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Abstract

Where convenient phenotypic readouts are available, saturation mutagenesis coupled to deep 

sequencing provides a rapid and facile method to infer sequence determinants of protein structure, 

stability and function. We provide brief descriptions and currently available options for the various 

steps involved, and mention limitations of current implementations. We also highlight recent 

applications such as estimating relative stabilities and affinities of protein variants, mapping 

epitopes, protein model discrimination and prediction of mutant phenotypes. Most mutational 

scans have so far been applied to single genes and proteins. Additional methodological 

improvements are required to expand the scope to study intergenic epistasis and intermolecular 

interactions in macromolecular complexes.

Introduction

Mutant phenotypes are a key resource for obtaining insights into protein function. Many 

such phenotypes, studied together, provide a rich repository for understanding determinants 

of protein structure, stability and folding.

When a convenient phenotypic or ligand binding screen or selection is available, the 

saturation mutagenesis or deep mutational scanning approach, where every amino acid is 

individually mutated to every other amino acid, is of great value. Using next-generation 

sequencing, one can then link genotype to phenotype without the need for laborious 

processes involving protein purification and characterization. These studies have the 

capability of examining all possible single-site mutations, most of which have not been 

sampled in nature by evolution.
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The intent of this review is to highlight recent advances and limitations in methods for 

generation and screening of saturation mutagenesis libraries, and particularly to highlight 

novel applications of the basic approach. An outline of the methodology and some of the 

initial applications have been detailed in earlier comprehensive reviews [1–3].

Generation and sequencing of saturation mutagenesis libraries

The expanding list of proteins subjected to saturation mutagenesis for various applications 

largely consist of bacterial antibiotic resistance proteins [4,5], enzymes [6,7], proteins that 

are essential for host survival, and small protein domains [8–10]. Such experiments differ in 

the type and size of the library and the method used for screening or selection.

Amongst the methods used for library generation, PFunkel is one of the popular early 

methods [11]. The PFunkel method requires a bacteriophage preparation of a Uracil 

containing ssDNA template. This is followed by PCR cycling using kinased mutagenic 

oligos as primers, with subsequent degradation of the Uracil containing template with Uracil 

DNA glycosylase and ExoIII. To abrogate the need of bacteriophage propagation, a nicking 

mutagenesis method [12] was developed that requires the template to instead have a 7-bp 

BbvCI restriction site. These sites allow successive creation and degradation of a wild-type 

ssDNA template through nicking, with a pair of endonucleases (Nt.BbvCI and Nb.BbvCI) 

that each recognize the same site but nick only one strand. Programmed allelic series (PALS) 

mutagenesis is another variant that utilizes a microarray based synthesis of mutagenic 

primers targeting a sequence of interest [13]. Programmed mutations are introduced by 

primer extension. While convenient, with the above ‘one pot’ reactions it is not possible to 

know the relative efficiency of mutagenesis at each position until the deep sequencing is 

complete. Another convenient method is the inverse-PCR based methodology for creating 

mutagenic libraries on templates of virtually any size in a 96 well plate format, which allows 

for rapid monitoring of individual reactions. Following PCR, all reactions can be pooled for 

the remaining steps [14].

Alternatively, large numbers of double-stranded DNA sequences can now be rapidly 

synthesized in a pooled fashion (upto 12,000 sequences per pool) and are commercially 

available at modest cost [15] (currently marketed by Agilent Technologies, Twist 

Biosciences, and Custom Array Inc). The synthesis is currently limited to a maximum of 

200 bases. An earlier methodology, called MITE (Mutagenesis by Integrated TilEs) made 

use of six synthetic oligo pools (tiles) for generating a site-saturation library of a 264 aa long 

protein [16]. Each tile differed in a central variable region and shared homology with the 

vector at both ends. These technologies bypass the need for carrying out mutagenesis and 

multiple mutations can be encoded in a given sequence. However, they also appear to result 

in additional mutations. The errors are reported to be as high as 60% (Agilent and Custom 

