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Abstract
Increasing evidence shows that phenotypic variance is genetically determined, but the underlying mechanisms of genetic
control over the variance remain obscure. Here, we conducted variance-association mapping analyses to identify expression
variability QTLs (evQTLs), i.e. genomic loci associated with gene expression variance, in humans. We discovered that common
genetic variants may contribute to increasing gene expression variance via two distinct modes of action—epistasis and desta-
bilization. Specifically, epistasis explains a quarter of the identified evQTLs, of which the formation is attributed to the pres-
ence of ‘third-party’ eQTLs that influence the gene expression mean in a fraction, rather than the entire set, of sampled indi-
viduals. On the other hand, the destabilization model explains the other three-quarters of evQTLs, caused by mutations that
disrupt the stability of the transcription process of genes. To show the destabilizing effect, we measured discordant gene ex-
pression between monozygotic twins, and estimated the stability of gene expression in single samples using repetitive qRT-
PCR assays. The mutations that cause destabilizing evQTLs were found to be associated with more pronounced expression dis-
cordance between twin pairs and less stable gene expression in single samples. Together, our results suggest that common
genetic variants work either interactively or independently to shape the variability of gene expression in humans. Our findings
contribute to the understanding of the mechanisms of genetic control over phenotypic variance and may have implications for
the development of variance-centred analytic methods for quantitative trait mapping.

Introduction
Quantitative genetics assumes that phenotypic variation—the
difference in the phenotypic mean between individuals—is ge-
netically controlled (1). Phenotypic variation is thus typically

referred to as the difference in phenotypic mean among geno-
types. This assumption, however, has been challenged. Some
recent studies have shown that phenotypic variance is also
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genetically controlled and that the variance itself is a quantita-
tive trait (2–14). It is clear that research on the genetics of phe-
notypic variance deserves more attention. Understanding how
phenotypic variance is controlled is of great importance not
only for quantitative genetics but also for evolutionary biology,
agricultural and animal sciences, and medicine (5,11,15,16). For
example, a greater phenotypic variance may offer more adap-
tive solutions in evolution (17–19), and thus, genetic factors re-
sulting in more variable phenotypes may become favoured as
they enable a population to respond more effectively to envi-
ronmental changes (20–23). In medicine, disease states may
emerge when the relevant phenotype of affected individuals
goes beyond a threshold. Thus, more variable genotypes will
produce a larger proportion of individuals exceeding that
threshold than will less variable genotypes, even if these geno-
types have the same mean. Therefore, by ignoring the effect of
genotypes on phenotypic variance, an important axis of genetic
variation contributing to phenotypic differences among individ-
uals has been overlooked (1,24). In this regard, the lack of empir-
ical studies has hindered the discovery of variance-associated
mutations that may contribute to human health-related traits,
including those modulating disease susceptibility.

Previous studies have shown the existence of substantial
gene expression variability in humans, including significant dif-
ferences in the magnitude of gene expression variance between
groups (25–27). Yet, our understanding of how genetic factors
control or modulate gene expression variance remains limited.
Promising new developments along this line have come from
recent findings in complex trait analysis of gene expression var-
iance (9,11,12). Using variance association mapping, we and
others have identified genetic loci associated with gene expres-
sion variance, called expression variability quantitative trait lo-
cus (evQTLs) (11,12), also known as v-eQTL (9). How evQTLs are
originated is not completely known. Epistasis has been widely
accepted as a mechanism that introduces phenotypic variability
through genetic interactions. In this study, we seek a non-
epistatic, more straightforward, explanation—that is, evQTL
SNPs (evSNPs) disrupt or destabilize the genetic architecture
that buffers stochastic variation in gene expression. We call this
explanation the ‘destabilization model’, which emphasizes the
destabilizing effect of a mutation that pushes the gene expres-
sion trait out of homeostasis or equilibrium to become less ro-
bust. We show that the formation of evQTLs can be explained
by using either the epistasis model or the destabilization model.
We anticipate that our findings will lay a foundation for devel-
oping a new analytical framework that focuses on the contribu-
tions of genetic variation to phenotypic variance.

