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Abstract

The use of nucleic acid, DNA and RNA, based strategies to disrupt gene expression as a 

therapeutic is quickly emerging. Indeed, synthetic oligonucleotides represent a major component 

of emerging gene therapeutics. However, the efficiency and specificity of intracellular uptake for 

non-modified oligonucleotides is rather poor. Utilizing RNA based oligonucleotides as 

therapeutics is even more challenging to deliver, due to extremely fast enzymatic degradation of 

the RNAs. Like unmodified oligonucleotides, RNAs also get rapidly degraded in vivo and 

demonstrate large off-target binding events when they can reach and enter the desired target cells. 

One approach that holds much promise is the utilization of “click chemistry” to conjugate receptor 

or cell specific targeting molecules directly to the effector oligonucleotides. We discuss here the 

applications of the breakthrough technology of CuAAC “click-chemistry” and the immense 

potential in utilizing “click chemistry” in the development of new age targeted oligonucleotide 

therapeutics.

Keywords

Click Chemistry; siRNA; non-coding RNA; Protein conjugates

1. Introduction

Gene therapy is an emerging approach that targets intracellular nucleic acids, those DNA 

and RNAs, associated with human diseases. Synthetic oligonucleotides represent a major 

type of currently used gene therapeutics. However, the efficiency and specificity of 

intracellular uptake for non-modified oligonucleotides is poor, with the vast majority 

trafficking directly to the liver1. Utilizing RNA therapeutics are even more challenging to 

deliver, due to extremely fast enzymatic degradation of the RNAs. Like unmodified 
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oligonucleotides, RNAs also get rapidly degraded in vivo and show large off-target binding 

even when they can reach and enter the desired target cells.

Clearly, creating a successful gene therapeutic is not limited to ensuring a successful base-

pairing of a therapeutic to its target, but also ensuring stability and cell target specificity. 

Finding a suitable delivery carrier and enhancing the target specificity for gene therapeutics 

are both crucial key components required to advance oligonucleotide and RNA based 

therapeutics to a clinically relevant setting. Indeed, currently stability and receptor or cell 

targeting effectors can be added to both oligonucleotides and RNAs by conjugation with 

other biomolecules. Recent successful examples include oligonucleotide-lipid, 

oligonucleotide-carbohydrate and oligonucleotide-peptide conjugates (reviewed in2). An 

alternative to direct conjugations is the use of nanoparticles to shuttle therapeutic 

oligonucleotides with (in)organic polymers, small molecules and other biomolecules. The 

advantage of nanoassemblies is their relatively simple preparation compared to 

bioconjugation. However, nanoparticles formed by non-covalent interactions between 

molecules may inevitably prove to be unstable and require very fast delivery options, which 

are not available to date (reviewed in3).

Charged, chemically complex and sensitive biomolecules put limitations on the chemistry 

applied to link them. Click chemistry refers to a broad group of methods unified by the 

general concept of simple, biology-friendly and bioorthogonal procedures that conjugate 

molecules in a specific fashion. A breakthrough in click chemistry has been the development 

of copper-catalyzed click chemistry, CuAAC, by Sharpless, Finn et al. (2002). Rapidly after 

the discovery of CuAAC click-chemistry, the method was extended to the copper-free 

approach strain promoted click chemistry, or SPAAC, Diels-Alder, thiol-Michael click 

reactions. Today, several classical organic reactions have been modified to a “click” version. 

Each has its advantages and disadvantages and some can even be performed directly in live 

cells. With regards to gene therapy, CuAAC and SPAAC play a key role in creating 

decorated therapeutic DNA, RNA and their synthetic analogues, most of which have to date 

been evaluated in vitro (Figure 1). This is mainly due to the simplicity of the procedure, 

broad accessibility of the reagents and simple work up. However, new methods allow for the 

attachment of different modifications to one gene therapeutic, which potentially could be 

beneficial for in vivo applications. Indeed, a method to directly conjugate cell receptor 

targeted proteins, aptamers etc., to oligonucleotides or therapeutic RNAs could revolutionize 

oligonucleotide therapeutics.

