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Abstract

Pulmonary hypertension (PH) is emerging as a serious complication associated with hemolytic disorders, and plexiform lesions

(PXL) have been reported in patients with sickle cell disease (SCD). We hypothesized that repetitive hemolysis per se induces PH

and angioproliferative vasculopathy and evaluated a new mechanism for hemolysis-associated PH (HA-PH) that involves the release

of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) from erythrocytes. In healthy rats, repetitive admin-

istration of hemolyzed autologous blood (HAB) for 10 days produced reversible pulmonary parenchymal injury and vascular

remodeling and PH. Moreover, the combination of a single dose of Sugen-5416 (SU, 200 mg/kg) and 10-day HAB treatment

resulted in severe and progressive obliterative PH and formation of PXL (Day 26, right ventricular peak systolic pressure

(mmHg): 26.1� 1.1, 41.5� 0.5 and 85.1� 5.9 in untreated, HAB treated and SUþHAB treated rats, respectively). In rats, repeti-

tive administration of HAB increased plasma ADA activity and reduced urinary adenosine levels. Similarly, SCD patients had higher

plasma ADA and PNP activity and accelerated adenosine, inosine, and guanosine metabolism than healthy controls. Our study

provides evidence that hemolysis per se leads to the development of angioproliferative PH. We also report the development of a

rat model of HA-PH that closely mimics pulmonary vasculopathy seen in patients with HA-PH. Finally, this study suggests that in

hemolytic diseases released ADA and PNP may increase the risk of PH, likely by abolishing the vasoprotective effects of adenosine,

inosine and guanosine. Further characterization of this new rat model of hemolysis-induced angioproliferative PH and additional

studies of the role of purines metabolism in HA-PH are warranted.
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Introduction

Recent progress in the care of patients with sickle cell dis-
ease (SCD) and other hemolytic diseases has resulted in sig-
nificant improvements in both life expectancy and quality of
life. However, as this new generation of patients ages, add-
itional chronic complications associated with hemolytic dis-
eases develop. Pulmonary hypertension (PH) is emerging as
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the leading cause of morbidity and mortality in adult
patients with various hemolytic disorders including SCD
and thalassemia. Recent studies using right heart catheter-
ization (a gold standard for the diagnosis of PH) showed
6–10% prevalence of PH in patients with SCD,1–3 and 2.1%
prevalence in those with thalassemia.4 Because SCD
and thalassemia are the most common monogenetic dis-
eases worldwide (an estimated 400,000 children with these
severe hemoglobinopathies are born each year, and 30 mil-
lion persons have SCD worldwide),5 hemolytic anemia rep-
resents a major emerging cause of PH. Further, although
patients with hemolytic disorders, including those with
SCD, develop less severe elevations of pulmonary arterial
pressure than patients with idiopathic PH, PH is now
identified as the single greatest risk factor for death in
SCD.1–3,6,7

Although whether and how hemolytic diseases are caus-
ally related to PH is unknown, there is growing line of evi-
dence that hemolysis and plasma free hemoglobin may be
directly involved in the pathophysiology of proliferative vas-
culopathy and PH in hemolytic patients. For example, in a
mouse model of SCD all animals develop PH even in the
absence of in situ thrombosis or vaso-occlusive events.8

Furthermore, in rats chronic hemoglobin infusion potenti-
ates hypoxia-induced lung vascular oxidation, inflamma-
tion, remodeling and PH, and these effects are abolished
or attenuated by haptoglobin therapy.9 Patients with SCD
who experience hyper-hemolysis have fewer vaso-occlusive
crises, yet develop PH more frequently and die sooner than
patients with less extensive hemolytic events.10 These data
suggest that hemolysis is mechanistically related to PH.
However, the causal relationship between intravascular
hemolysis and the development of PH remains
controversial.11–13

Occlusive pulmonary vasculopathy and plexiform lesions
(PXL) have been detected at autopsy in 25% to 60% of
SCD patients.14,15 However, the Berkeley mouse, the most
commonly used experimental model of SCD, does not
develop endothelial injury and pulmonary angioprolifera-
tive vasculopathy.16 Similarly, in Sprague Dawley rats,
chronic (7-week) infusion of hemoglobin induces PH and
pulmonary vascular disease characterized by perivascular
inflammation and media remodeling,17 but absence of occlu-
sive and plexiform lesions. Therefore, new experimental
models are needed to investigate the underlying pathophysi-
ology of hemolysis induced pulmonary vasculopathy and
PH and to aid the development and evaluation of new thera-
peutic modalities.