Results
Widespread evQTLs in the human genome

We obtained the expression data of 15,124 protein-coding genes
measured in 462 lymphoblastoid cell lines (LCLs) by the
Geuvadis Project (28). We obtained the genotype data of
2,885,326 polymorphic sites determined in the same cell lines by
the 1,000 Genomes Project (29). After data processing, 326 LCL
samples from unrelated individuals of European descent (EUR)
were retained for this study (Materials and Methods). To identify
evQTLs, we first applied the method based on the double gener-
alized linear model (DGLM) (30), which has been previously
adopted by us (11,12) and others (5). In the interest of computa-
tional time, we restricted the use of this method in the identifi-
cation of cis-acting evQTLs, so that, for each gene, only those

SNPs located within a 1-Mb region of up- and down-stream of
the transcription start site were considered. On average, each
gene has 1,803 SNPs in its cis-regions. Using a conservative
Bonferroni correction cutoff P¼ 1.75� 10�9 (¼0.05/28,494,473),
we identified a total of 17,949 cis-evQTLs in 1,304 unique genes,
accounting for 8.6% of all genes tested (Fig. 1A) (Supplementary
Material, Table S1). We repeated this analysis using raw expres-
sion data (i.e. the un-normalized RPKM values) and found that
more than half (56.7%) of cis-evQTLs could be recovered, suggest-
ing that the normalization of data did not profoundly impact the
evQTL detection. Next, we adopted a computationally efficient
method based on the squared residual value linear model
(SVLM) (9,31) to identify both cis- and trans-evQTLs. The SVLM
method is a two-stage approach: the effect of a tested SNP on
gene expression mean (i.e. eQTL effect) is first regressed out, and
then the correlation between the squared expression residuals
and the SNP genotypes is tested. We applied the SVLM method
to all SNPs and tested against all genes. Such an all-against-all
strategy, without pre-filtering SNPs by their location relative to
tested genes, allowed a systematic detection of cis- and trans-
evQTLs across the entire genome. We used the Benjamini–
Hochberg procedure (32) to determine the P-value cutoff of
3� 10�9 to reach the false-discovery rate (FDR) of 10%. At this
level, we identified 505 cis-evQTLs in 33 unique genes, and 1,008
trans-evQTLs in 235 unique genes (Fig. 1B) (Supplementary
Material, Table S2). The distribution of cis- and trans-evQTLs
across autosomes (Fig. 1C) does not show any enrichment of cis-
evQTLs compared to trans-evQTLs. Furthermore, there is a
marked discrepancy between the number of cis-evQTLs detected
using SVLM and DGLM. But, 463 (91.7%) of 505 cis-evQTLs de-
tected by SVLM were also detected by DGLM (Supplementary
Material, Table S1), suggesting the discrepancy was due to the
lack of power of the SVLM method. Indeed, our simulation-based
study showed that the SVLM method had only half of the power
of DGLM at the sample size of 300 (Supplementary Material, Fig.
S1). The discrepancy may also be attributed to the greater multi-
ple testing burden associated with applying SVLM in the all-
against-all tests.

