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Immunological tolerance loss is fundamental to the development of autoimmunity; however, the underlying
mechanisms remain elusive. Immune tolerance consists of central and peripheral tolerance. Central tolerance,
which occurs in the thymus for T cells and bone marrow for B cells, is the primary way that the immune system
discriminates self from non-self. Peripheral tolerance, which occurs in tissues and lymph nodes after lymphocyte
maturation, controls self-reactive immune cells and prevents over-reactive immune responses to various environment
factors. Loss of tolerance results in autoimmune disorders, such as systemic lupus erythematosus (SLE),
rheumatoid arthritis (RA), type 1 diabetes (T1D) and primary biliary cirrhosis (PBC). The etiology and pathogenesis
of autoimmune diseases are highly complicated. Both genetic predisposition and epigenetic modifications are
implicated in the loss of tolerance and autoimmunity. In this review, we will discuss the genetic and epigenetic
influences on tolerance breakdown in autoimmunity. Genetic and epigenetic influences on autoimmune diseases,
such as SLE, RA, T1D and PBC, will also be briefly discussed.
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INTRODUCTION

Immune tolerance refers to unresponsiveness of the immune
system toward certain substances or tissues that are normally
capable of stimulating an immune response. Self-tolerance is
essential for normal immune balance, and failure or breakdown of
that tolerance results in autoimmunity and autoimmune diseases.

Autoimmune diseases are a group of 480 chronic, relap-
sing, and sometimes lethal diseases, characterized by a defective
immune system resulting in the loss of tolerance to self-
antigens and over-expression of autoantibodies. More impor-
tantly, autoimmune disorders often occur during reproductive
years, which may lead to pregnancy loss and infertility.1

Although great progress has been made, particularly new gene
loci discoveries with the advent of genome-wide association
studies, the pathogenesis of autoimmune diseases remains
elusive. The origins of autoimmune diseases cannot be
explained by genetic factors alone because the occurrence of
autoimmune diseases in identical twins is not always
consistent.2 Subsequent studies imply that epigenetic modifica-
tions also participate in the loss of immune tolerance and
autoimmunity in genetically predisposed individuals.3

This article will review the current status of genetic and
epigenetic contributions to the loss of immune tolerance in
autoimmunity. Genetic and epigenetic influences on autoim-
mune diseases, such as systemic lupus erythematosus (SLE),
rheumatoid arthritis (RA), type 1 diabetes (T1D) and primary
biliary cirrhosis (PBC), will also be briefly discussed.

LOSS OF TOLERANCE AND AUTOIMMUNITY

The immune system is responsible for identifying and execut-
ing proper responses to eliminate non self-antigens and prevent
the harmful response to self-antigens, referred to as immune
tolerance.4 To maintain immune homeostasis in balance, the
individual must be tolerant of their own potentially antigenic
substances. Once self-tolerance is disrupted, autoimmunity
will arise.

Based on where the state is originally induced, self-tolerance
can be classified into two types: central and peripheral tolerance
(Figure 1a). Central tolerance refers to eliminations of auto-
reactive lymphocyte clones before they become fully immuno-
competent, of which the main mechanism is negative selection.
This procedure occurs in the stage of lymphocyte development
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in the thymus and bone marrow for T and B lymphocytes,
respectively. After T and B lymphocytes enter the peripheral
tissues and lymph nodes, peripheral tolerance will occur to
inhibit immune responses against the body's own tissues,
which occurs primarily in the secondary lymphoid organs,
such as spleens and lymph nodes. Mechanisms of peripheral
tolerance include anergy (functional unresponsiveness),
deletion (apoptotic cell death) and suppression by regula-
tory T cells.5 As stated above, the tolerance is processed
on two ‘levels’, in which the ‘lower level’ of peripheral
tolerance functions as a back-up strategy of the ‘upper level’
of central tolerance. Autoimmune diseases may develop
when self-reactive lymphocytes escape from tolerance and

are thereby activated. However, the underlying exact
mechanisms are not entirely known. Current knowledge
suggests that autoimmunity stems from a combination of
genetic variants and various acquired environmental trig-
gers. Figure 1b illustrates the loss of tolerance and auto-
immune diseases.