In the present study, we used hemolyzed autologous
blood (HAB) to determine whether hemolysis is mechanis-
tically related to PH and pulmonary vasculopathy in rats.
We also tested this hypothesis by employing a ‘‘second hit’’
approach to produce a rat model that more closely mimics
pulmonary vascular lesions in patients with hemolytic dis-
ease. In this model, endothelial injury was induced by
administration of the VEGF type-2 receptor antagonist

Sugen-5416 (SU; 3-(3,5-dimethyl-1H-pyrrole-2-ylmethy-
lene)-1,3-dihydro-indol-2-one) and then animals were
exposed to repetitive intravascular hemolysis.

In addition to being rich in hemoglobin and arginase, red
blood cells (RBCs) are also richly endowed with adenosine
deaminase (ADA) and purine nucleoside phosphorylase
(PNP),18,19 and therefore hemolysis would be expected to
release significant amounts of ADA and PNP from injured
RBCs into plasma. Both ADA and PNP are relatively small
proteins,20,21 and therefore these two key enzymes in purines
metabolism can pass between endothelial cells, i.e., escape
from the circulation, and reach the extracellular space and
perivascular tissue. ADA converts adenosine to inosine,22

and PNP converts inosine to hypoxanthine and guanosine
to guanine.19 Thereby, in diseases involving intravascular
hemolysis, ADA and PNP should be expected to reduce
extracellular adenosine, inosine and guanosine levels.
Adenosine, inosine and guanosine induce myriad biological
effects that in aggregate may produce vasoprotective and
anti-occlusive effects and may reduce the risk for develop-
ment of PH in SCD patients.22–31 Therefore, in addition to
testing the hypothesis that hemolysis can directly causes PH
and pulmonary vasculopathy, we also investigated the
changes in purine metabolism that may potentially be
involved in hemolysis-induced vasculopathy and PH. In
this regard, we examined whether in SCD patients chronic
hemolysis is associated with release of ADA and PNP from
RBCs, accelerated purine metabolism, and reduced extracel-
lular levels of purines.

Material and methods

Animals

Male, 10–12 weeks old, Sprague Dawley rats were pur-
chased from Charles River (Wilmington, MA), and were
allowed to acclimatize for one week before inclusion into
the study. The Institutional Animal Care and Use
Committee approved all experimental protocols, and all
experiments were conducted in accordance with the
University of Pittsburgh guidelines for animal welfare.

Protocol 1: HAB-induced pulmonary vasoconstriction and PH. For
acute administration of HAB, male Sprague Dawley
rats were anesthetized with pentobarbital (45mg/kg i.p.)
and placed on a Deltaphase isothermal pad (Braintree
Scientific, Braintree, MA) to maintain body temperature
at 37� 0.5 �C. A PE-240 polyethylene catheter was inserted
into the trachea to facilitate breathing, and a PE-50 catheter
was inserted into the left carotid artery and connected to a
digital blood pressure analyzer (BPA, Micro-Med. Inc.,
Louisville, KY) for continuous measurements of systolic,
diastolic, and mean arterial blood pressure and heart rate.
The left jugular vein was exposed and cannulated with a
PE-50 catheter for delivery of HAB. Next, the right jugular
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vein was exposed and a miniature pressure transducer cath-
eter (SPR-513, Millar Instruments, Houston, TX) connected
to a digital heart performance analyzer (Power Lab 400, AD
Instruments, Colorado Springs, CO) was advanced into the
right ventricle (RV) cavity via the right jugular vein and
right atrium. A 30-min stabilization period was permitted
before a 30-min HAB infusion (50 mL/min) was initiated and
150-min recordings of right ventricular peak systolic pres-
sure (RVPSP) and systemic blood pressure were made. Two
hours after completion of HAB infusion, urine samples were
taken via bladder puncture for measurement of urinary
ADA activity and adenosine and inosine concentrations.
Urine ADA activity was measured by commercially avail-
able kit (Dyazyme Laboratories, Poway, CA).