Epistasis contributes to increasing gene expression
variability

Epistasis may cause an increase in the phenotypic variance of a
population (10,33). The effect of epistasis on gene expression
variance can be interrogated using evQTLs (12). Here, we sought
to identify ‘third-party’ SNPs that epistatically interact with
evSNPs and influence the expression of evQTL genes. For each
evSNP, we identify the SNPs that influence the gene expression
mean of a fraction of samples whose expression are more vari-
able as defined by the evSNP. We call these SNPs the partial eQTL
SNPs or peSNPs. They interact with evSNPs to increase the ex-
pression variance of the evQTL genes (9,12). The procedure of
peSNP identification is illustrated in Supplementary Material,
Fig. S2. Briefly, for a given evQTL (for example, an evQTL be-
tween gene Gexpr and SNPev), we extracted samples with the ho-
mozygous genotype associated with large expression variance.
We called these L group samples. Accordingly, those related to
small expression variance were named S group samples. Then,
we conducted a genome-wide scan among the extracted L group
samples to identify peSNPs (e.g. SNPpe) that influence the ex-
pression of corresponding gene Gexpr. The peSNPs are identified
in the sub-sampled discovery panel, and their effect on gene ex-
pression is restricted to L group samples. SNPev and SNPpe may
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be proximately co-localized on the same chromosome and par-
tially associated as we showed previously (12). They may also
be unlinked—for instance, located on different chromosomes—
and interact with each other epistatically (9). We focused on the
268 evQTLs (33 cis- and 235 trans-acting) identified via SVLM.
Among them, we identified that 73 evQTL genes harbour at least
one significant interacting peSNP via simple linear regression
test P< 10�8 on the L group samples (Supplementary Material,
Table S3). These results suggest that more than one-fourth of
evQTLs are attributable to peSNPs interacting with evSNPs.

Destabilizing evSNPs contribute to discordant gene
expression between twin pairs

Here, we present the destabilization model to explain the for-
mation of evQTLs. The destabilization model concerns the
destabilizing function of single SNPs that disrupt transcriptional
machinery and cause variable gene expression. Unlike the epi-
static evSNPs that take effect through genetic interactions with
other SNPs (9,12), destabilizing evSNPs increase gene expression
variability without interacting with any other SNPs.

To show the destabilizing effects of SNPs, we re-visited the
data derived from LCLs of a cohort of twin pairs of the TwinsUK
project (34,35), using monozygotic (MZ) twins to control for ge-
netic background diversity among samples. In our previous
study (12), we used the twin data for evQTL analysis and identi-
fied cis-evQTLs in 99 unique genes. Here, we first classified the
99 cis-evQTLs (between genes and the most significant SNPs)
into 56 epistatic and 43 destabilizing evQTLs, based on whether
an interacting SNP (i.e. peSNP) could be identified using the two-
stage peQTL detection method described above. If no interacting
SNP was detected, we associated the evQTL with the destabili-
zation (rather than epistasis) model. Next, we extracted expres-
sion data for 139 pairs of MZ twins (34) (Materials and Methods).
We classified MZ twin pairs with evSNP homozygous genotypes
into either MZ-L or MZ-S groups based on whether the allele of
the evSNP was associated with larger or smaller variance, rela-
tive to the alternative allele. We estimated the discordant gene
expression between the two individuals of the same twin pairs
using the relative mean difference (RMD), defined as the difference
between two individuals’ gene expression values normalized by
the mean. We then compared the average RMD between the
MZ-L and MZ-S groups.

We used one destabilizing evQTL and one epistasis evQTL as
examples to illustrate the difference between them in terms of

the discordant gene expression between MZ-L and MZ-S groups.
The destabilizing evQTL is between TBKBP1 and rs1912483
(Fig. 2A, right), and the epistasis evQTL is between PTER and
rs7913889 (Fig. 2B, right). The data points representing gene ex-
pression levels were grouped by the genotypes. Within each ge-
notype category, data points from the same twin pair are
displayed side-by-side. Every two individuals of the same MZ
pair are linked by a grey line. The slope of the lines is an indica-
tor of discordant gene expression between twin pairs. In the
destabilizing evQTL example, the slopes between MZ twins with
genotypes associated with large expression variance (i.e. MZ-L
group) tend to be steeper than those with small expression vari-
ance (i.e. MZ-S group) (Fig. 2A, right). In contrast, in the epistasis
evQTL example, the difference in slope skewness between MZ-L
and MZ-S groups is less pronounced (Fig. 2B, right). We pooled
RMD values from different twin pairs by MZ-L or MZ-S group
and compared the distributions of RMD values between the two
groups. For destabilizing evQTLs, the distributions of RMD val-
ues between MZ-L and MZ-S groups were significantly different
(P¼ 1.3� 10�5, Fig. 2A, left), with larger RMD values for the MZ-L
group. For epistasis evQTLs, in contrast, this difference in RMD
distribution was not detected between MZ-L and MZ-S groups
(P¼ 0.052, Fig. 2B, left).