Array) to 40% (Twist Biosciences) [17]. Although the origins of these errors have not been 

rigorously tested, non-matching reads are usually caused by a combination of oligo library 

synthesis errors, post-synthesis amplification errors, as well as sequencing errors. These 

errors often complicate the downstream single mutant analysis because of the limited read 

lengths conveniently accessible by current deep sequencing technologies. For many 

applications it is desirable to make use of a saturation mutagenesis method that results in 
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generation of primarily single mutants. This ensures that majority of the reads will have a 

single mutation, even in cases where one is unable to sequence the whole gene in a single 

read.

The dominant platform of choice for deep sequencing is Illumina. The read length routinely 

achievable on most Illumina platforms is currently about 2*250bp. Certain applications may 

require longer read lengths. Sequencing platforms such as PacBio (Pacific Biosciences) and 

Nanopore sequencing have long read lengths [18], but these platforms have both lower 

accuracy and throughput with error rates typically greater than 10%. These platforms are 

therefore currently not routinely used [19]. To overcome this read length limitation, there are 

innovative methods that allow assembly of short-barcoded reads to form full length sequence 

that are beyond the read length limits of Illumina. These methods rely on barcoding single 

DNA molecules in such a way so as to allow reconstruction the full- length sequence based 

on barcode reading, with accuracies as high as 99.97% [20]. Brief descriptions of these 

methods are indicated in Table 1. While potentially powerful, most of the above methods are 

not widely used at present, presumably because of the additional steps involved, relative to 

normal amplicon sequencing.

Choice of screening method

An efficient screen is critical and should be, robust, parallelizable and sensitive. The 

resolution of the screen depends crucially on the methodology adopted as well as on the 

phenotype assayed. Very small changes in activity/stability/binding affinity, especially the 

ones that are beneficial, are often missed in many screens. Yeast surface display has become 

a popular method of choice for phenotype screening. Theoretical and technical 

considerations for performing FACS based mutational screens of full length proteins have 

been extensively discussed [21]. For some applications involving fitness estimates or non-

binary interactions, growth based screens may be more physiologically relevant for assays of 

protein function. Some of the recent studies that used different methods of screening have 

been summarized in Table 2. Most saturation mutagenesis studies till date have focussed on 

obtaining the enrichment ratios of mutants relative to WT, pre and post selection. For FACS 

based studies, this will depend on the choice of sorting and gating parameters as well as 

ligand concentrations and incubation time used [22]. For growth based selections, the 

enrichment ratios will depend on the protein expression levels and applied selection 

pressure. Hence, obtaining the frequency distribution of mutants across different bins (that 

comprise either different binding affinities or expression levels) may be more informative 

and useful than enrichment ratios, since the amount of protein for each variant displayed or 

produced may vary considerably [23].

A recent study [24] employed two different screens for two proteins to screen for mutants 

with increased solubility and then screened positive hits for activity to address the trade-off 

between enzyme solubility and activity. This also allowed the authors to assess the merits 

and demerits of both growth-based vs. display-based screens. Although the phenotypes 

assigned by the two complementary methods for both the proteins correlated well, the 

number of false positives obtained with yeast surface display based methodology was 

marginally higher than the growth-based selection. Since the readout of surface display is 
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the per-cell number of epitope tags labelled by a fluorescently conjugated antibody, the 

relationship between fluorescence and fraction of protein surface displayed breaks down 

when destabilization can increase accessibility of the epitope tag, resulting in false positives.

Development of dedicated servers and web tools that allow rapid analysis of the deep 

sequencing data have further aided in extracting useful and reliable data, although given the 

diversity of approaches, applications and sequencing platforms, typically some 

computational expertise is essential to analyze data from mutational scanning experiments. 