For repetitive administration of HAB, male Sprague
Dawley rats with a femoral vein indwelling catheter
advanced to the entrance of the right atrium were purchased
from Charles River (Wilmington, MA). On the day before
initiating treatment, under isoflurane anesthesia, 1.5mL of
blood were withdrawn through the catheter, and after hem-
atocrit was measured the sample was frozen and thawed
three times. The next day, the 1.5mL sampling procedure
was repeated, and the previous day’s HAB was infused for
15min at a rate of 6mL/kg/h. After 10 days of sampling and
infusion, a subset of animals (HAB Day 10 group; n¼ 8)
was anesthetized and instrumented for measurement of sys-
temic blood pressure and closed-chest measurement of right
ventricular function as described above. Hemodynamic
measurements and blood and urine samples were collected
2 h after completion of the last HAB infusion. A subset of
animals was allowed to recover from chronic hemolysis and
was examined 16 days after last HAB infusion (HAB Day 26
group; n¼ 8). In control animals (n¼ 6) femoral vein
indwelling catheter was flushed daily with 0.2mL of saline
containing 20% heparin. Urine adenosine and inosine levels
after acute or repetitive hemolysis were measured by ultra-
performance-tandem mass spectrometry as described in
Protocol 4.

Animals were euthanized by overdose of anesthetic
(pentobarbital, 200mg/kg i.v.) and the heart and lungs
were dissected and weighed. The RV free wall was separated
from the left ventricle (LV) and the septum (S) and the
Fulton index (RV/ LVþS ratio) was calculated. The left
bronchus was ligated and the left lung was stored at
�80 �C and used for biochemical studies. The right lung
was inflated and fixed with 10% buffered formalin at a
height of 25 cm and immersed in formalin for at least 72 h
before being embedded.

Protocol 2: hemolysis-induced occlusive/angioproliferative PH. Male
Sprague Dawley rats with femoral vein indwelling catheters
(Charles River, Wilmington, MA) were randomly assigned
to one of the following three experimental groups: (1) con-
trol group – received vehicle (3mL/kg, i.p.) and examined
for pulmonary artery pressure and RV function after

26 days; (2) SU-Day 26 group – animals received
VEGF receptor antagonist Sugen-5416 (SU; 200mg/kg
s.c. suspended in 0.5% (w/v) carboxymethyl cellulose)
on Day 0 and examined on Day 26; and (3) SUþHAB
group – animals received a single dose of SU on Day 0
and receiving HAB for 10 days, and examined on Day 26.
At the end of the study, animals were instrumented for
measurement of systemic and RV pressures as described in
Protocol 1.

Protocol 3: human samples collection and plasma ADA activity in

pediatric SCD patients. Blood samples were obtained from 20
pediatric patients with SCD (SS genotype, n¼ 10, SC geno-
type, n¼ 8; S/� thalassemia, n¼ 2) and 12 age-matched
healthy subjects and plasma samples generated according
to the research protocols approved by the local institutional
review board. Plasma samples were stored at �80 �C and
later analyzed for plasma ADA activity. Briefly, after
frozen plasma from each patient was thawed, two identical
0.4mL aliquots were obtained from each sample, producing
a sample pair. Adenosine (0.4mL of a 3.5mM solution) was
added to each aliquot to give a final concentration of adeno-
sine of 1.75mM and to saturate ADA with respect to sub-
strate. One aliquot of each sample pair was spiked with
EHNA solution (20 mL of a 200mg/mL solution) to give a
final EHNA concentration of 5mg/mL. A 20 mL of the vehi-
cle for EHNA was added to the corresponding aliquot of
each sample pair, and the samples were incubated at 37 �C in
a water bath. Next, 50 mL portions were removed at 0, 15,
30, and 60min after the beginning of the incubation. All
50 mL portions were analyzed for adenosine content by
HPLC with ultraviolet absorption, as described earlier.32