GENETIC INFLUENCES IN THE TOLERANCE

BREAKDOWN IN AUTOIMMUNITY

The loss of tolerance is a complex process that poses a great
challenge to investigate. Recent studies on monogenic forms of
autoimmune diseases advance our understanding of the loss of
tolerance (Table 1).6
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Figure 1 (a) Central and peripheral tolerance. In the thymus, both high-affinity T and B cells undergo apoptosis. Low- and non-affinity T
and B cells enter peripheral tissues and lymph nodes, where non-affinity T and B cells mature into immune cells and low-affinity T and B
cells are deleted by many mechanisms, such as anergy, ignorance, deviation and homeostatic control. (b) The process of loss of tolerance
to autoimmune diseases. Immune cells generate and experience central and peripheral tolerance. Tolerance fails because of the interaction
of the wrong environment with the wrong gene, resulting in autoimmune disease.
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a n d h o m e o s t a t i c c o n t r o l . ( b ) T h e p r o c e s s o f l o s s o f t o l e r a n c e t o a u t o i m m u n e d i s e a s e s . I m m u n e c e l l s g e n e r a t e a n d e x p e r i e n c e  c e n t r a l a n d  

peripheral tolerance. Tolerance fails because of the interaction of the wrong environment with the wrong gene, resulting in autoimmune disease.



AIRE and central tolerance
The transcription factor autoimmune regulator (AIRE) was
originally identified as the mutated gene in patients with an
autosomal recessive form of autoimmunity called autoimmune
polyglandular syndrome Type 1 (APS1), featured by autoim-
mune attacks against multiple endocrine organs, skin and other
tissues.7,8 When the gene AIRE was knocked out in mice, the
thymic expression of some antigens that are normally expressed
at high levels in different peripheral tissues is influenced.
Therefore, T cells specific for these antigens will escape from
negative selection (central tolerance), entering the periphery
and initiating damage to the self.9

Foxp3 and Treg cells in autoimmune diseases
Either protective or harmful immune responses are mainly
regulated by T and B cells; however, firm evidence shows that
the normal immune system also produces a sub-population of
CD4+CD25+ regulatory T cells, namely Treg cells. Treg cells
function to suppress the immune responses, and a deficiency of
Treg cells is responsible for autoimmune and inflammatory
diseases. Treg cells specifically express the transcription factor
Foxp3 (forkhead box P3), which is a key regulator of Treg cell
development and function. Because of the absence of Treg
cells, induced knockout or spontaneous mutation of the Foxp3
gene in mice results in a systemic autoimmune disease.10–12

Correspondingly, in humans, the Foxp3 gene mutation also
leads to a genetic disease called immunodysregulation poly-
endocrinopathy enteropathy X-linked syndrome (IPEX syn-
drome), demonstrating the importance of Foxp3 in the
immune system.13

CTLA4 in T cell anergy
As an inhibitory receptor, cytotoxic T lymphocyte antigen 4
(CTLA4; CD152) is expressed by T cells and interacts with the
costimulatory molecules B7-1 (CD80) and B7-2 (CD86) and is
capable of inhibiting T-cell responses and promoting long-lived
anergy.14 Knockout of germline CTLA4 in mice represents a
fatal syndrome with lymphocyte infiltration of multiple organs
and severe enlargement of lymphoid organs.15 Several auto-
immune diseases, such as type 1 diabetes and Graves’ diseases,
are demonstrated to be associated with CTLA4, although the
exact function has not been defined.16

FAS and lymphocyte apoptosis
Fas (CD95), the prototype of a death receptor of the tumor
necrosis factor (TNF) receptor family, plays a role in the
deletion of mature T and B cells that recognize self antigens.17

The Fas ligand binding with its receptor induces apoptosis. Fas
ligand/receptor interactions play a critical role in the process of
the immune system. For example, activated T cells express the
Fas ligand. During clonal expansion, activated T cells are
initially resistant to Fas-mediated apoptosis and will become
progressively sensitive, ultimately leading to activation-induced
cell death (AICD). This process is vital to prevent an excessive
immune response and eliminate autoreactive T cells. Mutations
of Fas will lead to a childhood disorder of apoptosis called
autoimmune lymphoproliferative syndrome (ALPS).18

EPIGENETIC INFLUENCE ON T AND B LYMPHOCYTE

TOLERANCE TO SELF

Genetic background is essential to understand the onset of
diseases, but it is insufficient for the full explanation. The
incomplete concordance rates of autoimmune diseases in
monozygotic twins also strongly suggest that other factors,
such as environmental triggers, are involved in the pathogenesis
of autoimmunity. Epigenetics refers to heritable genomic
expression without alterations in the original DNA sequence,
consisting of DNA methylation, histone modifications and
microRNA (miRNA) regulations. Studies show that DNA
methylation and the post-translational modification of histones
are potentially responsible for the breakdown of immune
tolerance and autoimmune disorders.