ENRICH is a python based software that transforms raw sequencing reads from the pre and 

post selection populations into enrichment ratios [25,26]. Alternatively the enrichments can 

be expressed as likelihood based calculations [27] rather than ratios. Other tools that allow 

pre-processing of the Illumina NGS data include TRIMMER [28], FLASH (fast length 

adjustment of short reads) [29] and PEAR (Illumina Pair-End read merger for DNA 

fragments) [30], which are now routinely used to merge overlapping reads in paired end 

libraries, with a fragment size shorter than twice the read length.

Studies with multisite mutant libraries

Studies involving creation of multisite mutant libraries by random mutagenesis or by 

saturation mutagenesis in the background of a single mutation to test which alleles interact 

with the primary mutation, find diverse applications such as studying protein-ligand 

interactions [22,31], redesigning interfaces [32] and studying the contribution of epistasis in 

the fitness landscape of proteins and RNA[10,33–35].

One such study involved assessment of more than 100,000 mutants including 40,000 double 

mutants in an RNA recognition motif in S.cerevisiae that yielded a systematic picture of 

intragenic epistasis [36]. Another study screened a library containing all 160,000 variants of 

PhoQ at four key interface positions and used a two-step selection coupled to next-

generation sequencing to identify 1659 functional variants [32]. Both positive and negative 

selection was combined to map the sequence space underlying the interface formed by 

bacterial two-component signalling proteins, PhoQ-PhoP in vivo. Another recent study 

examined 1000 mutants at 9 residues at the active site of hsp90 in the background of seven 

individual mutations that had a wild type like phenotype [33]. This allowed the authors to 

study slightly deleterious mutations that have the potential to become fixed in the 

background of other permissive mutations.

Evolutionary pathways of protein function are complex and moulded by the strength and 

duration of the selection pressure. The protein fitness landscape for Amp resistance was 

probed along the evolutionary pathway from TEM-1 (resistant to ampicillin) to TEM-15 

(resistant to cefotaxime) [19]. Both pairwise and tertiary epistasis was studied by 

constructing and analysing single mutant libraries of the full length protein in the 

background of known single mutations that switch specificities to cefotaxime.
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Recent applications of deep mutational scanning methodology

Protein model discrimination

As interactions between pairs of residues tend to remain conserved throughout evolution, 

compensatory mutations in these pairs can be used to infer residue proximity in the 

corresponding three-dimensional protein structures. This residue-residue contact information 

can be experimentally obtained from double mutant saturation mutagenesis libraries (Figure 

1A). Using E. coli CcdB toxin as a test protein, an experimental method termed as saturation 

suppressor mutagenesis coupled to deep sequencing (SAS-seq) was developed to acquire 

reliable residue contact information [37]. This was used to determine the functional 

conformation adopted by the membrane protein DgkA in vivo. In principle, large double-

mutant libraries to identify suppressors of multiple individual inactive mutations can be 

subjected to deep sequencing to identify large number of suppressor pairs which can be 

subsequently used for structure prediction as described above. A similar rationale is used in 

complementary methods that infer residue contacts from correlated substitution patterns 

from a multiple sequence alignment; however, these methods typically need a large number 

of sequences in the MSA for accurate contact prediction and little contact information is 

available for highly conserved positions. These methods usually yield large numbers of false 

positives and false negatives and do not necessarily predict residues in physical contact. 

Hence saturation suppressor methodology can be used to augment information from MSA 

based methods and also identify globally stabilizing mutations [37].

Epitope mapping

Mutagenesis coupled to deep sequencing has been extensively exploited for screening 

protein binder libraries [2]. However there are fewer studies that use this to delineate ligand 

binding sites including antibody epitopes [38,39]. One complication is that mutations at both 

buried and exposed, ligand binding sites can affect protein function. Distinguishing between 

the two is non-trivial in the absence of an accurate structural model. Another potential 

complication is that surface residues distal from a ligand binding site can exert allosteric 

effects, though a recent study [40] suggests this may not be a major concern. An ideal 

substitution for detecting protein-ligand interfaces should exhibit a large difference in 

mutational effect between interface and non-interface positions. A recent study analyzed 

