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Abstract
Algal–bacterial interactions play a major role in shaping diversity of algal associated 
bacterial communities. Temporal variation in bacterial phylogenetic composition re-
flects changes of these complex interactions which occur during the algal growth cycle 
as well as throughout the lifetime of algal blooms. Viruses are also known to cause 
shifts in bacterial community diversity which could affect algal bloom phases. This 
study investigated on changes of bacterial and viral abundances, bacterial physiologi-
cal status, and on bacterial successional pattern associated with the harmful benthic 
dinoflagellate Ostreopsis cf. ovata in batch cultures over the algal growth cycle. 
Bacterial community phylogenetic structure was assessed by 16S rRNA gene ION tor-
rent sequencing. A comparison between bacterial community retrieved in cultures and 
that one co-occurring in situ during the development of the O. cf. ovata bloom from 
where the algal strain was isolated was also reported. Bacterial community growth 
was characterized by a biphasic pattern with the highest contributions (~60%) of 
highly active bacteria found at the two bacterial exponential growth steps. An alp-
haproteobacterial consortium composed by the Rhodobacteraceae Dinoroseobacter 
(22.2%–35.4%) and Roseovarius (5.7%–18.3%), together with Oceanicaulis (14.2-
40.3%), was strongly associated with O. cf. ovata over the algal growth. The 
Rhodobacteraceae members encompassed phylotypes with an assessed mutualistic-
pathogenic bimodal behavior. Fabibacter (0.7%–25.2%), Labrenzia (5.6%–24.3%), and 
Dietzia (0.04%–1.7%) were relevant at the stationary phase. Overall, the successional 
pattern and the metabolic and functional traits of the bacterial community retrieved in 
culture mirror those ones underpinning O. cf. ovata bloom dynamics in field. Viral 
abundances increased synoptically with bacterial abundances during the first bacterial 
exponential growth step while being stationary during the second step. Microbial 
trends also suggest that viruses induced some shifts in bacterial community 
composition.
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1  | INTRODUCTION

Over the last few decades, a worldwide increase in the occurrence, 
geographic expansion, and persistence of harmful algal blooms (HABs) 
has been reported (Anderson, Cembella, & Hallegraeff, 2012; Berdalet 
et al., 2017; Hallegraeff, 1993; Sunda, Graneli, & Gobler, 2006) with 
consequent severe impacts on human health and coastal ecosystem 
services (i.e., fisheries, tourism, and recreation) (Berdalet et al., 2016; 
Davidson, Tett, & Gowen, 2011; Van Dolah, 2000). While most re-
search has focused on physical and chemical factors forcing HABs dy-
namics (e.g., Accoroni & Totti, 2016; Davidson et al., 2014; Figueiras, 
Pitcher, & Estrada, 2006; Van Dolah, 2000), an increasing interest 
on the interactions between microalgae and bacteria in regulating 
HABs (Doucette, Kodama, Franca, & Gallacher, 1998; Jones, Mikulski, 
Barnhorst, & Doucette, 2010; Kodama, Doucette, & Green, 2006; 
Meyer, O’Neil, Hitchcock, & Heil, 2014; Vanucci, Guidi, Pistocchi, & 
Long, 2016; Yang et al., 2015) and toxins production (Kodama et al., 
2006 and references therein; Green, Hart, Blackburn, & Bolch, 2010; 
Albinsson, Negri, Blackburn, & Bolch, 2014; Sison-Mangus, Jiang, Tran, 
& Kudela, 2014) has developed.

In natural aquatic environments, microalgae and bacteria grow 
in close association engaging complex interactions (reviewed in 
Ramanan, Kim, Cho, Oh, & Kim, 2016). Algal–bacterial interactions 
change during the algal growth cycle (Bolch, Bejoy, & Green, 2017; 
Mayali & Doucette, 2002; Mayali, Franks, & Azam, 2007; Wang, 
Tomasch, Jarek, & Wagner-Döbler, 2014) as well as throughout 
the lifetime of the blooms, including the harmful ones (Buchan, 
Lecleir, Gulvik, & González, 2014; Fandino, Riemann, Steward, 
Long, & Azam, 2001; Mayali, Franks, & Burton, 2011), affecting 
the dynamics of these events. In parallel, changes of these interac-
tions play a major role in shaping diversity and structure of algal-
associated bacterial communities (Bagatini et al., 2014; Grossart, 
Levold, Allgaier, Simon, & Brinkhoff, 2005; Teeling et al., 2012). 
Actually, microalgae and bacteria reciprocally affect their physiol-
ogy and metabolism (Albinsson et al., 2014; Bolch, Subramanian, 
& Green, 2011; Bolch et al., 2017; Jauzein, Evans, & Erdner, 2015) 
through relationships which range from mutualistic to antagonistic 
(Amin, Parker, & Armbrust, 2012; Cooper & Smith, 2015; Ramanan 
et al., 2016). A mutualistic interaction relying upon the exchange 
of beneficial compounds has been proposed for members of 
Alphaproteobacteria in relation to different algal bloom-forming 
species. Specifically, the bacteria provide essential molecules 
(e.g., B vitamins and growth promoting factors) and antibiotics 
effective against algal pathogens in return for algal fixed carbon 
exudates (primarily dimethylsulfoniopropionate and Krebs cycle in-
termediates; Wagner-Döbler et al., 2010; Seyedsayamdost, Case, 
Kolter, & Clardy, 2011; Wang et al., 2014, 2015; Amin et al., 2015; 
Cruz-López & Maske, 2016; Segev et al., 2016; Wang, Gallant, & 
Seyedsayamdost, 2016). Furthermore, bacterial phylotypes be-
longing to Rhodobacteraceae have been found to switch from mu-
tualists to pathogens of their dinoflagellate hosts in response to 
either photosynthetic products or algal senescence signaling mole-
cules (Riclea et al., 2012; Segev et al., 2016; Seyedsayamdost et al., 

2011; Sule & Belas, 2013; Wang et al., 2014, 2015, 2016). These 
findings imply a possible relevance of this bimodal interaction in 
algal bloom initiation and termination (Riclea et al., 2012; Wang 
et al., 2014), especially once the dominance of the same phylo-
types is assessed in the bacterial communities associated with both 
bloom phases. In addition, quality and amount of the algal-released 
compounds, that depend on algal species and its physiological sta-
tus, would define phylogenetic structure (Bennke, Neu, Fuchs, & 
Amann, 2013; Christie-Oleza, Scanlan, & Armengaud, 2015; Xing 
et al., 2015) and successional pattern of the associated bacterial 
community (e.g., Bagatini et al., 2014; Grossart et al., 2005; Teeling 
et al., 2012).