T and B lymphocytes are key players for immune responses,
and during the T and B lymphocyte differentiation process, the
regulation of each progression step is influenced by a potent
network of transcription factors specific for each particular
cellular state. Recent studies indicate that both T and B
lymphocyte development are under epigenetic regulations.

DNA methylation
In naive CD4+ and CD8+ T cells, DNA hypermethylation in
the promoter of IL-2 and IFN-γ was identified, suggesting that
the defect in IL-2 and IFN- γ production is independent of
clonal selection.19 Similarly, CpG residues at the IL-2 promoter
and enhancer are also methylated in tolerant T cells.20 The loss
of DNA methyltransferase Dnmt1 results in the over-
production of IL-2, Th1 and Th2 cytokines.21

Table 1 Genes related to loss of tolerance in autoimmunity

Gene Autoimmune disease Function Reference

AIRE APS-1 Downregulates self-antigens in the thymus, resulting in defective negative selection of self-reactive
T cells

7,8

Foxp3 IPEX suppresses CD4+ CD25+ regulatory T cells 13

CTLA4 Graves’ disease type 1
diabetes

Inhibits T cell responses and promotes long-lived anergy 15

FAS ALPS Failure of apoptotic death of self-reactive B and T cells 17
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During the process from lymphoid progenitors to the B cell
lineage, transcription factors EBF and E2A contribute to the
DNA demethylation and nucleosomal remodeling of the
CD79a promoter, which is necessary for its transcriptional
activation by Pax5 and is essential to the formation of pro-B
cells.22

Histone modifications
Compared to naive T cells, when activated T cells were
restimulated under anergic conditions, increased histone dea-
cetylation was observed at the IL-2 promoter, which was
associated with enhanced recruitment of HDAC1 and
HDAC2.23 Hypoacetylation at the IL-2 locus in anergic CD4
+ T cells is caused by increased deacetylation and intact
acetylation. The IFN-γ locus in anergic T cells is also
hypoacetylated, resulting in a significant reduction of IFN-
γ.24,25 Therefore, histone hypoacetylation at the IFN-γ and IL-2
gene loci function to sustain the closed chromatin structures
and thus suppress transcriptional activities.

Unlike histone acetylation, histone methylation is more
specific and complicated. For example, histone H3 trimethyla-
tion at lysine 27 (H3K27me3) is related to repressive chroma-
tins whereas H3K4me3 is generally associated with permissive
chromatins. In Th1 cells, H3K4me3 specifically marks IFN-γ
and T-bet gene loci, whereas IL-4 and Gata-3 loci are
imprinted with H3K27me3.26

During the stage from the pre–pro-B cell to pro-B cell, E2A-
associated genes, such as EBF and FOXO1, are modified by
H3K4me, a mark of gene enhancer elements. The activation of
EBF and FOXO1 will lead to histone modifications of
H3K4me3 on Pax5.27

MicroRNAs
During B-cell development and differentiation, miR-181, miR-
-150, and miR34a help target and repress transcripts critical for
genes involved in B-cell generation. Genome-wide miRNA
scans during lymphopoiesis lead to the identification of
miRNAs that are primed for expression at different stages of
differentiation, including the repressive mark H3K27me3
associated with gene silencing of lineage-inappropriate miRNA
and the presence of the epigenetically active mark H3K4me.
During B cell lineage specification, miR-320, miR-191,
miR-139 and miR28 act as potential regulators of B-cell
progression.28

GENETIC AND EPIGENETIC INFLUENCES IN

AUTOIMMUNE DISEASES

As stated above, both genetic and epigenetic factors play
indispensable roles in the pathogenesis of autoimmune dis-
eases, most of which have unknown etiology. Genetic back-
ground is a source of susceptibility for disease onset, but it is
insufficient for disease development. Recent genome-wide
association studies confirmed the strong genetic background
for immune-related diseases, but they fail to illustrate the
mechanisms underlying immune tolerance breakdown
explained by genetic aspects alone.29 Environmental factors,

such as ultraviolet rays, infections, nutrition and chemicals, also
participate in the pathogenesis of autoimmunity.30 The advent
of epigenetic research creates a bridge over genetics and the
environment, providing a novel perspective to interpret these
complex diseases. Tables 2 and 3 list epigenetic and genetic
changes in autoimmune diseases.