large mutational datasets of fourteen proteins [41]. Most of the data sets reported mutational 

effect scores as the log-transformed ratio of mutant frequency before and after selection, 

divided by wild type frequency before and after selection. A systematic analysis of the 

datasets revealed that alanine substitutions were amongst the worst discriminators for 

interface and non-interface positions. Although deep mutational scanning can reveal the 

functional consequences of all possible single amino acid substitutions in a protein, these 

experiments can sometimes be expensive or unwieldy, depending upon the application. In 

many cases, scanning mutagenesis with one or a few amino acids is useful for determining 

functionally important positions, probing protein-ligand interactions and answering other 

specific questions. A recent approach for mapping protein: ligand binding sites and 

conformational epitopes makes use of single cysteine variants coupled to chemical labelling 

[42] (Figure 1B). The method relies on masking the epitopes residues by label rather than 

mutation for disrupting binding. An added advantage of the approach is that it can aid in 
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distinguishing between buried and exposed residues and unlike Ala scanning, the method 

identifies most residues at the interface, instead of just hot-spot residues.

Quantitative affinity and stability measurements from deep sequencing data

With advances in technology and reduction in sequencing costs, there has been a 

considerable increase in the use of saturation mutagenesis to obtain qualitative information 

(binders and non-binders; active vs. inactive etc.) but fewer attempts to obtain semi-

quantitative and quantitative estimates of parameters such as binding affinity (KD) and 

stability (Cm, Tm). Employing variant sorting similar to the SORTCERY method, deep 

sequencing data was used to infer dissociation constants for 1000 variants of scFv’s to 

fluorescent antigen through analysis of their titration curves [43]. The target molecule (here 

‘antigen’) is fluorescently labelled and the cells displaying a given variant of the antibody 

are sorted into multiple bins based on their affinities. Since each variant antibody is sorted 

multiple times, it is associated with a histogram of counts spread over one or multiple bins. 

The study is repeated using various antigen concentrations spanning a range of KDs to 

construct sigmoidal titration curves (Figure 1C). However differences in antibody expression 

in different variants can complicate interpretation of such data.

In a recent comprehensive study, computational protein design, next-generation gene 

synthesis, and a high-throughput protease susceptibility were combined to measure folding 

and stability for more than 15,000 de novo designed miniproteins, 1000 natural proteins, 

10,000 point mutants, and 30,000 negative control sequences [17]. Analysis of the data was 

used to systematically examine how sequence determines folding, stability and guide 

successive iterations between design and experiment to increase the design success rate. 

Using deep sequencing data on proteins displayed on the yeast surface that were subjected to 

various concentrations of protease, the authors could obtain relative stability estimates for a 

large number of variants without purification. It is noteworthy, that the proteins studied in 

the above paper have small loop lengths, thereby proteolysis under native conditions due to 

local fluctuations, was not observed. This will likely be a confounding factor for larger 

proteins [44]. Moreover, the approach is currently limited by the length of the 

oligonucleotide synthesis to very small proteins. This methodology has been extended to 

design more than 20000 mini proteins that target influenza haemaglutinin and botulinium 

neurotoxin B. The high affinity binders, selected through yeast surface display, provided 

potent prophylactic and therapeutic protection against influenza [45].

Prediction of mutant phenotypes

Unlike with antibiotic resistance, for most human diseases the genotype-phenotype 

relationship is often not straightforward. This is due to factors such as multiple interactions 

of the proteins at the cellular level, heterozygosity, protein threshold and protein level effects 

and in many cases, unknown inheritance patterns. While studies attempt to infer relative 

effects of mutations on fitness, their application to understand natural evolution or predict 

clinical significance of mutations in disease is subject to several limitations. In natural 

evolution, the selection pressures are unknown and variable, and possibly very different from 

those observed in the laboratory. In addition, over long timescales, small differences in 

fitness that are undetectable in the laboratory can lead to substantial differences in fixation 
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probability [46]. Similar considerations apply to correlating fitness measurements from 

cellular screens with clinical data. Another concern is the use of heterologous promoters to 

drive expression of the gene of interest, typically at levels that are non-physiological. With 

respect to disease causing mutations, it is important to have validated clinical data on the 

functional effects of multiple point mutants in the system of interest and negative control 

data from healthy individuals, as the phenotypes would likely depend on factors specific to 

each protein. Such validated control data can be used to calibrate the output of experimental 

mutational scans to aid in improved prediction of mutant phenotypes [47] (Figure 1D).