A deep knowledge on phylogenetic composition and successional 
dynamics of bacterial communities associated with HABs is there-
fore recognized as a crucial step for unveiling relevant and recurrent 
algal-bacterial associations underpinning the different bloom phases 
(Bagatini et al., 2014; Mayali et al., 2011; Tada, Taniguchi, Sato-Takabe, 
& Hamasaki, 2012; Yang et al., 2015), and in parallel with comple-
menting laboratory-based studies, it will allow to elucidate the func-
tional significance of these complex interactions (Bagatini et al., 2014; 
Buchan et al., 2014; Kazamia, Helliwell, Purton, & Smith, 2016; Sison-
Mangus et al., 2014). Indeed, although 16S rRNA gene phylogenetic 
surveys do not directly decode bacterial functionality, they still pro-
vide insights on how the different bacterial groups correlate within 
the assemblages and with the microalgal partner, considering certain 
metabolic characteristics significant to the groups and to the associ-
ated organism (Amin et al., 2012; Buchan et al., 2014; Gifford, Sharma, 
& Moran, 2014; Newton et al., 2010). Next Generation Sequencing 
approaches typically allow a deeper phylogenetic analysis than tradi-
tional molecular methods, used in most of the available studies de-
scribing bacterial communities associated with toxic dinoflagellates 
(Garcés et al., 2007; Jones et al., 2010; Mayali et al., 2011; Park et al., 
2015; Yang, Zhou, Zheng, Tian, & Zheng, 2012), therefore consider-
ably reducing the gap of knowledge on this topic.

In the last decade, the increasing occurrence of extensive Ostreopsis 
cf. ovata Fukuyo blooms has been reported in temperate coastal re-
gions, including the Mediterranean (Accoroni & Totti, 2016; Aligizaki 
& Nikolaidis, 2006; Funari, Manganelli, & Testai, 2015; Mangialajo 
et al., 2011; Vila, Garcés, & Masó, 2001). Mediterranean O. cf. ovata 
produces palytoxin-like compounds, namely, isobaric palytoxin and a 
wide range of ovatoxins (OVTX-a to -k; Ciminiello et al., 2012; Brissard 
et al., 2015; Tartaglione et al., 2016) under both field (Accoroni et al., 
2011; Carnicer, Guallar, Andree, Diogène, & Fernández-Tejedor, 2015; 
Ciminiello et al., 2006, 2008) and laboratory conditions (Pezzolesi 
et al., 2014, 2016; Pistocchi et al., 2011; Vanucci, Pezzolesi, et al., 
2012; Vanucci, Guerrini, et al., 2012). The epiphytic/benthic dino-
flagellate grows onto a wide range of substrata, forming thick mu-
cilaginous mats (Giussani et al., 2015; Honsell et al., 2013; Totti, 
Accoroni, Cerino, Cucchiari, & Romagnoli, 2010). Blooms occur during 
summer-late summer often in moderate anthropogenic impacted sites 
(Accoroni & Totti, 2016; Accoroni et al., 2015; Marini, Fornasiero, & 
Artegiani, 2002), and they can have a severe impact on human health 
(Funari et al., 2015; Kermarec et al., 2008 and references therein) and 
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on invertebrate benthic communities (Accoroni et al., 2011; Carella 
et al., 2015; Migliaccio et al., 2016). Toxin accumulation has been re-
ported in macrofauna (Aligizaki, Katikou, Milandri, & Diogene, 2011; 
Biré et al., 2015; Furlan et al., 2013), yet no connected food poisoning 
has been shown.

Recently, pyrosequencing analysis revealed that 
Rhodobacteraceae members belonging to the genera Ruegeria, 
Jannaschia, and Roseovarius were dominant at both development 
and maintenance/decline phases of an O. cf. ovata natural bloom, 
suggesting a bimodal behavior of these phylotypes. Whereas, sec-
ondary colonizer bacteria such as Flavobacteria-Sphingobacteria 
and Actinobacteria increased in abundance at the maintenance/
decline phase of the bloom (Vanucci, Guidi, et al., 2016). During the 
aforementioned bloom, however, epiphytic diatoms co-occurred 
in relevant proportion in the O. cf. ovata mats, as found in other 
O. cf. ovata blooms (Accoroni, Romagnoli, Pichierri, & Totti, 2016; 
Totti et al., 2010) also from different geographic areas (Aligizaki & 
Nikolaidis, 2006; Carnicer et al., 2015; Vila et al., 2001). Thus, the 
isolation of O. cf. ovata cells from the natural bloom and the set-
ting up of culture-based studies appear fundamental steps in the 
attempt to discern the more intimate and recurrent bacteria inter-
acting with the dinoflagellate.

This study assessed the bacterial diversity associated with O. cf. 
ovata in batch cultures with the aim of elucidating the most prominent 
microbial associations. Temporal changes in bacterial abundance to-
gether with phylogenetic successional pattern were followed over the 
different algal growth phases, highlighting shifts in bacterial commu-
nity composition with possible ecological and functional significance 
on O. cf. ovata growth dynamics. Moreover, a comparison between 
O. cf. ovata associated bacterial community over the different algal 
growth phases and that one co-occurring in situ during the evolve-
ment of the O. cf. ovata bloom from where the algal strain was isolated 
was also reported. Level of phylogenetic overlapping and functional 
redundancy between the two communities was assayed, in order to 
evaluate the reliability of laboratory cultures for future manipulative 
experiments.

Bacterial phylogenetic composition was recovered by high-
throughput parallel tag sequencing using ION torrent PGM platform. 
Additionally, the highly respiring bacteria were identified as those 
ones able to reduce the fluorogenic redox dye 5-cyano-2,3-dytolyl 
tetrazolium chloride (CTC), in order to provide details on bacterial 
community’s physiological status during cultures progression.

The presence of viruses and their abundance pattern were also 
evaluated synoptically throughout the O. cf. ovata growth. Actually, it 
is known that bacterial communities are also shaped in terms of diver-
sity and dynamics by viral activity, mainly affecting the most abundant 
and metabolically active species (Del Giorgio & Gasol, 2008; Fuhrman, 
1999; Sime-Ngando, 2014; Wommack & Colwell, 2000 and references 
therein). However, viruses have been seldom taken into consideration 
in HABs dynamics (Loureiro, Reñé, Garcés, Camp, & Vaqué, 2011; 
Meyer et al., 2014).

To the best of our knowledge, this is the first study that provides 
viral and highly respiring bacterial cells (CTC+ cells) abundance trends, 

as well as bacterial 16S rRNA gene Next Generation Sequencing data 
associated with a cultured toxic dinoflagellate.

2  | MATERIALS AND METHODS

2.1 | Experimental setup and culture conditions

O. cf. ovata strain OOAP1209 was isolated in September 2012 from 
macrophyte samples collected at the early phase of an O. cf. ovata 
bloom along the coast of North-western Adriatic Sea (Passetto, Italy, 
43°36′38″ N and 13°32′20″ E; Vanucci, Guidi, et al., 2016), using cap-
illary pipette method under sterile conditions (Hoshaw & Rosowski, 
1973), and using 0.22-μm-pore-size filtered and autoclaved seawater 
for cell washing steps. After initial growth in microplates, cells were 
maintained in sterile flasks sealed with cotton plugs at 20°C ± 1°C 
under a 16:8 hr light:dark cycle in a growth chamber (photon flux den-
sity 110–120 μmol m2 s−1 by cool white lamp).