The results from each patient were plotted (semi-logarithmic
plot) as the amount of adenosine in sample versus time of
incubation. The first-order rate constant for metabolism of
adenosine by ADA was determined using linear regres-
sion.23 The ADA activity was expressed as the difference
of the first-order rate constants for disappearance of adeno-
sine from plasma in the absence and presence of the ADA
inhibitor EHNA (KBasal – KEHNA; min�1). Urine samples
were collected both in asymptomatic patients (n¼ 8) and
in patients during a vaso-occlusive pain crisis (n¼ 7). In
two patients, urine samples were collected both during per-
iods of crisis and remission. Because cAMP may be an
important source for adenosine biosynthesis, and to correct
for variation in urine volume and collection efficiency, urin-
ary adenosine concentrations were normalized by urine
cAMP concentrations.

Protocol 4: measurement of purines in adult SCD patients by mass

spectrometry. Spot urine samples were obtained from 11
adult asymptomatic SCD patients (8 male and 3 female;
25.6þ 1.8 y/o; Hb¼ 9.96þ 0.64; Htc¼ 29.7þ 0.6%;
reticulocytes¼ 8.2þ 1.4%; LDH¼ 295þ 15U/L) and five
age-matched healthy controls. Urinary adenosine, inosine,
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guanosine, guanine, hypoxanthine, xanthine, 8-aminoguano-
sine, 8-aminoguanine, and uric acid levels were measured by
ultra-performance-tandem mass spectrometry in the selected
ion monitoring mode, as previously described.33

Cell free plasma hemoglobin level measurement

Cell-free plasma hemoglobin was measured by conversion to
cyano-methemoglobin with Drabkin’s reagent and then by
spectrophotometric measurement, as described previously.34

Measurement of radical formation

Freshly isolated lung tissue from control animals and rats
treated with HAB were placed in Chelex-treated, ice-cold
Krebs HEPES (KH) buffer (pH7.4). Tissue was then cut
into �2mm cubes (total of 50mg wet weight) and placed
into 100 mL of ice cold KH buffer containing 200 mM of the
cell permeable spin probe CMH (cyclic hydroxylamine
1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrroli-
dine) and 10 mM deferoxamine. Samples were incubated for
30min at 37 �C and then 50 mL of buffer was removed and
analyzed for CM� radical formation using electron para-
magnetic resonance (EPR) spectroscopy in a temperature
and gas-controlled Bruker eScan table top EPR spectrom-
eter. Samples were analyzed for 10min at 37 �C and 21%
O2. Spectra represent five signal-averaged scans from t¼ 9–
10min. The EPR instrument settings were as follows: field
sweep 50G; microwave frequency 9.78GHz; microwave
power 20mW; modulation amplitude 2G; conversion time
327ms; time constant 655ms; and receiver gain 1� 105.

Histopathology

Five-micrometer serial tissue sections from paraffin-
embedded lungs were deparaffinized and stained with hema-
toxylin and eosin (H&E), pentachrome, and Verhoeff’s Van
Gieson (VVG) for histological and morphometric assess-
ment. The Aperio ScanScope XT system (Aperio Inc.,
Vista, CA, USA) was used to scan entire glass slides at
20� or 40�magnification and Aperio Image Scope soft-
ware was used to analyze digital slides.

Histopathological analysis of lung injury was performed
on H&E slides by using a modified scoring system, as pre-
viously described.35, 36 Five criteria were used to score lung
injury: (i) infiltration or aggregation of inflammatory cells in
alveolar spaces; (ii) hemorrhage (i.e., presence of RBCs or
hemolyzed blood in alveolar spaces); (iii) edema; (iv) alveo-
lar wall thickening; and (v) perivascular inflammation.
Sections were scored as follows: 0, absent; 1, mild (<25%
lung involvement); 2, moderate (25–50% lung involvement);
3, severe (50–75% lung involvement); 4, very severe (>75%
lung involvement). Two serial slides were used and stained
for H&E, pentachrome, or VVG stain. Between 65 and
115 small size pulmonary arteries (<50 lM) per animal
were analyzed for pulmonary vascular remodeling

(neomuscularization), incidence of occlusive vascular
lesion, and presence of PXL and expressed as number of
PXL per slide or normalized by number of examined small
size arteries.

