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In the boundary layers around the edges of images, basic nonlinear
parabolic equations for image intensity used in image processing
assume a special degenerate asymptotic form. An asymptotic
self-similar solution to this degenerate equation is obtained in an
explicit form. The solution reveals a substantially nonlinear ef-
fect—the formation of sharp steps at the edges of the images,
leading to edge enhancement. Positions of the steps and the time
shift parameter cannot be determined by direct construction of a
self-similar solution; they depend on the initial condition of the
pre-self-similar solution. The free-boundary problem is formulated
describing the image intensity evolution in the boundary layer.

nonlinear partial differential equations | self-similar solutions

M odern computer vision studies are based on a differential-
geometric approach having roots in ideas presented in the
inaugural lecture of B. Riemann at the Philosophical Faculty of
Gottingen University in 1854. This lecture was earmarked in fact
for a single listener, K. F. Gauss, who selected the topic from
three that were proposed by Riemann and whose ideas concern-
ing geometric theory of surfaces received in this lecture far-
reaching development.

In an illuminating essay by B. Kagan (1), a review of the
development of Riemann’s geometric ideas in an active period
up to the mid-thirties is presented most comprehensively to-
gether with a detailed bibliography. I want to mention here an
instructive moment. Riemann’s lecture was published by a
German mathematician, R. Dedekind, long after Riemann’s
death. The title of the lecture was “Ueber die Hypothesen welche
der Geometrie zu Grunde liegen” (on the hypotheses which lie
at the foundation of the geometry). Soon after publication of
Riemann’s lecture, there appeared a paper by H. von Helmholtz
having a title practically coinciding with the title of Riemann’s
lecture except for a single word: “Ueber die Tatsachen welche
der Geometrie zu Grunde liegen” (on the facts which lie at the
foundation of the geometry). Helmholtz claimed in this paper
that he came to the ideas presented in Riemann’s lecture
independently, and what is most interesting now, by a completely
different motivation, trying to construct a physiological model of
vision (Helmholtz’s basic profession was physiology and medi-
cine). It is instructive to see how these ideas are resurrected in
computer vision science!

Rather early it was recognized in computer vision studies [see
especially the paper by Perona and Malik (2)] that the technique
of image processing leads to solving nonlinear parabolic partial
differential equations. What is important (it was emphasized in
ref. 2), that a properly selected nonlinearity, i.e., the image
intensity flux, can lead to an enhancement of image edges even
if the flux is as usually directed opposite to the image intensity
gradient. A different approach to the edge enhancement prob-
lem was proposed by Alvarez et al. (3). They selected the image
flux direction orthogonal to the image intensity gradient. The
basic partial differential equation for the image intensity ob-
tained in ref. 3 is also a nonlinear parabolic one, but it does not
belong to the class outlined in ref. 2.
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In the present note the appearance of the edge enhancement
in the technique proposed by Malladi and Sethian and their
colleagues is investigated. In refs. 4 and 5, these authors arrived
at the following equations for image intensity ¢ by using the
differential-geometric approach and various assumptions con-
cerning the image intensity flux:
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[Beltrami flow (5)]. Here, x and y are the Cartesian coordinates
in the image plane, ¢ is time. Thus, according to refs. 4 and 5,
image processing is reduced to the solution of the chosen
equation under an initial condition ¢(x, y, t0) = do(x,y)
corresponding to a grey level of the image being processed. I note
that later the equation (2) was also published by Yezzi (6), who
used a different model for the image processing.

As a result of a certain degeneracy of the asymptotic forms of
Egs. 1 and 2, it is appropriate to consider a more general class
of equations
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where « = 0 and B, vy are positive constants. Both Egs. 1 and 2
belong to this class.

a,¢ =

Boundary Layer Effect in Image Processing and the Asymptotic
Form of the Basic Equation

An analysis of images presented in refs. 4 and 5 showed that
near the edges of the images always exists a boundary layer (see
Fig. 1), where the normal component of the image intensity
gradient is large. We use the local Cartesian coordinates in the
boundary layer: x, along the normal to its midline, and y, along
the midline. It can be assumed that (9,¢)> ~ 1/h? in the
boundary layer is, generally speaking, much larger than 82. It can
be assumed also that in the boundary layer, (9,¢)> << 1/H? is
much less than 82. Therefore, I can neglect (9,¢)? in comparison
with 2. Eq. 3 in the boundary layer is reduced to the one-
dimensional form
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Fig 1.