Cultures were set up in sterile f/2 medium (minus silicate) (Guillard, 
1975) plus selenium, with macronutrients (NO3ˉ and PO4

3ˉ) added at a 
fivefold diluted concentration. The medium was prepared from natural 
seawater kept several weeks in the dark before use. The seawater was 
0.22-μm-pore-size filtered and autoclaved, and adjusted to salinity 
value of 36. Medium also contains trace metals and vitamins (Guillard, 
1975).

Experimental cultures consisted in triplicate 3-L Erlenmeyer flasks, 
inoculated with O. cf. ovata collected from a culture at end expo-
nential/early stationary phase and fresh medium to a final volume of 
2650 mL, in order to have a concentration of about 300 cells mL−1 
at the beginning of the experiment (day 0). All experimental manip-
ulations were carried out under a laminar flow hood using sterile 
equipment.

Aliquots for O. cf. ovata enumeration, bacterial and viral enu-
meration, and for assessment of bacterial physiological status were 
collected at day 0, 3, 6, 9, 12, 18, 24, 32, and 42. Aliquots for nutri-
ent analysis were collected at day 0, 3, 6, 9, 12, 24, and 42, whereas 
aliquots for phylogenetic analysis of the bacterial community were 
collected at day 0, 6, 24, and 42. For all the analyses, aliquots were 
collected from each flask in triplicate.

2.2 | Ostreopsis cf. ovata enumeration and 
nutrient analysis

O. cf. ovata cell counts were carried out following Utermöhl method 
(Hasle, 1978) using a Zeiss Axiovert 100 inverted microscope at 
320× magnification under bright field and phase contrast illumina-
tion. Specific growth rate (μ, day−1) was calculated using the following 
equation:

where N0 and N1 were cell density values (cells mL−1) at time t0 and t1.
Nitrate and phosphate analyses were performed on filtered cul-

ture medium aliquots (Whatman GF/F filters, pore size 0.7 μm) and 

μ=
lnN1− lnN0

t1− t0
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analyzed spectrophotometrically (UV/VIS, JASCO 7800, Tokyo, Japan) 
according to Strickland and Parsons (1972).

2.3 | Bacterial and viral enumeration and 
assessment of bacterial physiological status

Bacterial and virus like particles (VLPs) abundances were determined 
in the same culture aliquots fixed with 0.02 μm prefiltered formalde-
hyde (2%), following the method described by Shibata et al. (2006). 
Briefly, aliquots (1 mL) were filtered onto 0.02 μm pore size Anodisc 
filters (Whatman, 25 mm diameter) and stained with 100 μL SYBR 
Gold (Life Technologies) at 8× final concentration, then mounted 
onto microscopic slides and stored at −20°C. Bacterial and viral enu-
merations were performed using epifluorescence microscopy (Nikon 
Eclipse 80i, magnification 1000×) under blue light excitation, counting 
at least 20 fields and a minimum of 300 cells per replicate. Viruses 
were discriminated from bacteria on the basis of their dimensions 
(Noble & Fuhrman, 1998).

Bacterial physiological status was assessed by determining highly 
respiring bacteria as those able to reduce 5-cyano-2,3-ditolyl tetra-
zolium chloride (CTC; Sigma-Aldrich), which turns into a red fluores-
cent formazan detectable by epifluorescence microscopy (Sherr, del 
Giorgio, & Sherr, 1999). Sample aliquots (0.9 mL) were amended with 
100 μL of a 50 mmol L−1 CTC solution (final concentration 5 mmol L−1) 
immediately following collection and were incubated for 3 hr in the 
dark at room temperature. After the incubation, samples were fixed 
with 0.22 μm prefiltered formaldehyde (2%) and then filtered onto 
0.22 μm pore size black-stained polycarbonate membrane filters 
(Millipore). Cell counts were performed using epifluorescence micros-
copy as described above for bacteria and VLPs.

2.4 | Bacterial DNA extraction and PCR 
amplification

O. cf. ovata cultures in aliquots of 30–100 mL volume were harvested 
at the time of inoculum and at exponential, mid and late stationary 
algal growth phases (day 0, 6, 24, 42, respectively) by filtration under 
low vacuum onto Supor 200 PES filters (Pall Corporation/Pall Life 
Sciences, pore size 0.2 μm). All filters were stored at −80°C in sterile 
2-mL centrifuge tubes until analysis. For DNA extraction, filters were 
shredded under sterile conditions, and DNA from cells on the filters 
was extracted using the ZR Soil Microbe DNA MiniPrep Kit (Zymo 
Research) according to the manufacturer’s instructions. The extracted 
DNA samples from the aliquots harvested at the time of inoculum 
and at each algal growth phase were, respectively, pooled together 
at equimolar amounts based on their DNA concentrations, thus in-
creasing, at the same time, sample size and the successive depth of 
sequencing per sample. This procedure was chosen in the attempt to 
maximize bacterial diversity retrieval and to assess the proper phylo-
types’ contribution to the community, avoiding potential biases due to 
algal mucilage aggregates. O. cf. ovata cells, in fact, form mucilaginous 
aggregates increasing in size and abundance during culture progres-
sion (Pezzolesi et al., 2014; Vanucci, Pezzolesi, et al., 2012) and being 

unevenly distributed among the different aliquots. It is known that the 
mucilage layer harbors some selective fractions of the dinoflagellate 
bacterial community co-occurring with O. cf. ovata bloom (Vanucci,  
Guidi, et al., 2016).

Partial bacterial 16S rRNA genes (hypervariable V1-
V2 region) were amplified using universal bacterial prim-
ers 8F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 338R 
(5′-GCTGCCTCCCGTAGGAGT-3′) and master mixes prepared with 
Qiagen Hotstar Hi-Fidelity Polymerase Kit (Qiagen). Amplification in 
triplicate of each sample was performed with following conditions: an 
initial denaturing step at 94°C for 5 min, followed by 27 cycles of de-
naturing of 94°C for 45 s, annealing at 50°C for 30 s and a 1 min 30 s 
extension at 72°C, ending with a 10 min extension at 72°C and a final 
hold at 4°C. Each amplification was checked by electrophoresis on a 
2% agarose gel. In order to remove primer dimers, the replicate PCR 
reactions were pooled and purified using Agencourt AMPure XP PCR 
purification kit (Beckman Coulter Inc.) according to the manufacturer’s 
instructions. Purified amplicons were quantified using a Bioanalyzer 
High Sensitivity DNA Kit (Agilent Technologies) and pooled at equi-
molar ratio. Barcoded amplicon libraries were realized using the Ion 
Plus Library Kit and Ion Xpress Barcode Adapters (Life Technologies) 
in preparation for clonal amplification. Emulsion PCR was performed 
using the Ion PGM Template OT2 400 Kit (Life Technologies) according 
to the manufacturer’s instructions. Multiplexed sequencing of the am-
plicon libraries was carried out on a 316 v2 chip with the Ion Torrent 
PGM system using 850 flows and employing the Ion PGM Sequencing 
400 Kit (Life Technologies) according to the supplier’s instructions.