Genetic and epigenetic influences on SLE
SLE is a systemic, multiple-organ involved autoimmune disease
with a spectrum of clinical manifestations and outcomes,
characterized by the production of pathogenic autoantibodies
targeting nucleic acids and their binding proteins. It is a typical
model of a global loss of tolerance with the activation of
autoreactive T and B cells.31

Genetic factors of SLE. Genetic contributions to human lupus
are well-established based on the fact that there is a significant
difference in disease concordance between monozygotic twins
(25–57%) and dizygotic twins (2–9%).32 Chromosome 1
consists of some of the loci most consistently recognized in
SLE. The linkage interval 1q23 encodes Fcγ receptors FCGR2A
and FCGR3A. The variants of different affinities for IgG and its
subclasses of FCGRs contribute to incomplete clearance of
immune complexes, leading to deposition in the kidney and
blood vessels.33 Other disease-associated genes on chromosome
1 are PTPN22,34 IL10(refs 35,36) and C1Q.37

Genes encoding the major histocompatibility complex
(MHC) and components of the complement pathway (C2,
C4) and TNFα and TNFβ reside in chromosome 6, and their
polymorphisms have been demonstrated to be susceptible to
SLE.38,40 Programmed cell death 1 gene (PDCD1) is upregu-
lated in T cells, inhibiting TCR signaling and T/B cell survival.
It is implicated that one intronic SNP in PDCD1 is associated
with the development of SLE in Europeans. The SNP alteration
on the associated allele affects the binding site for the runt-
related transcription factor 1 (RUNX1), suggesting a contribu-
tion to the development of SLE in humans.41 CTLA4, a
negative costimulatory molecule, inhibits T cell activation and
may limit T cell responses under inflammation. Genetic
variability in CTLA4 has also been linked to SLE
development.41,42

Epigenetic factors of SLE. Global DNA hypomethylation in
T cells is a characterized epigenetic feature in SLE, resulting in
the activation of transcription and close correlations with
disease activity.43 Numerous studies have validated the critical
roles of T cell DNA hypomethylation in the pathogenesis of
SLE.44,45 Hypomethylation at specific regulatory regions of
DNA is the reason for the overexpression of autoimmune-
associated genes in lupus CD4+ T cells, contributing to the
pathogenesis and development of SLE. CD11a, CD40L and
CD70 are well-known examples.46–48 Lupus-associated inflam-
matory cytokines, such as interleukin (IL)-4 and IL-6, are
epigenetically regulated by DNA demethylation.49 During T cell
activation and differentiation, DNA methylation of specific
genes plays vital roles in the process. For example, Foxp3, a
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gene for maintaining Treg cell function, is also closely
controlled by DNA methylation.50 Additionally, transcription
factors may participate in the regulation of DNA methylation.
The down-regulation of RFX1 found in transcript factors
screening in SLE CD4+ T cells inhibits the recruitment of
DNMT1 and histone deacetylase 1 (HDAC1) to the promoter
regions of CD70 and CD11a, leading to DNA hypomethylation
and histone H3 hyperacetylation at these promoters.51 Growth
arrest and DNA damage-induced 45alpha (Gadd45a) functions
reduce the epigenetic silencing of genes via removing methyla-
tion marks. Upregulated Gadd45a in CD4+ T cells from SLE
patients promotes DNA demethylation and stimulates the
expression of methylation-sensitive genes including CD70 and

CD11a.52 High mobility group box protein 1 (HMGB1) may
also be involved in DNA demethylation by binding to
Gadd45a.53

Histone modification is another important epigenetic
mechanism for regulating gene expression. Global hypoacetyla-
tion of histone H3 and H4 has been discovered in lupus CD4+
T cells.54 CD70 overexpression on T cells occurs partly because
of aberrant histone modifications within the TNFSF7
promoter.55 Transcription factor cAMP-responsive element
modulator (CREMα) mediates silencing of the IL2 gene in
SLE T cells though the deacetylation of histone H3K18 and
DNA hypermethylation.56 In addition to T cells, significant
alterations of H3K4me3 in various key candidate genes was

Table 2 Epigenetic modifications in autoimmune diseases

Diseases Epigenetic modifications Influence Ref.