Here in honor of one of the founders of “click chemistry”, Professor M.G. Finn’s 60th 

birthday, we review the current applications of click chemistry, CuAAC in particular the 

generation of new oligonucleotides and their nanoassemblies as therapeutic modalities.

2. Emerging targets in gene therapy and use of synthetic biomolecules

Therapeutic oligonucleotide strategies are promising owing to the fact they are designed a 
priori to be specific towards their target, with minimal off-target effects4. As such, targeting 

a single gene or RNA species with an oligonucleotide is thought to be a more effective 

approach in various diseases where drug approaches have shown reduced or limited efficacy. 
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However, limitations in delivering these molecules to the host, as well as identifying their 

distribution and target efficiency into target cells in a multicellular environment, have 

hampered the progression of these strategies into the clinic. Click chemistry provides a 

promising approach to generate oligonucleotides that can be delivered into target cells safely 

and with a high efficiency. Current strategies are in their infancy and have to date been 

mainly proof-of-concept. Most research to date focuses on different delivery strategies and 

visualization strategies of oligonucleotides being delivered into their cellular targets.

Recent studies have used click-chemistry to mediate the construction of nanoparticles that 

are loaded with their oligonucleotide cargo for efficient delivery into cells5–6. O’Brien et al., 

developed a new method called “SnapFect” using a nucleic acid complex with a bio-

orthogonal group and a modified cell surface to recognize and deliver the oligonucleotide 

complex into the cell7. This strategy had minimal toxicity, few steps, was highly efficient 

and is compatible with siRNA, CRISPR and microfluidic technology. The authors also 

found that this method is amendable to work in stem and primary cells. Other authors have 

developed moieties that may help to control gene silencing in vivo. Harun et al., developed 

siRNA molecules conjugated to a poly(N-isoproprylacylamide) moiety that behaves as a 

coil-globule that changes its conformation with heat, with an optimal conformation at 

35 °C8. The conformation results in accessibility of the siRNA to the RNA induced silencing 

complex. The authors tested the thermo-responsive siRNA conjugate and found that they 

were able to induce gene silencing at higher temperatures8.

Immunotherapy is a promising strategy in cancer therapy, and has shown recent success with 

the use of oncolytic viruses and CAR-T cell therapies. However, these strategies are 

expensive. As such, the use of other chemical adjuvants, such as cytokines, small 

oligonucleotides, or cancer antigens may be a more cost effective approach, despite their 

limited success to date.9 One innovative approach recently developed cell lines to express 

chemically modified glycan carrying azide moieties, which subsequently allowed the cells to 

be clicked with different adjuvants, including ODNs. These cells were found to be able to 

stimulate macrophages in vitro, and when injected into mice, resulted in significantly 

smaller tumor sizes, than the control cells. Additionally, when mice were re-challenged with 

unmodified cells, no new tumors developed, suggesting broad protection from immune 

system targeting of the tumor9.

Click chemistry approaches have been developed and effectively used to conjugate 

fluorescent molecules, 5’ caps, lipids, polysaccharides and peptides to RNA molecules10. 

Further, “click chemistry” has been developed as a strategy to circularize RNA10. Others 

have found using ”click chemistry” that bio-conjugating mRNA with different polyamines at 

the 5’cap, increased formation of poly-ion complexes (PICs) and their binding to initiation 

factor 4E to increase translational efficiency of the mRNA target in vitro11. These 

technologies may help to better understand gene regulation and result in the development of 

smarter strategies that have discreet and specific effects on their intended targets, by 

visualizing where these siRNA conjugates are delivered to in vivo and by using the most 

relevant moieties to obtain the best siRNA conjugates to effectively deliver and target the 

appropriate cells for treatment. Other uses of click-chemistry have been to develop better 

labelling of RNA in vitro and in vivo to better profile RNA populations in distinct cellular 
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populations.12–13 Furthermore, click chemistry has also been shown to be an effective tool to 

analyze the transport of stem cells to different locations14–15 and has been used to 

understand the molecular dynamics and potential heterogeneity in drug activity in vivo16.