After sequencing, the individual sequence reads were filtered by 
the PGM software for low quality and polyclonal sequences removal. 
Sequences matching the PGM 3′ adaptor were also automatically 
trimmed. All PGM quality approved, trimmed and filtered data were 
exported as fastq files.

2.5 | Sequence processing and diversity analysis

The fastq files were processed using MOTHUR (Schloss et al., 2009). 
Quality control retained sequences with a length between 250 and 
400 bp, average sequence quality score >25, with truncation of a 
sequence at the first base if a low-quality rolling 10 bp window was 
found. Sequences with presence of homopolymers >6 bp, any ambig-
uous base call, mismatched primers and more than one error on bar-
code sequence were omitted. Community taxonomy information was 
obtained using a Ribosomal Database Project naive Bayesian rRNA 
classifier (Wang, Garrity, Tiedje, & Cole, 2007), and those sequences 
either related to chloroplasts and mitochondria or not belonging to 
the Domain Bacteria were discarded from the dataset. The remained 
unique sequences were aligned against the Silva bacteria database. 
After screening, filtering, preclustering, and chimera removal, samples 
were standardized to the size of the smallest library (15,270 reads) 
by randomly subsampling datasets, and the retained sequences were 
used to build a distance matrix. Bacterial sequences were grouped 
into operational taxonomic units (OTUs) by clustering at 97% simi-
larity, then singleton OTUs were discarded from the analysis if they 
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were not found in at least two different samples. The representative 
sequences for each OTU were picked and classified using the RDP 
classifier. OTUs were defined as abundant when representing ≥1% 
of the community in at least one of the samples, and as rare when 
their relative abundance was <1%. Bacterial community diversity was 
addressed through three diversity indices (observed OTU richness, 
Shannon diversity and Good’s coverage) and a Bray–Curtis similarity 
matrix of OTU abundance data was performed in PAST 3.14 (Hammer, 
Harper, & Ryan, 2001).

Sequences were submitted to GenBank with the project reference 
(BioProject ID) PRJNA339161.

2.6 | Statistical analysis

All statistical analyses were performed with PAST 3.14. Differences 
in the investigated variables were tested by the analysis of variance 
(ANOVA). Statistical significance was set at p < .05 for all the analyses.

3  | RESULTS

3.1 | Ostreopsis cf. ovata cell growth, bacterial 
abundance and physiological status, viral abundance

Growth curve of O. cf. ovata is shown in Figure 1. Cultures initial cell 
densities were 372 ± 37 cells mL−1; the exponential phase ended by 
day 9 (mean growth rate: 0.22 ± 0.01 day−1) attaining to a cell yield 
of 2.63 × 103 ± 9.55 × 101 cells mL−1, and at the stationary phase an 
increase in mucilaginous cell aggregates was evident.

Inorganic nutrients (i.e., NO3ˉ and PO4
3ˉ) were rapidly taken up by 

the cells during the first days of growth, and being almost depleted by 
day 12 (Figure S1).

Over the O. cf. ovata growth cycle bacterial cell densities in-
creased by more than one order of magnitude (range: 7.24 × 105 to 

2.01 × 107 cells mL−1, day 0 and 24, respectively; mean value: 9.41 × 
106 ± 6.77 × 106 cells mL−1). Bacterial community growth was charac-
terized by a biphasic pattern (Figure 1): a first exponential phase (first 
bacterial growth step) occurred synoptically with the algal exponential 
growth phase (i.e., days 0–9), whereas a second exponential phase 
(second bacterial growth step) occurred between day 12 and day 24 
of the algal mid stationary phase (days 9–24), and it was characterized 
by a lower bacterial growth rate with respect to the first one (μ = 0.24 
and 0.10 day−1, days 0–9 and 12–24, respectively; ANOVA, p < .01).

Contribution of highly respiring bacterial cells (CTC+ cells) to 
the total bacterial abundance was, on average, 45 ± 15% (Figure 1). 
Particularly, the highest CTC+ cells relative abundances were found 
synoptically with the first and the beginning of the second bacterial 
exponential steps (62.8% and 59.9%, day 6 and 12, respectively), 
whereas a significant drop in CTC+ cells contribution was recorded at 
day 9 (Figure 1; ANOVA, p < .05). A global decreasing trend in CTC+ 
cells contribution was then observed after day 12, with another drop 
concomitant with the end of the second bacterial exponential step 
(day 24; ANOVA, p < .01), and reaching values of about 13% at the 
end of the experiment (day 42).

Abundance of virus like particles (VLPs) ranged between 1.29 × 107 
and 5.50 × 107 VLPs mL−1 (day 0 and 9, respectively), showing a four-
fold higher mean value (3.86 × 107 ± 1.33 × 107 VLPs mL−1) than bac-
terial one. While during the first bacterial growth step (days 0–9) viral 
abundances exhibited a synoptic increasing pattern, during the sec-
ond bacterial growth step and afterward they were almost stationary, 
slightly decreasing (Figure 1). The consequent mean virus to bacteria 
ratios (VBR, Figure S2) were equal to 11.4 between days 0–9, to 4.9 
between days 12–24 and to 2.3 between days 32–42.

3.2 | Bacterial community diversity and phylogenetic 
composition

Overall, 247,426 high-quality reads spanning the hypervariable re-
gions V1–V2 of the bacterial 16S rRNA gene were obtained (aver-
age length = 290 bp), yielding 207 OTUs after normalization on the 
smallest sample size (15,270 reads), singletons removal, and chlo-
roplast and mitochondrial sequences discharge. Rarefaction curves 
(Figure S3) as well as coverage values (Table 1) revealed that most of 
the bacterial diversity was recovered by sequencing analysis. The un-
weighted pair group method with arithmetic mean (UPGMA) dendro-
gram of Bray–Curtis distances between samples showed that samples 
collected at earlier (i.e., day 0 and 6) and later (i.e., day 24 and 42) algal 
growth phases formed two distinct clusters although differences were 
not significant (Figure 2; ANOSIM, p > .05), nevertheless suggesting 
a shift in bacterial OTU composition during algal growth proceeding.