Destabilizing evSNPs may cause unstable gene
expression of samples

Our destabilization model is based on the action of a single ge-
netic variant that confers the destabilizing effect on gene ex-
pression. We hypothesized that different alleles of a
destabilizing evSNP might be associated with different levels of
gene expression stability in cell line samples. To test this hy-
pothesis, we set out to estimate the time-course stability of
gene expression by repeatedly measuring the gene expression
level using qRT-PCR in each of the same cell lines multiple
times. If our hypothesis is valid, then the stability of gene ex-
pression in samples with an evQTL genotype associated with a
larger variance should be lower than that in samples with an
evQTL genotype associated with smaller variance.

We selected two destabilizing evQTLs for testing: ATMIN-
rs1018804 and BEND4-rs7659929. ATMIN is an essential cofactor
for the checkpoint kinase ATM, which transduces genomic
stress signals to halt cell cycle progression and promote DNA re-
pair (36). We picked two LCLs, HG00097 and HG00364, which
have similar ATMIN expression levels (Fig. 3A). Both were

Figure 1. Overview of evQTL detections and the distribution of cis- and trans-evQTLs in human autosomal chromosomes. (A) Flowchart of the identification of cis-

evQTLs using the DGLM method. (B) Flowchart of the identification of cis- and trans-evQTLs using the SVLM method. (C) Distribution of cis- and trans-evQTLs identified

using the SVLM method across autosomes.
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derived from female individuals of European descent. At
rs1018804, the CC genotype of HG00097 was associated with
larger variance, while the AA genotype of HG00364 was associ-
ated with smaller variance. Thus, HG00097 and HG00364 be-
longed to L and S groups, respectively. We measured the evQTL
gene expression level using qRT-PCR with three technical repli-
cates at each of ten different sampling time points. The same
assay was repeated three times independently. Our results
showed that, under the same controlled experimental condi-
tions, the variance of gene expression (i.e. the variance in DCt
values) in HG00097 was greater than HG00364. The same trend
was observed from all three biological replicates (Fig. 3A). In all
three replicates, the difference was statistically significant (B–F
test, P¼ 0.034, 0.019, and 0.0096, respectively).

We repeated the experiment with two biological replicates
on the same evQTL ATMIN-rs1018804 using a different pair of
LCLs (NA12144 and NA12736 from L and S group, respectively)
in place of HG00097 and HG00364. We obtained similar results
showing a consistent pattern; that is, the gene expression in the
cell line of L group was more variable than that of S group
(Supplementary Material, Fig. S3). Furthermore, we repeated the

experiment on a different destabilizing evQTL (BEND4-
rs7659929) with another pair of LCLs (NA12889 and NA18858).
Again, we obtained the consistent pattern supporting the nega-
tive relationship between the population-level gene expression
variance and the time-course stability of gene expression in sin-
gle samples (Supplementary Material, Fig. S3).

We further hypothesized that the negative relationship be-
tween gene expression variance and stability holds true exclu-
sively for destabilizing evQTLs. Such a relationship should not
be anticipated in epistasis evQTLs, because of the different
modes of action through which the two kinds of evQTLs work.
To test the hypothesis, we applied the same qRT-PCR strategy
on an epistasis evQTL, ZNF10-rs7972363, using the same cell
lines HG00097 and HG00364 (Fig. 3B). The AA genotype of
HG00097 at rs7972363 is associated with larger variance while
the GG genotype of HG00364 is associated with smaller vari-
ance. An epistasis evQTL, resulting from the interaction be-
tween SNPs rs1567910 and rs7972363, has been identified using
the two-stage peQTL detection method. Samples with the AA
genotype at rs7972363 can be further broken down by rs1567910
genotypes into three subgenotype groups associated with