While progressive steps have been made in creating better deliverable molecules for gene 

therapy, few studies have been focused on a specific disease using an RNA-conjugate to 

mediate a positive medical outcome. The current strategies suggest that using the tool-box 

that click-chemistry affords, creating or redeveloping old strategies with new moieties for 

better delivery, enhanced uptake, and increased specificity into target cells, may result in 

new pathways for gene therapy. Indeed, research by our group(s) has focused largely on the 

use of peptide moieties that have shown to have great potential in overcoming the cell 

membrane to deliver its siRNA cargo to effect gene silencing for both HIV17 and cholesterol 

regulation18.

3. Growing role of click chemistry in the development of gene therapeutics

Since the first reports on click chemistry for gene therapeutics,19–20 the original CuAAC 

approach has been extended by alternative chemical strategies. Wiessler et al., explored the 

Diels Alder click chemistry for therapeutic peptide nucleic acids (PNA; Figure 2)21. Several 

groups have demonstrated that PNA conjugates created by click chemistry have 

advantageous delivery properties compared to unconjugated precursors. In one body of 

work, Pipkort et al., applied a similar approach to Diels Alder click, for cell-specific 

fluorescence imaging using PNA probes.22 Using modular PNA probes allowed for the 

combination of the imaging and therapeutic activities in one PNA molecule. The mRNA 

product of the cysteine protease cathepsin B (CtsB) gene was imaged and simultaneously 

degraded using the peptide-PNA conjugate. The degradation was completed by adding a 

cleavage site to the CtsB complementary PNA probe. Further, Wojciechowska et al., used 

click chemistry to make cell penetrating peptide (CPP) attached to PNA for atherosclerosis 

treatment, although the affinity to target hSTAT1 mRNA was demonstrated only in vitro23. 

The toxicity of PNA has been reported by several groups24–25, however it is not commented 

on in the aforementioned PNA click papers.

For therapeutic applications, there is a need for purification from any residual copper that 

can be left in the product of the CuAAC reaction. This is particularly important when cell 

penetrating and other peptides are clicked, due to the high affinity of amino acids to 

copper27–28. One approach is the use of Tangential flow filtration (TFF) purification that 

yields hundreds of grams of clicked biomolecules without any sign of toxicity in cells or in 
vivo29. Another strategy is using a copper-free click reaction. Wang et al., used SPAACto 

modify DNA with diverse functionalities30. SPAAC has advantages of high reaction rate at 

ultramild conditions when the two molecules to be reacted have no steric hindrance. 

However, the rate of SPAAC can be lower compared to CuAAC when clicking longer 

peptides (> 20 amino acids) to oligonucleotides31.

Phosphorodiamidite morpholino oligonucleotides (PMO) conjugated with cell-penetrating 

peptides exhibit a high potential for application as therapeutics for Duchenne muscular 

dystrophy32. Conjugates were initially screened using a selection of peptide conjugates 

Astakhova et al. Page 4

Mol Pharm. Author manuscript; available in PMC 2018 August 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(SELPEPCON) procedure and then the best hits were tested in cells. The SELPEPCON 

procedure is beneficial for the selection of bioactive peptides that suggest the possibility of 

crossing the blood-brain barrier through the conjugates and simultaneously being time and 

cost effective for therapeutic screening32.

Since the late 2000s, most studies on click chemistry for gene therapy have used 

nanomaterials, being beneficial for the delivery and activity of gene therapeutics. Ghosh and 

Hamilton developed thermosensitive dendrimers based on G-quadruplex forming CG rich 

sequences33. They used different metal ion concentrations to drive the assembly which was 

confirmed by imaging. DNA-microcapsules prepared by Cavaleri et al. contained the 

hydrophobic core built from a poly N-isopropylacrylamide (PNIPAM) polymer and reactive 

“click” domains34. The products were decorated with DNA and poly ethylene glycol (PEG) 

and showed higher stability that the analogues that did not contain the PNIPAM hydrophobic 

core (Figure 3A).

Clicking cargos for gene therapeutics is another recent approach. Alshaer et al., 
functionalized liposomes with an anti-CD44 aptamer via a thiol-maleimide click reaction, 

for selective targeting of cancer cells – Fig. 3 B)35. Uptake was proven in two CD44(+) 

human cancer cell lines, lung cancer A549 and breast cancer MDA-MB-231. A new 

cyclodextrin derivative CD-PLLD, consisting of a beta-cyclodextrin core and poly-L-lysine 

dendron, efficiently delivered siRNA encoding plasmid to cancer HNE-1 cells36. 