Bacterial diversity retrieved by ION torrent analysis over the 
O. cf. ovata growth cycle was spread across 5 phyla, 7 classes and 21 
genera (Tables S1–S3). Alphaproteobacteria (range: 65.7%–96.9%, 
day 24 and 6, respectively), Sphingobacteria (2.2%–33.0%, day 
6 and 24) and Actinobacteria (0.04%–2.5%, day 0 and 42) domi-
nated the community, together accounting for more than 98% in 
relative contribution in all samples (Figure 3). Alphaproteobacteria 

F IGURE  1 Growth pattern of Ostreopsis cf. ovata and bacterial 
cells, temporal trend of the contribution (%) of highly respiring 
bacterial cells (CTC+ cells) to the total bacterial abundance, and viral 
abundance (VLPs) trend. O. cf. ovata abundances are multiplied by 
a factor of 500. Each point is the mean of triplicate cultures. Bars 
indicate standard deviations
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was the most abundant class throughout the algal growth (ANOVA, 
p < .05), being mostly represented by the genus Oceanicaulis (fam. 
Hyphomonadaceae; range: 14.2%–40.3%, day 24 and 0, respectively) 

and the Rhodobacteraceae affiliated genera Dinoroseobacter 
(22.2%–35.4%, day 0 and 6), Roseovarius (5.7%–18.3%, day 42 and 
6), and Labrenzia (5.6%–24.3%, day 0 and 24). Sphingobacteria and 
Actinobacteria were mainly represented by members of the gen-
era Fabibacter (fam. Flammeovirgaceae; 0.7%–25.2%, day 6 and 
24) and Dietzia (0.04–1.7%, day 0 and 42), respectively (Figure 4). 
Changes of the main bacterial taxa during O. cf. ovata growth mostly 
relied upon the contribution of the 14 abundant OTUs (i.e., ≥1% 
of the total reads in at least one of the samples; Tables 2 and 3), 
together accounting for 78%–82% of the total community in all 
samples. While at the time of inoculum (day 0) OTUs #2, #9, #13, 
#18, and #20 affiliated to Oceanicaulis showed the highest contri-
bution (18.5% for OTU #2, 2.1%–5.3% for the others), during the 
algal exponential growth phase (i.e., first bacterial growth step) the 
overall most abundant Dinoroseobacter-related OTU #1 represented 
almost a third of the total community (29.2%), showing the high-
est percentage together with Roseovarius OTUs #7, #11 (11.2% 
and 5.9%, respectively) and OTU #9 (7.7%). At the O. cf. ovata mid 
stationary phase (i.e., end of the second bacterial growth step, day 
24), Fabibacter and Labrenzia-related OTUs #6 and #4 (21.9% and 
16.9%, respectively) together with OTU #1 (19.0%) made up more 
than half of the total bacteria. Lastly, at the O. cf. ovata late sta-
tionary phase (day 42) Dinoroseobacter and Oceanicaulis restored 
the dominance observed at the exponential phase (day 6), whereas 
OTU #4 still contributed for ~17% to the total community (Table 2). 
Gammaproteobacteria were rare (<1%) at all O. cf. ovata growth 
phases, with Alcanivorax being the main representative of this class 
(0.6%, day 6; Table S2 and S3).

4  | DISCUSSION

4.1 | Microbial dynamics during Ostreopsis cf. ovata 
growth

Growth pattern of O. cf. ovata and nutrients temporal trend observed 
in this study are consistent with those previously described for the 
same algal species under comparable culture conditions (Pezzolesi 
et al., 2014, 2016; Vanucci, Pezzolesi, et al., 2012). Bacterial commu-
nity growth showed a biphasic pattern, characterized by two expo-
nential growth steps having different growth rates that appear mainly 
triggered by different quality and amount of available substrate. The 
first and faster growth step, occurring synoptically with the algal ex-
ponential growth phase, suggests a rapid utilization of the available 
inorganic nutrients present in the medium not only by O. cf. ovata, but 
also by bacteria along with photosynthetic products, mostly of low 
molecular weight (Buchan et al., 2014; Wagner-Döbler et al., 2010). 
Whereas, the second and slower bacterial growth step, occurring at 
the algal mid stationary phase, suggests the proliferation of bacteria 
able to grow on a wider pool of algal-derived organic matter includ-
ing high molecular weight compounds (Buchan et al., 2014; Thornton, 
2014) under low inorganic nutrients concentrations in the culture me-
dium. Accordingly, the highest contributions of highly respiring bac-
teria (CTC+ cells) to the community (~60% of the total bacterial cells) 

TABLE  1 Bacterial diversity parameters during the Ostreopsis cf. 
ovata growth. Summary of total sequences after normalization (Reads), 
richness as number of bacterial operational taxonomic units detected at 
97% identity (OTUs), Shannon diversity (H’), and Good’s sample coverage 
obtained by Ion torrent sequencing data at the time of inoculum (day 0) 
and during the different algal growth phases (days 6, 24, and 42).

Sample Reads OTUs H′
Good’s 
coverage (%)

Day 0 15,270 202 3.17 99.96

Day 6 15,270 195 2.90 99.99

Day 24 15,270 203 3.05 99.79

Day 42 15,270 205 3.12 99.11

F IGURE  2 UPGMA cluster of bacterial community’s structure 
using Bray–Curtis (BC) distances. Samples were collected at the time 
of inoculum (day 0) and during the different algal growth phases 
(days 6, 24, and 42). The dendrogram was constructed on the basis 
of bacterial OTU abundances retrieved from ION torrent sequencing 
data. Total similarity between samples is indicated by 1, and total 
dissimilarity is indicated by 0

0.66 0.72 0.78 0.84 0.90 0.96

day 24

day 42

day 6

day 0

BC similarity

F IGURE  3 Percent distribution of the dominant classes (≥1% in 
at least one of the samples) detected in O. cf. ovata batch cultures 
at the time of inoculum (day 0) and during the different algal growth 
phases (days 6, 24, and 42), as revealed from ION torrent sequencing 
data. “others” represent the classes with less than 1% of relative 
abundance individually
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occurred at these two growth steps, whereas the lowest ones (~13%) 
occurred at late stationary phase, remarking the recognized correla-
tion existing between CTC-based estimates and bacterial growth rate 
(e.g., Del Giorgio & Gasol, 2008; Paoli, Karuza, De Vittor, Del Negro, 
& Fonda Umani, 2006; Sherr et al., 1999). At the same time, the low 
proportion of CTC+ cells found at the end of the experiment does not 
necessarily indicate high cell mortality. In fact, while CTC+ cells rep-
resent those bacteria characterized by a high level of metabolic activ-
ity, cells showing no apparent CTC reduction can still have different 
levels of metabolic activity linked to substrate quality (e.g., refractory 
organic matter) and/or bacterial phylogenetic affiliations (Del Giorgio 
& Gasol, 2008). So that, changes in bacterial physiological status and/
or phylogenetic structure could likely be the reason for the low CTC+ 
cells values at late stationary phase (see also forward). Moreover, as 
general, the high contributions of active bacteria reported in this study 
are rarely detectable in natural environments, where high metabolic 
bacterial cells are selectively grazed (Jürgens & Massana, 2008), be-
sides being preferentially targeted by virus to ensure successful prop-
agation of the progeny (Del Giorgio & Gasol, 2008; Sime-Ngando, 
2014; Wommack & Colwell, 2000). Given this premise, the CTC+ cells 
pattern retrieved here yet resembles bacterial production trend found 
during a bloom of the toxic planktonic dinoflagellate Karenia brevis, 
where the rates of leucine and thymidine uptake increased and then 
decreased in line with the initiation and maintenance bloom phases, 
respectively (Meyer et al., 2014). In addition, temporal microbial (CTC+ 
bacteria and viruses) patterns and the decreasing trend of the mean 
virus to bacteria ratio (VBR: from 11.4 to 2.3, days 0–9 and 32–42, re-
spectively) indicate a more relevant viral top-down control (e.g., Meyer 
et al., 2014; Wommack & Colwell, 2000) at the first bacterial growth 
step than afterward, suggesting that viruses likely affected the bacte-
rial community composition by impacting most active bacteria rather 
than affecting the alga straightly, in accordance with previous reports 
on bloom dynamics of Karenia brevis (Meyer et al., 2014; Paul et al., 
2002). Nevertheless, further studies are needed to assess a possible 
presence of algal viruses (and their forms of infection) and its relative 