Figure 2. Dissection of epistatic and destabilizing effects of evQTLs using twins data. (A) The left panel shows the cumulative distribution function (CDF) curves of nor-

malized discordant gene expression (measured as RMD) between MZ pairs in L and S (MZ-L and MZ-S) groups. The right panel shows an example of destabilizing

evQTL between TBKBP1 and rs1912483. The expression data points for each of two individuals from the same pairs of MZ twins are linked. Twin pairs are grouped as

MZ-L and MZ-S based on whether the homozygous genotype at rs1912483 is associated with large or small gene expression variance. (B) Same as (A) but showing an ex-

ample of epistatic evQTL between PTER and rs7913889.
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different levels of gene expression mean. As expected, the gene
expression variance in DCt values was similar between HG00097
and HG00364 (Fig. 3B, B–F test, P¼ 0.96, 0.83, and 0.73, for the
three replicates, respectively). Together, our results suggest that
the level of gene expression stability—i.e. the time-course ran-
dom fluctuation of gene expression—is associated with destabi-
lizing evQTL, but not epistatic, SNPs.

Differences in cell cycle status and alternative splicing
do not account for the destabilizing function conferred
by destabilizing evSNPs

Finally, we controlled for two additional confounding factors
that might account for the increased gene expression variance
associated with destabilizing evSNPs. The first is the cell cycle
status of the cell lines.

At a given sampling time, cells may consist various propor-
tion of subpopulations at different cell cycle phases, which may
contribute to the variance of expression observed in our mea-
surement. To determine the potential impact of this factor, we
performed a cell cycle study by flow cytometry with HG00097
and HG00364 at 36 h after incubation (Materials and Methods).
The results showed no difference in the percentage of cells in
G0/G1, S and G2/M phases between the two cell lines
(Supplementary Material, Fig. S4). The second confounding fac-
tor we considered is alternative splicing patterns. Different
splicing patterns between cell lines might result in different
gene-level expression measurements. We used the Integrative
Genomics Viewer (37) to visualize the alternatively spliced
mRNA of ATMIN and compared the pattern of splicing between
HG00097 and HG00364, as well as that of BEND4 between
NA12889 and NA18858. In either case, we observed no difference
in splicing patterns (Supplementary Material, Fig. S5).

Discussion
Emerging experimental and statistical techniques have enabled
the rigorous analysis of phenotypic variability (15). Here, focus-
ing on the variability of gene expression, we found that evQTLs
are abundant and widespread across the human genome, which
confirms our previous findings (11,12). More specifically, we

used the two-stage SVLM approach to the Geuvadis data of 345
EUR samples and identified 1,513 (505 cis- and 1,008 trans-)
evQTLs at FDR of 10%. The numbers of evQTLs are different but
largely comparable to those reported in a previous study by
Brown et al. (9), in which 508 cis- and trans-evQTLs were identi-
fied at FDR of 5% with 765 LCLs from twin samples. The discrep-
ancy in numbers of detected evQTLs between the two studies is
attributable to differences in sample size, sampled populations,
genotyping technique, and FDR cutoff.

Importantly, we discovered two distinct modes of action,
through which common SNPs influence gene expression vari-
ance: epistasis and the destabilizing mutation. The epistasis
model involves two or more variants that interact in a non-
additive fashion (9,38) or link to each other through incomplete
linkage disequilibrium (12,39). With this model, detecting in-
creased phenotypic variance has been used to identify epistasis
(10,33,40). The destabilization model, on the other hand, con-
cerns the effect of single variants that work alone to destabilize
phenotypic expression, pushing a proportion of individuals
away from the robust optimum.