SLE Hypomethylation of CD11a (ITGAL), CD40L (TNFSF5)
and CD70 (TNFSF7)

Contributes to the overexpression of CD11a, CD40L and CD70 31–

33

Hypomethylation of IL-4 and IL-6 Increases IL-4 and -6mRNA transcriptions 34

Hypomethylation of Foxp3 Induction of Foxp3 expression 35

H3 and H4 acetylation and H3K4 dimethylation of
TNFSF7

Increases CD70 expression on T cells 36

deacetylation of histone H3K18 of CREMα silences IL2 gene expression 37

Increased miR-21, miR-126 and miR148a Inhibits DNMT1 expression 38,39

Increased miR-142 and miR-31 Inhibits IL-4, IL-10, CD40L and ICOS expression and stimulates IL-2
production

40

Overexpression of miR-30a Reduction of Lyn 41

RA Demethylation of the IL-6 promoter in PBMCs Overexpression of IL-6 in serum, synovial tissue, and synovial fluid 42

Hypomethylation of CXCL12 in synovial fibroblasts Promotes matrix metalloproteinases and joint destruction 43

Increased H3K4me3 in MMP-1, MMP-3, MMP-9 and
MMP-13 and decreased H3K27me3 in MMP-1 and
MMP-9

Regulates the transcription of MMPs in synovial fibroblasts 44

Increased histone acetylation of MMP-1 and IL-6 Up-regulates MMP-1 and IL-6 in synovial fibroblasts 45,46

Overexpressed miRNA-155 and 146a in synovial
fibroblasts

miRNA-155 targets PU.1 and inhibits its expression; miRNA-146a targets
IRAK1 and TRAF6 and suppresses their expression

47

Decreased miRNA-124a Targets MCP1 and CDK2 and increases their expression 48

Increased miRNA-223 Suppresses IGF-1R-mediated IL-10 49

T1D Increased global DNA methylation level in LADA Accompanied by upregulated expression level of DNMT3b 50

Hypermethylation of UNC13B Indicated with the risk of diabetic nephropathy in T1D 51

Genome-wide histone H3K9me2 in peripheral lympho-
cytes and monocytes

Increase in methylation level in H3K9me2 in several high-risk genes for
T1D including the CTLA4 gene

52

Increased miR-326 in PBMCs Positively correlated with disease severity 53

Downregulated miR-146 Upregulates the expressions of TNF receptor-associated factor 6 (TRAF6),
B-cell CLL/lymphoma 11A (BCL11A), syntaxin 3 (STX3) and numb homolog
(NUMB)

54

PBC Hypermethylation of ATP12A, ATP5A1 and HOXD4 Involved in ion channel transport and transport of bile salts 55

DNA demethylation of CD40L Inversely correlated with IgM serum level 56

Upregulated histone H4 acetylation in the promoter
regions CD40L, LIGHT, IL17 and IFNG

Increased expression of these genes 57

Downregulated histone H4 acetylation in the promoter
regions of TRAIL, Apo2 and HDAC7A

Decreased expression of these genes 57

Downregulation of miR-122a and miR-26a and increased
expression of miR-328 and miR-299-5p

Affects cell proliferation, apoptosis, inflammation, oxidative stress, and
metabolism

58

Upregulated expression of miR-506 Decreases the level of InsP3R3 59
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observed in lupus PBMCs,57 and altered global H4 acetylation
was found in lupus monocytes.57

miRNAs are a large group of small, non-coding RNAs that
function as post-transcriptional and posttranslational regulators
of gene expression by binding to the 3ʹ-untranslated region
(UTR) of the mRNA of a target gene. Based on the different
cell types and tissues in lupus, aberrant expression of miRNA
can be observed in T cells, B cells, dendritic cells and serum.
For example, increased miR-21, miR-126 and miR148a were
found in SLE T cells and DNMT1 is their target, contributing
to DNA hypomethylation in SLE CD4+ T cells.58,59 miR-142
and miR-31 are believed to regulate T cells by inhibiting IL-4,
IL-10, CD40L and ICOS expression and stimulating IL-2
production, respectively.60 A recent study on the pharmacolo-
gical mechanisms of mycophenolic acid (MPA) on CD4+
T cells in SLE patients shows that miR-142 and miR-146a
expression was increased after MPA activation through histone
modification at the promoter region.61 In SLE B cells, the over-

expression of miR-30a is responsible for the reduction of Lyn,
suggesting that miR-30a plays an important role in B cell
hyperactivity.62

Genetic and epigenetic influences on RA
RA is a chronic and systemic autoimmune disease characterized
by chronic inflammation and the destruction of peripheral
joints. As discovered in other autoimmune diseases, such as
SLE, the development of RA also requires the combination of
genetic susceptibility factors and environmental influences.63,64

Genetic factors in RA. Genetic factors contribute to the
development of at least 50% of RA patients based on the data
of familial and twin studies, and the concordance rate in
monozygotic twins is 12–30%. The prevalence of RA is also
high in first-degree relatives.65 HLA genes at 6p21 and HLA-
DRB1 allele variants are closely associated to RA.66 In addition
to the HLA loci, many other genes related to RA have been
recognized. Thanks to the development of GWAS and single-

Table 3 Genetics of autoimmune diseases

Diseases Genes Chro. Influences Ref.