Simultaneously, a docetaxel was delivered. This star-shaped copolymer of cyclodextrin 

showed high activity, better blood compatibility and also lower cytotoxicity compared to the 

controls. It is exciting that clicked modified cyclodextrins have also been found to be 

capable of siRNA delivery to neurons37. Furthermore, low toxicity and high stability in 

serum has been confirmed for these vectors.

As to the specificity, additional modifications such as LNA are helpful to decrease off-target 

binding27. Decorating DNA with several peptide units resulted in improved stability and 

target recognition specificity of antisense oligonucleotides that target BRAF V600E 

oncogene. The CuAAC method gave good yields of double-labelled products as well. A 

“clickable” LNA variant has been suggested for miRNA targeting within LNA/DNA 

probes38. Besides often-applied sugar modification and terminal attachment by click 

chemistry, nucleobases can be modified by click chemistry as well. This is often applied 

when using clickable triphosphates (TPPs), due to better yields upon enzymatic 

incorporation than for sugar-modified TPPs. Also, the modification can be done post-

synthetically with a broad range of azides. Xiong et al., applied 8-aza-7-deazaguanine 

oligonucleotides to create branched Y-shaped DNA39. Annealing of branched DNA with 

complementary oligonucleotides yielded well defined nanostructures. Selective target 

recognition was also confirmed by in vitro assays.

In the last decade, focus has shifted from DNA to RNA therapeutics. As for DNA and its 

analogues, chemical modifications are compulsory for RNA therapeutics to increase stability 

in vivo and to ensure the specific delivery and intracellular uptake. Recent studies show that 

conjugation of therapeutic siRNA with fatty acids and carbohydrate residues benefit the 

therapeutic performance of RNA (RNA-galnac and RNA-fa papers40–42). For these 
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molecules, maleimide and N-Hydroxysuccinimide (NHS) chemistry is being used. Most 

methods are developed for DNA conjugation and do not meet the additional requirement of 

mild conditions needed for RNA modification. Growing applications in RNA therapy 

stimulate rapid development of bioconjugation methods that allow RNA labelling in high 

yields and purity43–44(Figure 5).

4. Comparison of “clicked” gene therapeutics to alternatives

Although much progress has been made on the click chemistry of therapeutic 

oligonucleotides and their delivery vesicles, critical points that need to be addressed are their 

potential toxicity and possibility to scale-up production. TFF purification, which has been 

mentioned previously, is a good way to scale up the CuAAC reaction29. Moreover, as has 

been described by Jones et al., click modification can affect the uptake pathway for 

therapeutics30. Trafficking determines the fate of a therapeutic inside the cell. Therefore, 

tracking studies are crucial to get structure-activity relationships for conjugates. Lastly, 

reducing the price of gene therapy is of crucial importance48.

The performance of available clicked therapeutics vs. alternative therapies is summarized in 

Table 1. Recently, Costales et al., compared clicked small molecule drugs with 

oligonucleotides49. They showed that morpholino-oligonucleotides had superior specificity 

in vivo when targeting myotonic dystrophy type 2 (DM2) associated gene alterations. 

Especially, therapeutic poly-oligonucleotides assembled on site had superior activity when 

compared to small molecule drugs. In addition, conjugation with CPPs was found to 

dramatically enhance the therapeutic performance of PMOs used to target exon skipping in 

the mouse mdx model50.

Multidrug resistance is an issue that blocks the use of available small molecule drugs49. It 

was shown that using siRNA and ULANAR PS antisense/siRNA makes cancer cells more 

permeable and reduces resistance. Wu et al., proposed a novel copolymer decorated with 

folic acid and siRNA for breast cancer treatment51. Co-delivery with doxorubicin resulted in 

suppression of tumor growth while maintaining rather low toxicity on other tissues. In 

another work was reported that multidrug resistance could be reversed using click polymer/

iMDR1-pDNA complex nanoparticles56. This approach could become useful in breast 

cancer and other solid tumor treatments in cases when conventional therapy is not working 

and to reduce the toxicity.