Dissecting epistatic and destabilizing effects in the context
of evQTLs is technically challenging. Under the experimental
conditions applied, we found that a quarter of evQTLs with de-
tectable peSNPs could be explained by the epistasis model.
However, a number of factors may cause the real fraction of epi-
static evQTLs to be underestimated. These factors may include
the low allele frequency and low effect size of either evSNPs or
peSNPs, low power for detecting evSNPs or peSNPs due to the
multiple testing burden, incomplete genotype information, and
uncorrected environmental or technical effects. Indeed, in a
previous study (12), we found that nearly half of evQTLs could
be attributed to epistasis. Thus, caution should be taken when
classifying any given evQTL as being explained by the destabili-
zation model rather than the epistasis model, especially since
our single epistatic variant (peSNP) detection ignores possible
polygenic epistatic interactions. The absence of peSNP associ-
ated with an evQTL should not be considered as evidence of the
absence of high-order epistatic interactions between SNPs,
which are responsible for the formation of the evQTL.

The precise mechanisms underlying the destabilizing func-
tion of evSNPs are not completely understood. One possibility is

Figure 3. The negative correlation between gene expression variance and time-course stability presents in a destabilizing evQTL, but not in an epistasis evQTL, show-

ing by the same cell lines. (A) The most left panel shows the gene expression levels of ATMIN among rs1018804 genotypes. Red arrows indicate the cell lines, HG00097

and HG00364. Right panels show the results of three replicates of the repetitive qRT-PCR analysis for ATMIN at ten different time points. At each time point of each bio-

logical replicate, three technical replicates are performed to obtain average DCt values, indicated by red circles. (B) Same as (A) but showing the results for the epistatic

evQTL, ZNF10-rs7972363.
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that evSNPs act through genotype-environmental (GxE) interac-
tions (41), e.g. the destabilizing mutations make the cellular
transcriptional system more sensitive to the changing environ-
ment. To test this, we have taken the advantage of the identical
genetic background of MZ twins and revealed that destabilizing
evSNPs are associated with varying degrees of transcriptional
stability. The increased discordant expression between MZ
twins seems to support the GxE effect related to the destabiliz-
ing mechanism. Furthermore, destabilizing evSNPs are associ-
ated with increased transcriptional instability as shown by the
repetitive qRT-PCR experiment. Nevertheless, future studies are
needed to determine how the unstable expression of a gene in
single samples could contribute to the gene expression variabil-
ity of the population as a whole.

One of the underlying sources of the gene expression vari-
ability is the cell-to-cell variability in mRNA levels, typically re-
ferred to as stochastic noise (6,42–45). Recently developed
single-cell technologies (46) have enabled the measurement of
the cell-to-cell variability in gene expression (6,43–45).
Destabilizing mutations may include those that affect transcrip-
tion factor binding (6), the balance between promoter activation
and transcription (44), the burst frequency and burst size (45),
and the genetic redundancy of transcriptional networks (43).
Although we did not evaluate the destabilizing function con-
ferred by evSNPs at the single-cell level in this study, we hy-
pothesize that decreased cell-to-cell variability in gene
expression, i.e. more homogeneous expression across single
cells, may result in less stable gene expression of samples. This
is because the highly coordinated regulation of transcription is
likely to drive all cells to be responsive to the same regulatory
signal, then when the signal changes, the new signal will drive
the whole population of cells to another level away from the
previously established level. Hence, the sample shows a re-
duced stability of gene expression. Conversely, a high level of
transcriptional heterogeneity across single cells may result in a
more stable gene expression, as the cell-to-cell stochastic noise
would cancel out when samples of many cells are evaluated.

Despite many unknowns and the need for extra effort to re-
veal the precise mechanisms of evSNP function, we anticipate
our findings have many implications. For example, given that
regulatory variations play critical roles in many human diseases
(47), understanding how genetic variation contributes to in-
creasing gene expression variability will facilitate the identifica-
tion of disease-related variants. This is especially true when
gene expression heterogeneity characterizes traits or diseases
such as aging (48–50) and cancer (51). For many diseases that
display a high degree of phenotypic heterogeneity among pa-
tients, we may consider that the increased phenotypic variabil-
ity is due to the variability-controlling mutations (such as
evSNPs). The improved insight of how these mutations influ-
ence the variability may bring us closer to causal mutations un-
derlying individuals’ predispositions to disease. This strategy,
in combination with other methods for estimating the impact
of rare mutations, such as the aberrant gene expression analy-
sis we have developed (52), would be valuable in the pursuit of
personalized medicine. Furthermore, we suggest that
variability-controlling mutations could be potential targets for
genomic editing or drug development.