Immuno-spin trapping analyses of DNA radicals

To visualize in situ the extent of hemolysis-induced
oxidation of lung tissue proteins, real-time trapping of
biomolecular free radicals with the nitrone spin trap 5,5-
dimethyl-1-pyrroline-N-oxide (DMPO) was conducted.
Twelve and six hours prior to single HAB infusion animals
received DMPO (2g/kg, total, i.p.) and control animals
received vehicle (saline, 2mL/kg i.p.). The presence of
DMPO-adducted biomolecules in lung tissue taken 90min
after single HAB infusion was determined by using a pri-
mary rabbit polyclonal anti-DMPO antibody (Creative
Diagnostics) followed by a goat anti-rabbit secondary
anti-body.

Statistical analysis

All data are presented as mean� standard error of the
mean. Statistical analysis was performed using the
Number-Crunchers Statistical System software, and signifi-
cance was defined as p< 0.05. Comparisons among multiple
groups were performed by a one-factor analysis of variance
(ANOVA). If this analysis indicated a significant difference
among the means, multiple comparisons were made with a
post-hoc Fisher’s least significant difference test. A Student
t- test was used to compare specific pairs of groups deter-
mined a priori to be of particular importance. A two-factor
ANOVA was used to determine the effects of HAB
and SU5416 and their interaction of development of pro-
gressive PH.

Results

In rats, a 30-min infusion of 1.5mL of HAB into the right
atrium resulted in prolonged vasoconstriction in the pul-
monary and systemic circulation as evidenced by transient
increases in RVPSP (Fig. 1(a)) and systemic mean blood
pressure (MABP; Fig. 1(b)). Infusion of HAB induced
marked increases in cell free hemoglobin (Fig. 1(c)) with
maximal concentrations reached after completion of the
infusion. Cell free hemoglobin decayed mono-exponentially
with a half-life of 46min and returned to baseline levels
within 6 h (Fig. 1(d)). Single infusion of HAB was associated
with significant generation of reactive oxygen species in the
lung tissue as evidenced by EPR spectroscopy (Fig. 1(e)),
and immuno-spin trapping analyses of biomolecular rad-
icals (Fig. 1(f)), and significant lung sequestration of mono-
cytes/macrophages (ED1þ cells; Fig. 1(g)). Finally, acute
administration of HAB was associated with accelerated
adenosine metabolism, augmented inosine production and
increased ADA release/activity (Fig. 1(h)).
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Chronic administration of 1.5mL of HAB (that was
taken from the same animal on the previous day and
injected into the right atrium for 10 days) resulted in
anemia, hemoglobinemia, splenomegaly, increased lung
weight (Fig. 2(a) to (d)), PH, and isolated right ventricular
hypertrophy (Fig. 2(e) and (f)), yet had no effect of liver
weight (liver/b.w.: 34.2� 1.7, 38.2� 1.49, and 34.1� 1.2 g/
kg body weight, control, HAB Day 10, and HAB Day 26
group, respectively). Repetitive hemolysis also increased sys-
temic blood pressure (Fig. 2(g)) and was associated with
accelerated adenosine metabolism and increased production
of extracellular inosine (Fig. 2(h)) suggesting that repetitive
hemolysis was associated with significant release of ADA
from RBCs.

Plasma hemoglobin levels measured 2 h after the last
HAB infusion on Day 10 (Fig. 2(b); 144� 10 mM) were simi-
lar to free hemoglobin levels measured 2 h after a single
HAB infusion (Fig. 1(c); 125� 17 mM), suggesting no
changes in hemoglobin clearance from plasma after repeti-
tive hemolysis. Therefore, during chronic HAB administra-
tion, the pulmonary vascular bed was exposed to elevated
plasma hemoglobin levels for only 6 h per day; yet this daily
exposure of the pulmonary circulation to transient (up to
6 h) cell free hemoglobin insult was sufficient to induce mod-
erate PH (Fig. 2(e)).

