sets, SNPs, and DNA methylation probes was estimated using
Gradient Boosting Algorithm. Lastly, the significance of the AUC
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values between negative control siRNA and gene-specific siRNA
was determined by a two-tailed unpaired t-test.

Supplementary Material
Supplementary Material is available at HMG online.
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