SLE FCGRs 1q23.3 Contributes to the incomplete clearance of immune complexes 60

PTPN22 1p 13.3–13.1 Increases the formation and deposition of immune complexes 61

IL10 1q 31–32 Suppresses expression of proinflammatory cytokines 62,63

C1Q 4 D3 Associated with neuropsychiatric SLE 64

TNFα 6p 21.33 Regulates inflammation and apoptosis 65

TNFβ 6 Represents a risk factor in Korean SLE and nephritis in patients with SLE 66

PDCD1 2q 37.3 Affects the binding affinity and activity of NFkB and RUNX1 64

CTLA4 2 q33 Mediates antigen-specific apoptosis of T cells and suppresses autoreactive proliferation of T lymphocytes 67,68

RA PTPN22 1p 13.3–13.1 Enhances neutrophil effector functions 69

IL23R 1p31.3 Over-expression in the synovial fibroblasts and plasma 70

TRAF1 9q33.2 Negatively regulates Toll-like receptor signaling 71

CTLA4 2q33.2 Contributes to susceptibility 72

IRF5 7q32.1 Mediates proinflammatory cytokine production 73

STAT4 2q32 Overexpression in peripheral blood leukocytes and synovial fluid cells 74

CCR6 6q27 Mutations in CCR6 result in either a gain or loss of receptor function 75

PADI4 1p36.13 Protects fibroblast-like synoviocytes from apoptosis 76

T1D CTLA4 2 q33 Involved in immune tolerance 77

PTPN22 1p 13.3–13.1 Modulates intracellular signaling 78

IL2RA 10p15.1 Involved in Treg cell suppressive function 48

CLEC16A 16p13.13 Protective factor of T1D 48

STAT4 2q32 Influences cytokine signaling 49

PBC IL12A 3q25.33 Contributes to susceptibility 79

IL12RB2 1p31.3 Contributes to susceptibility 79

STAT4 2q32 Contributes to susceptibility and ANA status in the Japanese population 54

DENND1B 1q31 Contributes to susceptibility 80

CD80 3q13 Contributes to susceptibility 81

IL7R 5p13 Contributes to susceptibility 81

CXCR5 11q23 Contributes to susceptibility 82

TNFRSF1A 12p13 Contributes to susceptibility 82

CLEC16A 16q24 Contributes to T cell hyporeactivity 83

NFKB1 4q24 Contributes to susceptibility 82
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nucleotide polymorphism (SNP) array genotyping, numerous
candidate genes have been identified,67 but few have been
studied for their biological function. The most relevant non-
HLA genes associated with RA include PTPN22,68 IL23R,69

TRAF1,70 CTLA4,71 IRF5,72 STAT4,73 CCR6(ref. 74) and
PADI4.71,75

Epigenetic factors in RA. DNA methylation status in blood
cells, synovium and synovial fibroblasts in RA has been
investigated. Although a global hypomethylation in T cells
from RA patients has been observed, there is no proof of the
association between methylation levels and disease activity.76

However, changes in DNA methylation in RA synovium and
synovial fibroblasts have been reported. A genome-wide
evaluation of DNA methylation loci in fibroblast-like synovio-
cytes (FLS) isolated from the area of the disease in RA was
performed. Compared to osteoarthritis (OA), 1 859 differen-
tially methylated loci, mostly associated with immune cell
trafficking, cell adhesion, and extracellular matrix interactions,
were revealed in the FLS of RA.77 A global DNA hypomethyla-
tion in RA synovial fibroblasts has also been demonstrated.78

Furthermore, methylation changes of a single gene also
participate in the pathogenesis of RA. For example, demethyla-
tion of the IL-6 promoter in PBMCs from patients with RA
results in the over-expression of IL-6,79 which occurs in the
serum, synovial tissue, and synovial fluid from patients with
RA.80 Hypomethylation of CXCL12 in RA synovial fibroblasts
promotes matrix metalloproteinases and joint destruction.81