To determine whether repetitive hemolysis led to the
development of reversible or progressive PH, a subset of
rats was examined 16 days after completion of the 10-day

HAB treatment (Protocol 1, HAB-Day 26 group). In the
HAB-Day 26 group, compared to control animals RVPSP
and systemic blood pressure (Fig. 2(e) and (g)) and lung and
spleen weights (Fig. 2(c) and (d)) were not elevated. Isolated
RV hypertrophy, although reduced, was still present on
Day 26 (Fig. 2(f)).

The histopathological analysis of lungs from animals
that received 10-day HAB treatment revealed marked
congestion and edema (Fig. 3(a)), hemorrhages (i.e., pres-
ence of hemolyzed blood and to smaller extent RBCs in
the alveolar space; Fig. 3(b) and (c)), and marked alveolar
wall thickening and perivascular inflammation (Fig. 3(c)
and (d) and Fig. 4). At first sight, histological examination
suggested that repetitive hemolysis induces significant
media remodeling of small size pulmonary arteries
(20–50 mm) (Fig. 3(d) and (e)). However, a thorough exam-
ination of VVG and pentachrome-stained lung sections
revealed severe vasoconstriction of small vessels
(50–100 lm; Fig. 3(f)) with only moderate ‘‘true remodel-
ing’’ in the HAB-Day 10 group. Moderate media thickening
that cannot be distinguished from mild-to-moderate
vasoconstriction was also seen in medium sized arteries
(100–300lm; data not shown) which was usually associated
with small bronchioles. One animal showed scattered fibrin
thrombi in small vessels (Fig. 3(g)). Examination of VVG
and pentachrome stained slides revealed no obliterative or
angioproliferative changes in HAB-Day 10 group (data not
shown).

Fig. 1. Acute effects of HAB in male Sprague Dawley rats. HAB infusion (1.5 mL/30 min into right atrium; n¼ 6) increases pulmonary (a) and

systemic blood pressure (b). HAB infusion results in exposure of pulmonary circulation to plasma free hemoglobin up to 6 h (c, d). HAB infusion

increases free radical formation in lung tissue (EPR spectra; lung tissue taken 90 min after completion of vehicle (control) or HAB infusion (e).

HAB infusion into the lungs induces biomolecular free radical generation in lung (green¼DMPO) (f) and inflammatory cells sequestration

(red¼ ED1þ cells; arrows) (g). Changes in urine adenosine and inosine levels and adenosine deaminase (ADA) activity before (baseline) and

60 min after administration of HAB indicate that hemolysis is associated with increased adenosine deaminase release and accelerated extracellular

adenosine metabolism (h).

Pulmonary Circulation Volume 8 Number 3 | 5



Fig. 3. Histopathological changes in rat lungs after 10 days of HAB administration (HAB Day 10 group; n¼ 8). Chronic hemolysis induces

congestion (a), hemorrhages (b), edema (a, b) alveolar thickening (c), perivascular inflammation (b, d, e), vasoconstriction of small pulmonary

arteries (d, e). One out of eight animals showed scattered fibrin thrombi in small vessels (g). Although there was almost complete resolution of

lung injury 16 days after completion of 10 days of HAB treatment, there remained emphysematous changes (k), sporadic parenchymal infiltrates

(h), rare perivascular inflammation (i), and sporadic and mild vasoconstriction (j). (All images H&E stain, except for (f) which was VVG stain).

Fig. 2. The effects of repetitive administration of HAB (1.5 mL/30 min for 10 days; HAB Day 10 group; n¼ 8). Some animals were examined 16

days after completion of 10-day HAB treatment (HAB Day 26 group; n¼ 7). RVPSP and hematocrit were measured on Day 10 approximately

30 min before the last dose of HAB. Urine adenosine/inosine levels and plasma free hemoglobin were also measured on Day 10 approximately 2 h

after administration of the last dose of HAB.
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Sixteen days after completion of HAB treatment, histo-
pathological analysis revealed near-normal lung histology in
the HAB-Day 26 group as compared to control animals,
with no-to-mild and sporadic congestion, perivascular
lymphohistiocytic infiltration, and vascular remodeling
(Fig. 3(h), (i), and (j), respectively). However, significant
loss of alveolar septa, mainly in the peripheral lungs, was
detected in animals from the HAB-Day 26 group
that were allowed to recover from chronic hemolysis for
16 days (Fig. 3(k)).