The boundary layer at the image edge.
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Here, k = yB% Eq. 4 belongs to a general class of equations
considered in the article by Bertsch and Dal Passo (7). If (9,¢)?

is much larger than 82, I can neglect B2 in the denominator of Eq.
4, and an asymptotic form of Eq. 3 is obtained
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governing the evolution of the image intensity in the boundary
layer.

I note a certain connection between Eq. 5 and the Bertsch
equation (see ref. 8)

= Yo — (c — 1)(9,4)?

(c is a constant). Indeed, assuming ¢ = 1 +202(1+e) T reduce
Eq. 5 to a similar form
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This form is also more convenient for numerical computations.

Intermediate-Asymptotic Solution

For a useful comparison, I present at first briefly a derivation
based on the dimensional analysis of the classic intermediate-
asymptotic solution to the linear equation 9,¢ = kd2.¢ (formally
corresponding to Eq. 5 for « = —1) for a “smoothed step”
initial-boundary value problem
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Here, ¢1 > ¢, = 0 and a, b > 0 are constant parameters of the
problem, and the function ¢o(x) is assumed to be smooth at
—a = x = b, so that ¢o(—a) = 1, do(b) = ¢2. Also, it is
assumed that ¢o(—a), ¢o(b) are = 0. Without loss of generality,
¢, can be assumed to be equal to zero.

A priori an intermediate-asymptotic solution to the problem
Eq. 6 can depend only on the quantities «, ¢ + ty, ¢y, and x —
xo. The constant xo which enters due to the invariance of the

dlx, —ty) =
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equation to shift x’ = x + const; it remains, however, undeter-
mined in a direct construction of the self-similar intermediate
asymptotics. The dimensions of the involved quantities are [$] =
[$1] = &, [x — x0] = L, [t + to] = T, and for the linear case
under consideration, [k] = L2T~!. (Maxwell’s notation is used
for the dimension of z.) Here, ® is the independent dimension
of ¢, L and T are dimensions of length and time. Dimensional
analysis shows that the intermediate-asymptotic solution can be
represented in the form ¢ = ¢1f(€), where, for the linear case
under consideration, a dimensionless independent variable is
inversely proportional to V¢ + to:& = (x — x0)/ Vk(t + to).
Substituting ¢ = ¢1f(§) to the linear equation (Eq. 5 for o =
—1), I obtain a linear ordinary differential equation for the
function f. Easy integration under boundary conditions f(—) =
1, f(%¢) = 0 allows one to obtain the function f in an explicit form,
and the intermediate-asymptotic solution appears in the classic
form

1 =)
b= fJ’ e 7dz. (7]
VT
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Solution 7 demonstrates that for a linear case (a« = —1), the

smoothed stepwise initial distribution extends with time; its
properly defined width increases with time proportionally to
V't + to, and the maximum of the derivative modulus |9,
decreases with time as 1/(¢ + #9)"2.

I repeat now the above argument for the case of nonlinear
asymptotic Eq. 5 corresponding to a = 1 [the Beltrami flow,
Malladi and colleagues (5)]. The essential difference is that in
this case, the dimension of coefficient k is different:

k=®L 2T [8]

This difference leads to a dramatic change in the solution. As
before, the solution is represented in the form ¢ = ¢1f(é);
however in this case (a = 1),

&= (x —xo) yk(t + 1)/ $1, [91

so that the dimensionless argument of the function f is directly
proportional, not inversely proportional, to \/t+ty. Eq. 5 as-
sumes for the case a = 1 the form

d,b = kdpd/(0.0)".

Substituting to Eq. 10 ¢ = ¢1f(&), we obtain for f(§) the ordinary
differential equation:

[10]
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where § is determined by Eq. 9. Easy integration gives
d 1

A~ g1 — &/

Here, & is an integration constant. Further integration and the
boundary conditions f(—&) = 1, f(&) = 0 give

— 1/2 s dg
f=1-¢ - E§=E=4 [13]
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The integration constant & is obtained from the condition
f(&) = 0, so that
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Fig 2. The self-similar solutions for different values of the parameter a.
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Thus, the intermediate-asymptotic solution assumes the form
(see Fig. 2):
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for x; = xo — D)/ (Vi + 1) = x = xf =x0 + &
(61/Vk(t + to)). It is seen that, contrary to the linear case
presented above, this solution is a local solution. At free
boundaries x = x; andx = xf+ , the image intensity is continuous
but the derivative d,¢ suffers an infinite jump. The condition
dy¢p = —o0 can be interpreted as the zero flux condition.