In conclusion, we described a new groups evSNPs that may
act to destabilize the gene transcription, which is distinct from
the previously reported epistatic SNPs. Destabilization SNPs act
independently from other SNPs, whereas epistatic evQTLs can
interact with each other to influence gene expression variabil-
ity. Collectively, SNPs of both action models assist shaping the

variability of gene expression in a population and contribute to
the formation of evQTLs. Our findings provide unique entry
points to follow-up mechanistic analyses, which may open up
new, variability-centred research avenues for mapping complex
traits. Methods derived from such a new analytical framework
may allow us to identify novel causal loci, which would other-
wise be missed by traditional mean-focused methods.

Materials and Methods
Gene expression and genotype data for evQTL analysis

The Geuvadis RNA-seq data were downloaded from the EBI
ArrayExpress website using accession E-GEUV-1 (28). The data
matrix contained the expression levels of Gencode (v12)-anno-
tated genes in 462 unique LCL samples. The data had been
quantile normalized and further processed using the method of
probabilistic estimation of expression residuals (PEER) (53).
From the downloaded data matrix, we extracted the expression
values of autosomal protein-coding genes in 345 EUR samples,
whose genotype data is available from the website of the 1,000
Genomes Project (29). Based on the result of the principal com-
ponent analysis, we excluded 19 samples whose global expres-
sion profiles deviated the most from those of the rest of the
samples. The final expression matrix contained the data of
15,124 protein-coding genes for 326 EUR samples. We also ob-
tained the genotype and expression data from the TwinsUK
project (34,35). The expression data from 139 pairs of MZ twins
(34) were extracted as previously described (12).

Identification of evQTLs

We adopted the DGLM method to test for inequality in expres-
sion variances and measure the contribution of genetic variants
to expression heteroscedasticity. We considered the following
model: yi ¼ lþ xibþ giaþ ei, ei � Nð0;r2exp gihð ÞÞ, where yi indi-
cates a gene expression trait of individual i, gi is the genotype at
the given SNP (encoded as 0, 1, or 2 for homozygous rare, het-
erozygous and homozygous common alleles, respectively), �i is
the residual with variance r2, and h is the corresponding vector
of coefficients of genotype gi on the residual variance. Ages of
subjects and the batch of data collection were modelled as co-
variates xi. With this full model, both mean and variance of ex-
pression yi were controlled by SNP genotype gi. We also used the
SVLM procedure (31) to detect evQTLs. The SVLM method con-
sists of two steps. First, a regression analysis is applied where
the gene expression trait is adjusted for a possible SNP effect
and the effect of other covariates is also regressed out. Second,
another regression analysis is applied to the squared values of
residuals obtained from the first stage, using the SNP as the pre-
dictor to capture the effect of the SNP on the expression resid-
uals. Simulation-based analysis was performed to estimate the
power of the two evQTL detection methods. Briefly, a popula-
tion of 10,000 individuals with a hypothetical evSNP with a mi-
nor allele frequency (MAF) of 0.4 was generated. Following the
Hardy–Weinberg equilibrium, the 10,000 simulated individuals
were randomly assigned into one of three genotype groups indi-
cated with 0, 1, 2 for the number of minor allele of the evSNP.
The gene expression variance was set as 1.0, 2.0 and 4.0, respec-
tively, and the mean was set as zero the three genotype groups.
Two evQTL detection methods DGLM and SVLM were applied to
the same simulated population and each was repeated for 1,000
times to estimate the rate of positive detection, i.e. the power of
the method. The whole analysis was repeated with different
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sample sizes ranging from 300 to 1,000 with a step of 100 to es-
tablish the power as a function of varying sample size
(Supplementary Material, Fig. S1).