importance in the microbial dynamics. Bacterial and viral temporal 
patterns in this study also suggest a more tight relationship between 
viral abundance and bacterial growth rate rather than between viral 
and bacterial abundances, as similarly found in natural environments 
(e.g., Corinaldesi et al., 2003; Danovaro, Corinaldesi, Filippini, Fischer, 
& Gessner, 2008; Danovaro et al., 2011; Del Giorgio & Gasol, 2008; 
Middelboe, 2000; Sime-Ngando, 2014). Consistently, a higher relative 
abundance of fast-growing bacteria was retrieved at the first growth 
step than at the second one and afterward (i.e., Alphaproteobacteria 
with respect to Sphingobacteria, Figure 3).

4.2 | Bacterial diversity and successional pattern

In total, more than 200 OTUs at a 97% similarity level were detected 
in the bacterial community associated with O. cf. ovata over the algal 
growth cycle. As it was expected, ION torrent 16S rRNA gene se-
quencing revealed a higher bacterial richness than those found for 
bacterial communities associated with cultured toxic dinoflagellates 
available to date and assessed with traditional molecular methods 
(e.g., Alexandrium spp., Sala et al., 2005; Pérez-Guzmán, Perez-Matos, 
Rosado, Tosteson, & Govind, 2008; O. ovata and Coolia monotis, Ruh 
et al., 2009; Gymnodinium catenatum, Green et al., 2010; Pyrodinium 
bahamense, Onda, Azanza, & Lluisma, 2015), while being consist-
ent with the OTU richness values retrieved by next generation se-
quencing of the bacterial communities associated with single algal 
cell isolates (Sison-Mangus et al., 2014). Whereas, OTU richness and 
Shannon diversity in cultures (range values: 195–205 and 2.90–3.17, 
respectively; Table 1) were lower than those ones found for the bac-
terial community co-occurring with the O. cf. ovata natural bloom 
from where the algal strain studied here was isolated (range values: 
1621–2214 and 5.28–6.36, OTU richness and Shannon diversity, 
respectively; Vanucci, Guidi, et al., 2016). This finding remarks that 
algal cells isolation procedure and laboratory maintenance over suc-
cessive subcultures can reduce bacterial diversity of the community 
co-occurring with the alga in the natural environment. In fact, it is 

F IGURE  4 Relative contribution of the 
major bacterial genera (≥1% in at least one 
of the samples) retrieved in O. cf. ovata 
batch cultures at the time of inoculum (day 
0) and during the different algal growth 
phases (days 6, 24, and 42), as revealed 
from ION torrent sequencing data. “others” 
represent the genera with less than 1% of 
relative abundance individually
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known that culture conditions exert some selective pressure, either 
suppressing or promoting certain bacterial phylotypes, and likely lead-
ing to a dynamic balance over time. Specifically, selective forces over 
repeated transfers could allow the persistence of those bacteria best 
adapted to exploitation of algal-derived products under recurring 
changes in nutrients and from aerobic to anaerobic conditions, and 
of those phylotypes with a specific importance for the growth and 
physiology of the algal cells (e.g., Green, Llewellyn, Negri, Blackburn, 
& Bolch, 2004; Green et al., 2010; Jasti, Sieracki, Poulton, Giewat, 
& Rooney-Varga, 2005; Lupette et al., 2016; Schwenk, Nohynek, & 
Rischer, 2014) (see also forward). Given this premise, bacterial com-
munity composition over the O. cf. ovata growth cycle was spread 
across 5 phyla, 7 classes, and 21 genera. Alphaproteobacteria (mainly 
Rhodobacteraceae), followed by Flavobacteria-Sphingobacteria and 

Actinobacteria, dominated the community. This broad bacterial com-
position feature with the dominance of these three taxa is consistent 
with most bacterial communities co-occurring in mesocosms/batch 
cultures (Bagatini et al., 2014; Grossart et al., 2005; Tada et al., 2012) 
and in nontoxic and toxic natural blooms of dinoflagellates (Buchan 
et al., 2014; Garcés et al., 2007; Jones et al., 2010; Mayali et al., 
2011). Notably, the relative abundances and successional pattern 
quite resemble those reported during O. cf. ovata bloom (Vanucci, 
Guidi, et al., 2016). Actually, Alphaproteobacteria strongly dominated 
the exponential and bloom development phases in cultures and in 
situ, respectively (~90% of the total community for both studies), with 
a persistent presence of Rhodobacteraceae over the algal growth 
cycle and bloom phases (~40%–60%). Whereas, secondary colonizer 
bacteria such as Flavobacteria-Sphingobacteria (~20%–30%) and 
Actinobacteria (~2%–3%) were important at stationary growth and 
bloom maintenance/decline phases, respectively.

Overall, in this study, the co-dominance of Oceanicaulis and 
Dinoroseobacter phylotypes (closely related to Oceanicaulis alexandrii 
and Dinoroseobacter shibae at 96% and 99% 16S rRNA gene sequence 
similarity, respectively; Table 3) at exponential and late stationary algal 
growth phases reflects their high metabolic plasticity, considering the 
deep differences in terms of inorganic nutrient concentrations and or-
ganic matter quality and availability between the two distinct phases. 
Oceanicaulis representatives have been retrieved from several marine 
algal cultures (Alexandrium tamarense, Strompl, 2003; Emiliania huxleyi, 
Zabeti, Bonin, Volkman, Guasco, & Rontani, 2010; Eutreptiella sp., Kuo 
& Lin, 2013; Ostreococcus tauri, Abby, Touchon, De Jode, Grimsley, 
& Piganeau, 2014), and genes and regulons involved in biosynthe-
sis pathways of B vitamins (i.e., B1, B7, and B12) have been detected 
in Oceanicaulis phylotypes (Oh et al., 2011). Additionally, the versa-
tile chemoheterotrophic metabolism reported for this genus (Chen, 
Sheu, Chen, Wang, & Chen, 2012; Oh et al., 2011; Strompl, 2003) 
also encompasses efficient phosphate uptake capacity in carbon-
limited medium and inorganic nutrient depleted conditions through 
high-affinity phosphate transporters located in the prosthecae 
(McAdams, 2006; Oh et al., 2011). Dinoroseobacter shibae strains have 
been firstly retrieved in association with toxic cultured benthic and 