Macrophages could be targeted by siRNA via click mannosylated polymeric micelles52. 

Being involved in cancer and atherosclerosis pathology, macrophages represent an important 

therapeutic target. CD206 (mannose receptor) is primarily expressed on macrophages which 

ensured specific delivery of mannose-decorated siRNA micelles. Up to a 13-fold higher 

siRNA concentration was found in the macrophages compared to CD206 negative control 

cells which supports the high specificity of the approach. The authors underline that this 

approach is general and can be adopted for click functionalization with other target ligands 

to direct siRNA delivery52.
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Main competitors to gene therapeutics remain small molecule drugs53. Small molecules 

have the advantage of well controlled chemical composition and low cost. However, many of 

them suffer from poor water solubility and high toxicity. Additionally, cells often become 

resistant to small molecule drugs, via mutagenesis57. It is worth noting that the therapeutic 

action of these drugs can be improved by click chemistry as well53–54. The drugs can be 

used in mixed formulations with siRNA,51 or they can be covalently conjugated to 

antibodies and nucleic acids including aptamers55.

Lastly, the synthesis of biodegradable polymers is an exciting approach that could solve the 

issue of drug clearance from the blood stream. Zhao et al., prepared disulfide - containing 

copolymers and showed that they are useful for gene delivery58.

5. Conclusions

In summary, click chemistry finds a growing amount of applications in the development of 

gene therapeutics and is now being applied for direct oligonucleotide modification, cargo 

functionalization or the preparation of nucleotide variants at the nucleoside level. Click 

chemistry on DNA is relatively well established, whereas RNA modification by click 

chemistry requires further improvements. The sensitivity of unmodified RNA to chemical 

reagents and enzymes puts a high demand on the conditions for modifications.

Among prepared molecules, peptide-oligonucleotide conjugates and oligonucleotide 

nanomaterials show the best therapeutic performance. It is exciting that observations to date 

suggest gene therapeutics can reverse drug resistance from virus and solid tumors. Delivery 

and intracellular uptake remain the rate-limiting step, but this issue plagues all therapeutic 

developments. However, it is convincing from recent developments described in this review 

that these two issues can be successfully overcome using appropriate design and conjugation 

strategies.

Compared with small molecule drugs, the high cost of synthetic oligonucleotides and 

peptides is another obstacle for gene therapy application. Nevertheless, given the rapid 

development in oligonucleotide and peptide syntheses and the low cost of click chemistry 

reagents, the overall therapeutic price is bound to fall as the field progresses.

Recent discoveries in RNA biology also provide new targets for clicked therapeutics. 

Examples are miRNA and lncRNA59–62. Following the development of new clickable 

nucleosides, nucleotides and oligonucleotide modification reagents, targeting regulatory 

RNAs is an exciting new direction that might bring new advances to the field of synthetic 

gene therapeutics.
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Figure 1. 
Main principles of click chemistry (A), applications of “clicked” diagnostic tools, 

therapeutics and nanomaterials (B). FG1-2 = functional groups that are specific for 

bioconjugation and unreactive with other biological groups. L = linker.
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Figure 2. 
Chemical structures of PNA (1), morpholino (2); Diels Alder (a)26, reverse electron-demand 

Diels-Alder (b) and SPAAC (c) for oligonucleotide-peptide conjugation.
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Figure 3. 
Oligonucleotide nanomaterials as gene therapeutics. Functionalization of DNA-Polymer (A) 

microcapsules;34 and (B) Liposomes functionalized with CD44 Aptamer35.
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Figure 4. 
Specific recognition of BRAF RNA by internally clicked peptide-oligonucleotide conjugates 

(POCs)27
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Figure 5. 
Approaches of “clicked” therapeutic RNA. siRNA conjugate with lipophilic molecule on a 

solid CPG support A);45 Biotinylated siRNA conjugated with streptavidin activated 

monoclonal antibody B);46 Thiol-reactive siRNA conjugated with reduced Fab fragment 

C)47.
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