The complexity of histone modifications gives rise to
difficulties in investigating their exact mechanisms in RA,
and studies were limited in the extent of the expression of
histone-modifying enzymes. Conflicting data on the expression
of HDACs in PBMCs and synovial tissues in RA patients were
published, partly because of the diverse HDAC activities
influenced by disease activity and therapy in patients enrolled
in these studies.82–85 In synovial fibroblasts, increased expres-
sion of H3K4me3 in the promoters of MMP-1, MMP-3,
MMP-9 and MMP-13 and decreased expression of
H3K27me3 in the promoters of MMP-1 and MMP-9 were
obsevered.86 Moreover, increased histone acetylation leads to
up-regulations of MMP-1 and IL-6 in synovial fibroblasts.87,88

These epigenetic changes provide a reasonable explanation for
the over-expression of MMPs and IL-6 in RA synovial
fibroblasts.

In 2008, compared to OA patients, the first screening of
differentially expressed miRNAs identified overexpressed
miRNA-155 and 146a in synovial fibroblasts from RA
patients.89 A recent study revealed that the target of
miRNA-155 is PU.1, a transcription factor in early B cell
commitment, which is downregulated during B-cell matura-
tion. The repression of endogenous miRNA-155 levels in B
cells of RA patients results in the upregulation of PU.1 and the
downregulation of the antibody production.90 Components of
the toll-like receptor pathway, IRAK1 and TRAF6, are targets
of miRNA-146a, but there is no difference in their levels in
PBMCs from RA patients and healthy controls,91 indicating

that increased miRNA-146a alone is insufficient to restrain
inflammation. Compared to OA synovial fibroblasts, miRNA-
-124a, which targets monocyte chemoattractant protein 1
(MCP1) and cyclin-dependent kinase 2 (CDK2), was decreased
in RA, leading to decreased proliferation of synovial
fibroblasts.92 The only deregulated miRNA in the peripheral
T lymphocytes of RA patients was miRNA-223, which is
positively correlated with rheumatoid factor (RF) titers.93

Furthermore, increased miRNA-223 levels suppressed the
insulin-like growth factor 1 receptor (IGF-1R)-mediated
IL-10 production in T cells from RA patients.94

Genetic and epigenetic influences on T1D
T1D is an autoimmune disease resulting from T cell-mediated
β cell destruction in genetically susceptible individuals with
involvement of both genetic and environ-mental factors.95

Genetic factors in T1D. T1D is one of the most common
heritable diseases, although a positive family history of T1D is
confirmed in only 10 to 15% of newly diagnosed patients. To
date, more than 50 susceptibility regions have been recognized
to be linked with T1D. In T1D, the HLA class II alleles
(primarily the HLA-DRB1, HLA-DQA1 and HLA-DQB1 loci)
are the main susceptibility genes, and up to 50% of them have
genetic risks.96 HLA-DRB1 and DQB1 are consistently asso-
ciated with T1D in almost all ethnic groups.97 In addition to
HLA class II, HLA class I genes have also been considered to be
strongly associated with T1D. Among HLA class I genes, the
HLA-B*39 allele, which significantly increases the risk of T1D,
has one of the strongest associations with T1D.95 Moreover,
multiple non-HLA loci also contribute to disease risks, such as
CTLA4,98 PTPN22,99 IL2RA,100 CLEC16A,100 PTPN2(ref. 99) and
STAT4.101–103

Epigenetic factors in T1D. Compared to healthy controls, the
global DNA methylation level is significantly increased in CD4
+ T cells in patients with latent autoimmune diabetes of adults
(LADA), accompanied by the upregulated expression level of
DNMT3b.104 The DNA methylation level of nineteen CpG sites
correlated with the time of onset of nephropathy were
identified in a genome-wide DNA methylation analysis of
T1D patients with diabetic nephropathy, and one of the CpG
sites located nearby gene UNC13B has been indicated to reflect
a risk of diabetic nephropathy in T1D.105