TABLE  2 Relative contribution (%) of the abundant OTUs (≥1% of 
the total reads in at least one of the samples) retrieved at the time of 
inoculum (day 0) and during the different algal growth phases  
(days 6, 24, and 42), as revealed by ION torrent sequencing data

OTU #
Closest relative 
(RDP classifier)

Day 
0

Day 
6

Day 
24

Day 
42

1 Dinoroseobacter 18.1 29.2 19.0 22.5

2 Oceanicaulis 18.5 14.3 4.4 13.9

4 Labrenzia 4.3 5.1 16.9 16.7

6 Fabibacter 6.8 0.6 21.9 4.8

7 Roseovarius 11.0 11.2 4.1 3.6

9 Oceanicaulis 5.3 7.7 3.4 6.5

11 Roseovarius 5.3 5.9 2.3 1.7

13 Oceanicaulis 3.1 2.2 0.9 2.2

16 Dietzia 0.0 0.0 0.7 1.5

18 Oceanicaulis 2.3 2.1 0.8 1.8

20 Oceanicaulis 2.1 1.4 0.5 1.4

21 Flammeovirgaceae 0.1 0.0 1.6 1.5

33 Rhodobacteraceae 1.3 1.5 0.9 0.3

35 Balneola 2.0 0.7 0.7 0.2

TABLE  3 Closest matches from the NCBI GenBank database based on sequence similarity of the most abundant OTUs (≥1% of the total 
reads in at least one of the samples) as revealed by Ion torrent sequencing data

OTU#
Closest matched sequence (% 16S 
rRNA gene similarity)

NCBI accession 
number

Closest cultured neighbor (% 16S 
rRNA gene similarity)

NCBI accession 
number

1 Dinoroseobacter shibae (99) NR074166.1 Dinoroseobacter shibae (99) NR074166.1

2, 9, 13, 18, 20 Uncultured bacterium (99) JQ337901.1 Oceanicaulis alexandrii (96) NR025456.1

4 Labrenzia alexandrii (100) NR042201.1 Labrenzia alexandrii (100) NR042201.1

6 Uncultured bacterium (99) JX016873.1 Fabibacter pacificus (92) NR109732.1

7, 11 Roseovarius sp. (100) AB114422.1 Roseovarius tolerans (99) NR026405.1

16 Uncultured bacterium (98) FJ594833.1 Dietzia cinnamea (81) NR116686.1

21 Reichenbachiella sp. (94) JX854345.1 Reichenbachiella faecimaris (93) NR117445.1

33 Thalassococcus lentus (100) NR109663.1 Thalassococcus lentus (100) NR109663.1

35 Uncultured Balneola sp. (98) JX529426.1 Balneola alkaliphila (95) NR044367.1
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planktonic dinoflagellates (i.e., Alexandrium ostenfeldii, Prorocentrum 
lima, Protoceratium reticulatum) and other nontoxic marine microalgae 
(reviewed in Wagner-Döbler et al., 2010). High contributions of this 
species (>22%, Figure 4) were observed here all along the O. cf. ovata 
growth. A mutualistic-pathogenic bimodal behavior in response to algal 
physiological status has been demonstrated for D. shibae in co-culture 
with toxic dinoflagellates. Specifically, the bacterium is able to switch 
from a mutualistic phase, when it synthesizes vitamins B1 and B12 
(Biebl et al., 2005) and antibacterial compounds primarily in exchange 
for the algal-released dimethylsulfoniopropionate, to a pathogenic 
phase triggered by algal senescence signaling molecules (Wagner-
Döbler et al., 2010; Wang et al., 2014, 2015). A similar behavior has 
been found for other related Rhodobacteraceae (i.e., Phaeobacter gal-
laeciensis, P. inhibens, Seyedsayamdost et al., 2011; Segev et al., 2016; 
Wang et al., 2016; Rugeria pomeroyi, Riclea et al., 2012; Silicibacter sp., 
Sule & Belas, 2013). O. cf. ovata produces dimethylsulfoniopropionate 
(Vanucci, Pezzolesi, et al., 2016), whereas its vitamin requirements are 
still unknown. A focus on O. cf. ovata B vitamins demand and on the di-
noflagellate’s potential vitamin uptake through its associated bacterial 
community warrants future research, considering that many harmful 
dinoflagellates show auxotrophy for some B vitamins (Croft, Lawrence, 
Raux-Deery, Warren, & Smith, 2005; Cruz-López & Maske, 2016; Koch 
et al., 2014; Tang, Koch, & Gobler, 2010). In this study, Roseovarius ac-
counted for almost 20% of the total bacteria at O. cf. ovata exponential 
growth phase. Roseovarius-affiliated phylotypes have been recovered 
from different cultured marine algal species (Biebl et al., 2005; Onda 
et al., 2015), also concurrently with Oceanicaulis (Abby et al., 2014; 
Kuo & Lin, 2013) and Fabibacter relatives (Green, Echavarri-Bravo, 
Brennan, & Hart, 2015), and in association with toxic dinoflagellate 
blooms (Vanucci, Guidi, et al., 2016; Yang et al., 2015). Metagenomic 
and biochemical analyses highlighted the large metabolic portfolio of 
Roseovarius (Bruns et al., 2013; Riedel et al., 2015), including synthesis 
of dual nature compounds (i.e., algal growth promoting and algicidal 
ones; Ziesche et al., 2015). However, Roseovarius as well as Labrenzia 
strains have been shown to require both vitamin B1 and B7 for the 
growth (Biebl, Lu, Schulz, Allgaier, & Wagner-Döbler, 2007; Biebl et al., 
2005).

The comparison between laboratory and environmental data re-
veals that the alphaproteobacterial consortium retrieved in O. cf. ovata 
cultures was phylogenetically closely related to that one found during 
the O. cf. ovata bloom, the latter composed by the Rhodobacteraceae 
Ruegeria, Jannaschia, and Roseovarius together with Erythrobacter 
(Vanucci, Guidi, et al., 2016). Besides, the members forming the two 
consortia altogether share comparable metabolic traits, including 
species-specific de novo B vitamins synthesis and a bimodal behav-
ior with the ability to synthesize both antibacterial and algicidal com-
pounds (Newton et al., 2010; Pujalte, Lucena, Ruvira, Arahal, & Macián, 
2014; Ziesche et al., 2015), suggesting some degree of functional simi-
larity and redundancy. In fact, Jannaschia and Ruegeria phylotypes were 
still present in cultures, although in lower abundances (Table S3). Thus, 
while culture conditions partially modify the relative importance of 
lower-order taxa composing the environmental bacterial community, 
the overall metabolic and functional profile seems someway maintained. 