Many proteins exhibit a threshold effect in phenotype that necessitates saturation 

mutagenesis scans at different expression levels of the protein, to rank order mutants in 

terms of their activity. In a recent study, deep mutational scanning data for ~1700 single-site 

mutants of the 100 residue protein, CcdB were collected at multiple different expression 

levels. The data were analyzed to provide possible explanations for the patterns of 

mutational tolerance observed and then validated by purifying and studying individual 

mutants in terms of stability, solubility and folding kinetics. While these studies are 

laborious, they provide crucial information. The data suggested that mutational effects on 

folding kinetics rather than stability are important determinants of in vivo phenotypes and 

add to efforts in predicting fitness effects of mutations [48].

Another comprehensive effort to understand and obtain mutational phenotypes for single-

site mutants for human proteins, combined random codon-mutagenesis and multiplexed 

functional variation assays with computational imputation and refinement to produce 

exhaustive maps for human missense variants [49]. The framework was applied to four 

proteins: UBE2I, SUMO1, TPK1, and CALM1/2/3. The functional impact of ~16,000 

missense variants was experimentally characterized and several pathogenic variants were 

identified. These functional complementation assays test the variant gene’s ability to rescue 

the phenotype caused by reduced activity of the wild type gene.

Future directions

Over the past five years, several macromolecular systems have been probed by saturation 

mutagenesis, coupled to deep sequencing. While proteins subjected to such mutational scans 

till date are fairly diverse in structure and function, important categories of proteins that are 

underrepresented in these analyses are membrane proteins [50,51], nucleic acid: protein 

complexes[36] and natively unfolded proteins for which mutational effects are not as well 

understood as for globular proteins. The lack of deep sequencing technology that combines 

long read lengths with high accuracy is a significant limitation that complicates quantitative 

analyses of multisite mutations, epistatic interactions and macromolecular complexes. Other 

limitations include efficient transfer of mutational libraries into mammalian cells, 

understanding and accurately predicting how mutations affect protein structure and stability, 

how best to correlate mutational data from laboratory selections/screens to clinical data, and 

to predict phenotypic effects of mutations at the organismal level. Despite these challenges, 

with the explosion of information-rich saturation mutagenesis datasets, a vast amount of 

information is now available for understanding determinants of protein function and 
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stability, to delineate evolutionary trajectories, guide protein design and importantly, 

predicting and understanding the effects of mutations on mutant phenotypes.
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Figure 1. Select applications of the site-saturation mutagenesis coupled to deep sequencing 
approach
(A) Strategy to discriminate between possible models of a given protein using SAS-seq. A 

loss of function mutation (‘X’) in a given residue in the protein is identified (shown in 

white). This mutation is introduced into an existing saturation mutagenesis library, which is 

screened to identify suppressors based on activity, through deep sequencing. Mutations in 

the protein form a suppressor pair if the two residues interact. These suppressor pairs can be 

subsequently used to discriminate correct models (Model 1) from incorrect ones (Model 2). 