Studies have revealed that HDAC expression was aberrant in
T1D patients. Decreases in H3K9Ac at the upstream promoter
regions of HLA-DRB1 and an increase in H3K9Ac at the
upstream promoter/enhancer region of HLA-DQB1 were noted
in patients with T1D and healthy controls, and both genes are
highly associated with T1D.106 Upregulated acetylated histone
H4 levels were associated with T1D patients without vascular
complications, suggesting a protective role against vascular
injury in T1D.107 Genome-wide histone H3K9me2 patterns in
peripheral lymphocytes and monocytes from T1D patients and
normal controls were compared, presenting a significant
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increase in methylation levels of H3K9me2 in several high-risk
genes for T1D, including the CTLA4 gene.108

Accumulating data support a role for miRNA in the
development of T1D. miR-326 was found to be significantly
increased in PBMCs from patients with T1D and positively
correlated with disease severity, playing important stimulatory
effects toward the development of T1D by targeting important
immune regulators.109 Downregulated miR-21a and miR-93
were noticed in the PBMCs of T1D patients in the presence of
incubation with glucose; however, no association with auto-
immunity was observed.110 Global miRNA profiles in PBMCs
from newly diagnosed T1D patients revealed that the most
downregulated miRNA, miR-146, was associated with the
ongoing autoimmune imbalance in T1D.111

Genetic and epigenetic influences on PBC
PBC, which is associated with both genetic and environmental
factors, is a chronic, cholestatic autoimmune liver disease and
may progress to liver cirrhosis and eventually liver failure.112,113

Genetic factors in PBC. Growing evidence indicates that PBC
is a genetic-related condition, which was supported by familial
clustering, the monozygotic twin concordance and the high
prevalence of other autoimmune disorders in PBC patients and
their family members.114 Similar to many other AIDs, the
major genetic elements of PBC are found within the HLA
region. The HLA class II DRB1*08 allele family shows the
strongest association between specific HLA alleles and PBC
susceptibility.115 Other loci, such as HLA DRB1, DQB1, DPB1,
DRA, and c6orf10, are also strongly related to PBC suscept-
ibility, as implicated in a GWAS study.116 Interestingly, specific
class II HLA alleles function to protect against PBC, such as
DQA1*0102, DQB1*0602, DRB1*13 and DRB1*11.115,117–119

Moreover, many non-HLA risk loci associated with PBC
susceptibility have been discovered in high-throughput genetic
studies, such as interleukin 12A (IL12A),116 IL12RB2 loci,116

STAT4,120 DENND1B,121 CD80,122 IL7R,122 CXCR5,123

TNFRSF1A,123 CLEC16A124 and NFKB1.116,123

Epigenetic factors of PBC. Recently, DNA methylation profiles
in 60 differentially methylated regions corresponding to 51
genes on the X chromosome and nine genes on autosomal
chromosomes were identified in twins of PBC patients and
normal twins. DNA hypermethylation was observed in specific
gene families such as ATP12A, ATP5A1 and HOXD4, suggest-
ing DNA methylation as a regulator in the pathogenesis of
PBC.125 A significant DNA demethylation level at the CD40L
promoter is inversely correlated with IgM serum levels in CD4
+ T cells from PBC patients,126 supporting the involvement of
methylation modifications of CD40L in the development of
PBC. Thus far, histone modification dysregulation in PBC
remains under investigation.

Dysregulated histone modifications of genes demonstrated in
autoreactive T cells with PBC patients include upregulated
histone H4 acetylation in the promoter regions CD40L, LIGHT,

IL17 and IFNG and downregulated histone H4 acetylation in
the promoter regions of TRAIL, Apo2 and HDAC7A.127

A total of 35 independent miRNAs were found to be
differentially expressed in the tissues from PBC patients, with
predicted targets belonging to cell proliferation, apoptosis,
inflammation, oxidative stress, and metabolism. The down-
regulation of microRNA-122a (miR-122a) and miR-26a and
the increased expression of miR-328 and miR-299-5p were
validated.128 One example is miR26-a, contributing as a post-
transcriptional regulator of the overexpression of a polycomb
group protein EZH2 in PBC.129,130 One miRNA for a PBC
target cell (cholangiocytes) is miR-506,131 which is capable of
regulating pH homeostasis by decreasing the level of InsP3R3,
an intracellular Ca channel.132

CONCLUSION

Great progress in understanding the development and patho-
genesis of AIDs has been made in recent decades, particularly
with the advent of epigenetic research, which has created a
bridge between genetic and environmental factors. It is believed
that both genetic and epigenetic factors influence the process
and development of immune tolerance on different levels.
However, an exact and full picture of the network related to
gene expression and epigenetic modifications on the mechan-
isms of loss of tolerance is urged to provide new perspectives
on autoimmunity.
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