Consistently with the field observation (Vanucci, Guidi, et al., 2016), 
additional metabolic abilities typical of the Alphaproteobacteria form-
ing the two consortia further favored these phylotypes over other 
taxa also in cultures. In fact, Dinoroseobacter as well as Roseovarius and 
Labrenzia are aerobic anoxygenic photosynthetic bacteria (Biebl et al., 
2005, 2007), known to outcompete strictly chemoheterotrophs when 
growing in a light-dark carbon-limited regime, becoming the most met-
abolically active bacteria (Koblížek, 2015; Soora et al., 2015; Wang 
et al., 2014, 2015). Moreover, Dinoroseobacter as well as Oceanicaulis 
and Roseovarius members are able to grow under anaerobic conditions 
(Laass et al., 2014; Oh et al., 2011; Riedel et al., 2015; Wagner-Döbler 
et al., 2010), which likely occurred in O. cf. ovata mucilaginous aggre-
gates at the stationary phase of the algal growth, as suggested by de-
tection of ammonia in the culture medium (~3.0 μmol L−1 at both days 
24 and 42; data not shown). Analogous diel anoxia conditions occur 
in natural O. cf. ovata mats (Vanucci, Guidi, et al., 2016). Conversely, 
a minor contribution of Gammaproteobacteria was found at all O. cf. 
ovata growth phases (<1%). Limited abundances of this class have been 
reported also during the O. cf. ovata natural bloom (<6%) and in as-
sociation with other toxic dinoflagellates (e.g., Alexandrium spp., Jasti 
et al., 2005; Garcés et al., 2007; Lingulodinium polyedrum, Cruz-López 
& Maske, 2016).

Within Bacteroidetes, bacterial diversity in cultures was domi-
nated by Sphingobacteria (Figure 3), whereas Flavobacteria prevailed 
in the O. cf. ovata natural bloom (Vanucci, Guidi, et al., 2016). Although 
being considered metabolically and functionally similar (Kirchman, 
2002; Teske, Durbin, Ziervogel, Cox, & Arnosti, 2011), in relation to 
phytoplankton Sphingobacteria have been found mainly associated 
with coccolithophores (Green et al., 2015; Van Oostende et al., 2008), 
whereas Flavobacteria with diatoms (Grossart et al., 2005; Teeling 
et al., 2012; Xing et al., 2015). Thus, Flavobacteria could have been 
more efficient in degrading phytodetritus from the epiphytic diatoms 
co-occurring in relevant proportion during the O. cf. ovata bloom 
(Accoroni et al., 2016; Vanucci, Guidi, et al., 2016). According to sec-
ondary colonizer traits typical of Flammeovirgaceae (Kim et al., 2013; 
Nedashkovskaya & Ludwig, 2011), the high contribution of Fabibacter 
at O. cf. ovata mid stationary phase indicates the occurrence of high 
molecular weight compounds less susceptible to Rhodobacteraceae 
attack such as phytodetritus (Buchan et al., 2014) and mucus (de 
Castro et al., 2010). Recalcitrant carbon-rich macromolecules like 
O. cf. ovata toxins (Pinna et al., 2015), are also known to be increas-
ingly released from the exponential to the stationary phase (Pezzolesi 
et al., 2014, 2016; Vanucci, Pezzolesi, et al., 2012; Vanucci, Guerrini, 
et al., 2012). Successively, Rhodobacteraceae genera such as Labrenzia 
and Dinoroseobacter may have also responded to a renewed availabil-
ity of low molecular weight compounds by Bacteroidetes algal-derived 
matter remineralization (Buchan et al., 2014; Fernández-Gómez et al., 
2013; Teeling et al., 2012) at the algal stationary phase. Moreover, 
Labrenzia alexandrii (OTU #4, 100% similarity; Biebl et al., 2007) war-
rants further investigation since killing-host activity also by R-bodies 
has been hypothesized for this species (Fiebig et al., 2013).

Inhibitory/algicidal activity has been also strongly suggested for 
Dietzia-affiliated members (Kim, Jeong, & Lee, 2008; Le Chevanton 
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et al., 2013), which became abundant at the O. cf. ovata late stationary 
growth phase (OTU #16), consistently with the pattern generally ob-
served for recalcitrant substrate degrading Actinobacteria in both algal 
cultures and natural outbreaks bacterial succession (Bagatini et al., 
2014; Basu, Deobagkar, Matondkar, & Furtado, 2013; Vanucci, Guidi, 
et al., 2016). During the O. cf. ovata bloom, however, Ilumatobacter 
phylotypes were the main representatives of Actinobacteria at main-
tenance/decline phase (Vanucci, Guidi, et al., 2016), as found in dia-
toms degradation processes (Bagatini et al., 2014; Zakharova et al., 
2013). This finding suggests a more intimate relationship between 
Ilumatobacter and diatoms co-occurring at the bloom rather than with 
O. cf. ovata. Whereas, consistently with the results reported here, 
Dietzia relatives have been isolated during the termination of the 
planktonic harmful dinoflagellate Cochlodinium polykrikoides blooms 
(Kim et al., 2008), suggesting a more recurrent interaction of this bac-
teria with the dinoflagellates.

5  | CONCLUSIONS

In this study, an alphaproteobacterial consortium composed by the 
Rhodobacteraceae Dinoroseobacter and Roseovarius, together with 
Oceanicaulis, was strongly associated with O. cf. ovata over the algal 
growth cycle. Fabibacter together with Labrenzia and Dietzia were rel-
evant at late phases of the algal growth.

Overall, the bacterial successional pattern, and the metabolic and 
functional traits of the bacterial community selected under laboratory 
conditions mirror those ones underpinning O. cf. ovata bloom dynam-
ics in field. In particular, bacterial community metabolic and functional 
profile appears primarily relying on the presence of genera encom-
passing mutualistic-pathogenic bimodal behavior phylotypes, and on 
synergistic bacterial-bacterial interspecific interactions for maximizing 
O. cf. ovata organic matter exploitation and fulfillment of the nutri-
tional needs within the community. Thus, laboratory cultures appear a 
tractable system for unveiling environmental and anthropogenic fac-
tors which, besides affecting O. cf. ovata directly, could also induce 
shifts on O. cf. ovata bacterial community structure and dynamics, and 
connected changes in algal–bacterial interactions with subsequent 
cascading effects on bloom development and algal toxins production 
(Buchan et al., 2014).

In order to gain insight into the functional significance and meta-
bolic exchanges underpinning these complex interactions, future ex-
perimentation is required in defined co-cultures based on O. cf. ovata 
and bacterial isolates selected among those composing the algal as-
sociated community retrieved in this study. A focus on the bacterial 
phylotypes with an assessed mutualistic-pathogenic bimodal behavior, 
in response to algal physiological status, which could have relevance 
in O. cf. ovata bloom initiation and termination phases, it is suggested.

With respect to viral lytic activity, bacterial abundance pat-
tern and bacterial successional trend found in this study sug-
gest investigation on viral host specificity for the most abundant 
Alphaproteobacteria associated with O. cf. ovata, particularly at the 
first bacterial growth step. An exception can be made with regard 

to D. shibae, known to harbor the most complex Rhodobacteraceae’ 
viral defense system retrieved to date (Wagner-Döbler et al., 2010). 
At the same time, the presence of viruses specific for O. cf. ovata 
and their forms of infection (Sime-Ngando, 2014) should be also 
investigated.
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