(B) The gene encoding the protein with a cysteine mutation (shown as a red dot) is displayed 
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as a fusion protein on the surface of yeast cell. Ligand (here, antibody) binding to the 

displayed protein is monitored by FACS. Cysteine on the displayed protein is labeled with 

Biotin-PEG2-maleimide (shown in blue). If this cysteine is a part of the ligand/protein 

binding site, then the label will prevent binding of protein/ligand to the displayed protein 

leading to loss in fluorescence signal. (C) Yeast surface display is used to express proteins of 

interest which can be detected by labelled antibody against a tag. The ligand is fluorescently 

labelled and the cells displaying a given variant of the target are sorted into multiple bins 

based on their affinities. Alternatively, the displayed protein can be subjected to protease 

digestion to assess stability. Since each variant is sorted multiple times, it is associated with 

a histogram of counts spread over one or multiple bins. The experiment is repeated using 

various ligand/protease concentrations spanning a range of dissociation constants to infer 

sigmoidal titration curves which are used to infer relative affinity or stability. (D) The 

functional effect of single mutants present in the library can be assessed through growth 

based or display based methods. These data can then be used to understand the molecular 

bases of observed phenotypes. Known structural and physiochemical properties such as 

those derived from measurements of average solvent accessibilities in a database of known 

structures or free energies of transfer from neutral to aqueous solution of cyclohexane, as 

well as determinants of phenotypes obtained from the mutational scanning experiments can 

then be used for the training models for mutant phenotype prediction. The parameters 

obtained from training dataset are applied to a test dataset and results are usually converted 

into discrete functional scores to predict if a mutation has a deleterious effect or is neutral.
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Table 1

Methods for reconstruction of longer reads from short amplicon sequencing

Method Steps involved Ref

Tag- directed

1. DNA fragments are ligated to tagged adaptors and amplified [52]

2. PCR products are concatemerized, sonicated and ligated to a ‘breakpoint’ adaptor

3. Breakpoint reads are grouped based on tag sequence to facilitate local assembly

Droplet- capture based

1. Isolation of single DNA molecules in droplets [53,54]

2. Amplification and fragmentation

3. Barcoding of the fragments

4. Sequencing and full length assembly using barcodes

Circularization based

1. Barcoding with two distinct barcodes via PCR amplification of single molecules [20]

2. Random fragmentation and circularization of fragments

3. Amplicon size selection and sequencing

4. Assembly of reads by barcode pairing

DMS-BarSeq

1. Barcoded strains are transformed with a specific variant [49]

2. Plate position-specific indexing is done for each strain

3. Growth curves of individual strains are reconstructed from the deep sequencing data
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Table 2

Methodological details for diverse saturation mutagenesis studies of protein function

Cell Type Protein/Gene name Library size Mutagenesis and screening methodologies Ref

Bacterial TEM-1 β-lactamase
287 positions, 3 libraries in single 
mutant backgrounds with 5434 
mutants in each

Pfunkel mutagenesis, selection on various 
antibiotic concentrations

[19]

Bacterial APH kinase 264 positions, 4234 mutants MITE (Mutagenesis by Integrated TilEs), growth 
selection on various aminoglycosides

[16]

Bacterial Ras 165 residues, 2 libraries in WT 
and single mutant backgrounds

Mutagenesis using partially overlapping primers, 
screening by bacterial two-hybrid system

[31]

Yeast Gal4 64 positions, 1196 mutants PALS (Programmed allelic series) mutagenesis, 
screening based on yeast two-hybrid system

[13]

Yeast Hsp82 ATPase domain 219 positions, 4021 mutants EMPIRIC methodology, growth rate screening [9]

Mammalian BCR-ABL1 kinase domain 20 positions, 380 mutants
CRISPR-Cas9-based genome editing approach, 
fluorescence- based screening by bulk 
competition of murine BalF3 cells

[55]

Bacterial GFP 51715 protein variants Upto 15 
mutations Random mutagenesis, FACS based screening [34]

Yeast BH3 peptides 1026 variants

Synthetic peptides, screened by SORTCERY 
(FACS screening and gating strategy that rank 
orders variants based on their relative counts in 
bins sorted based on affinities)

[56,57]

Mammalian Ubiquitin fused to EGFP N- terminal residues
Landing pad cell line was developed to transfer 
libraries of mammalian genes into the 
mammalian genome

[58]
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