Relation 15 reveals important asymptotic properties of the
image evolution in the boundary layer at the image edge. First
of all, the width of the transition region x;-r — x; equal to 2&
di[k(t + t)] "2 decreases with time; the step forms from an
initially noisy image (Relation 6) and the edge enhancement
takes place. Furthermore, the value of ¢(x, ) remains constant
and equal to ¢,/2. (I emphasize that position x, cannot be
obtained in the presented construction and requires a matching
with pre-self-similar solution, e.g., by a numerical computation.)
Finally, the value of |0,¢| atx = xo equal to Vk(t + t0)/ 1 &,
which is the minimum of |3, ¢|, is growing with time, therefore
the validity of the asymptotic Eq. 5 improves with time.

Solution 15 suggests the following free-boundary problem for
determination of the image intensity evolution in the boundary
layer. At the initial moment, the points x; (fo) = —a and xf+ (to)
= b—the boundaries of the uncertainty belt—are prescribed, so
that ¢ = ¢, for x = x; (t9) and ¢ = 0 for x = x; (to) (Relation
6). Att > t(, the image intensity ¢(x, ) and the free boundaries
xp (1), xf+ (¢) should be determined so that Eq. 4, initial condition
6, and the conditions at free boundaries

b=y, 0b=—watx=x (1);d=0,0.p=—atx=x (1)
[16]

should be satisfied. The condition d,¢ = —o atx = x; (¢) and
x = x/(f) can be interpreted as zero flux condition. This
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Fig3. The dependence of the dimensionless width of the transition region &
on a.

one-dimensional free-boundary problem can be implemented to
two-dimensional problems.

Intermediate-Asymptotic Solution for Arbitrary « > 0

I return to the general Egs. 4 and 5. In this case, [k] = ®2( )
L~=2¢T—1 5o that

b= ¢if(8), €= (x —x0) (k(t + 1))/ it~ [17]
and the equation for the function f(&) takes the form
L dj(ﬁ) e
20 tde T de\de : (18]

Integrating and using the boundary condition f(—¢&) = 1, 1

obtain
2o \ 120+ i d¢
f(f):1_<1+a> 5}1/1+a (11— )ri+a
-1

[19]

for —& = & = &. By using the boundary condition f(§;) = 0, the
relation for & can be obtained:

e 1201+ @) d¢ —(1+ a)/a
§f= [2(1 T a) J' (1- §2)1/2(1+0¢)‘| .
0

[20]

The function &4 «) is nonmonotonic (see Fig. 3); £4(0) is equal
to infinity. At first, £(a) decreases with growing a, reaches a
minimum, and then starts to grow.

The intermediate-asymptotic solution takes for arbitrary pos-
itive « the form ¢ = ¢4, for

x<xp =xo = TVt + 1) 7Y

o |\ [ —x0)(le + 1012 b} g
a/l +
&

- 2
A Rl s
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dg
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forx, <x < xf*,x;r =x0 + ffd)i“‘/"‘ (k(t + £9)) V2% and ¢ =
0, for x > x; . For the width of the transition region, the relation
21 suggests the expression

d)l + a/a

XX = 2 e [22]

So, qualitatively the situation for any a > 0 is the same as in the
case of the Beltrami flow a = 1: the edge enhancement will take
place if any equation of this class will be used.

A. E. Chertock performed a series of numerical computations
of the solutions to the suggested free-boundary problem for the
Eq. 4. The function ¢o(x) in some runs was nonmonotonic.
Parameter « assumed the values « = 1 and other values including
small positive ones. Computations demonstrated that the self-
similar solution 21 was an intermediate asymptotics of the
solutions computed numerically (A. Chertock, unpublished
data). On Fig. 4, the evolution of the image intensity distribution
in time is presented for a nonmonotonic initial condition in the
case a = 1 (Beltrami flow).

The case of the mean curvature flow (Eq. 1) corresponding to
a = 0 requires additional analysis.

Conclusion

A free-boundary problem is formulated for the image inten-
sity evolution in the boundary layer around the edge of the
image. Analysis of intermediate-asymptotic solutions for the
image evolution in the boundary layer of an image demonstrated
that the edge enhancement takes place for the class of flows
under consideration. The rate of enhancement depends on the
parameter, i.e., on the hypotheses concerning the image intensity
flow.
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Fig 4. The evolution of the image intensity distribution for a = 1 (Beltrami
flow).
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