Identification of peSNPs that interact with evSNPs

We used a two-stage procedure to identify peSNPs that interact
with evQTLs. We first partitioned individuals into L and S
groups according to whether genotypes of the evSNP are associ-
ated with large (L) and small (S) variance of gene expression.
Then, we scanned genome-wide SNPs. For each SNP, the eQTL
analysis by linear regression model was conducted among indi-
viduals of the L group. For each top SNP with a high genotype
heterozygosity difference, a linear regression (54) was per-
formed on the SNP’s genotypes and gene expression. The most
significant SNPs were retained after applying an arbitrary P-val-
ue¼ 0.0005 as cutoff and were reported as candidate interacting
SNPs.

Estimation of time-course stability of gene expression
using repetitive qRT-PCR assay

LCLs were purchased from the Coriell Institute (https://catalog.
coriell.org/). Cells were maintained in Roswell Park Memorial
Institute Medium 1640 supplemented with 2mM L-glutamine
and 15% FBS (Seradigm) at 37�C in a humidified atmosphere
containing 5% CO2 (v/v). For the time course experiment, cell
lines were seeded at 1� 106 cells per 10 cm dish and then incu-
bated in the culture medium. Cell lines were screened using the
MycoFluor mycoplasma detection kit (Invitrogen) to ensure
their mycoplasma-free condition. Cells were collected at ten dif-
ferent time points from 12 to 72 h after seeding. Total RNA was
extracted using Trizol reagent (Invitrogen). RNase-free DNase
(Ambion) was used to remove trace amount of potential geno-
mic DNA contamination. RNA purity and concentration were
determined using a Nanodrop ND-100 Spectrophotometer. The
concentrations of total RNA were adjusted to 100 mg/ml. Real-
time PCR assays were performed using iTaq Universal SYBR
Green One-Step Kit (Bio-Rad Laboratories) with primers shown
in Supplementary Material, Table S4. Template total RNA was
reverse transcribed and amplified in a Bio-Rad CFX96 Real-Time
PCR Detection System (Bio-Rad Laboratories) in 20-ml reaction
mixtures containing 10 ml of iTaq universal SYBR Green reaction
mix (2�), 0.25 ml of iScript reverse transcriptase, 2 ml of 100 nM of
forward and reverse primers mix, 1 ml of total RNA template,
and 6.75 ml of nuclease-free water, at 50 �C for 10 min, 95 �C for
1 min, followed by 40 cycles of 95 �C for 10 s and 58 �C for 30 s.
Melting curves were measured from 65 �C to 95 �C with 0.5 �C of
increment. The average expression of two housekeeping genes,
CHMP2A and C1orf43, was used for normalization. The choice of
using these two genes as reference was based on a recent RNA-
seq study for constantly expressed human genes (55). The ex-
pression stability of the two genes was further confirmed by us-
ing geNorm and NormFinder programs (56,57).

Flow cytometric analysis of cells in different phases of
the cell cycle

The proportion of cells at different cell cycle statuses was deter-
mined using flow cytometry analysis, based on the measure-
ment of the DNA content of nuclei labelled with propidium
iodide (PI). Cells were harvested at 24, 36, 48, 60, and 72 h after
plating. Cells were resuspended at a concentration of 1� 106/ml

in cold PBS. After 1 ml of ice-cold 100% ethanol had been added
dropwise, the cells were fixed at 4 �C for at least 16 h. Fixed cells
were pelleted, resuspended in 1ml of PI staining solution
(50 mg/ml propidium iodide, 100 units/ml RNase A in PBS) for at
least 1 h at room temperature and analysed on an FACS flow cy-
tometer (BD Biosciences). By using red propidium-DNA fluores-
cence, 30,000 events were acquired. The percentage of cells in
G0/G1, S and G2/M phases of the cell cycle was calculated using
Flowjo v10 (Tree Star).

Supplementary Material
Supplementary Material is available at HMG online.
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