Semi-quantitative analysis of lung injury and comparison
between HAB Day 10 and HAB Day 26 groups (Fig. 4)
confirmed the reversible nature of lung injury induced by
10-day HAB treatment and almost full recovery and reso-
lution of lung changes 16 days after completion of HAB
administration. Because repetitive hemolysis induced revers-
ible pulmonary vascular injury, in the second set of experi-
ments a ‘‘two-hit’’ approach was used. In this regard,
animals were given a high-dose of Sugen 5416 (SU) and
received a daily infusion of HAB for 10 days. We previously
documented that high-dose SU (200mg/kg/s.c.) attenuates
the activity of VEGF type-2, but not VEGF type 1 recep-
tors.37 More importantly, we have shown that in combin-
ation with hypoxia a high-dose of SU induces within
3 weeks severe angioproliferative PAH and numerous
PXL.37 Furthermore, our preliminary experiments indicated
that in the absence of hypoxia high-dose SU, but not the
most commonly used low-dose (20mg/kg), within a 6-week
time frame produced similar and mild pulmonary vascular

injury and PH in both male and female rats.38 We
hypothesized that hemolysis superimposed on mild pulmon-
ary vascular injury may lead to development of angioproli-
ferative PH.

Indeed, the combination of inhibition of VEGF type-2
receptors with SU and repetitive hemolysis (10-day HAB
administration) resulted in the development of severe and
progressive PH (Fig. 5(a)), In some of the SUþHAB treated
animals, RVPSP pressures approached the values of systolic
pressure in the systemic circulation. Notably, the SUþHAB
combination induced severe RV hypertrophy (Fig. 5(b)
and (c)) and significantly reduced RV contractility index
(Fig. 5(d)) indicating ensuing RV failure. The SUþHAB
treated animals were also hypertensive (Fig. 5(e)) and had
increased heart, lung, and spleen weights (Fig. 5(f) to (h)).
No significant changes in liver weight were detected (liver/
b.w.: 34.2� 1.6, 34.6� 1.1, and 36.8� 0.5 g/kg, control,
SUþHAB Day 26, and SU Day 26, respectively). The com-
bination of hemolytic insult and VEGF type-2 receptor
inhibition resulted in neomuscularization of small size
pulmonary arteries (Fig. 6(b)) and induced occlusive angio-
proliferative lesions with more than 40% of examined ves-
sels being partially or completely occluded (Fig. 6(a)).
Disruption of the vascular elastic lamina with hypercellular-
ity adjunct to the original vessel lumen was consistent with
angioproliferative vasculopathy and on average six PXL per
100 examined vessels were detected (Fig. 6(c)). PXL in the
SUþHAB Day 26 group (Fig. 6(d) to (f)) were similar to
lesions seen in rats treated with SU (20mg/kg) and exposed

Fig. 4. Semi-quantitative assessment of pulmonary injury in control animals (n¼ 6), in rats after 10 days of HAB treatment (HAB Day 10 group;

n¼ 8) and in animals examined 16 days after completion of HAB treatment (HAB Day 26 group; n¼ 7).
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Fig. 6. Quantification of occlusive (a) and plexiform (PXL) lesions (c) and assessment of neomuscularization of small-size pulmonary arteries (b)

in rats treated with either Sugen 5416 (SU Day 26 group; n¼ 8) or the combination of Sugen 5416þ 10 days of HAB treatment (Group SUþHAB

Day 26; n¼ 8). The combination treatment resulted in development of numerous occlusive lesions in small-size (<50 lm) pulmonary arteries (a)

and formation of PXL (d–f) similar to those seen in Sugenþhypoxia model (g).

Fig. 5. The effects of VEGF type-2 receptor antagonist Sugen 5416 (SU 5416 Day 26) and the combination of Sugen 5416þHAB (SU5416þHAB

Day 26) on right ventricular (RV) peak systolic pressure (a), RV hypertrophy (b, c), RV contractility (d), mean arterial blood pressure (e), and

organ weights (f–h). SU5416þHAB rats develop progressive and severe PH. Sugen 5416 alone, induces mild PH, pulmonary vasoconstriction and

mild-to-moderate vascular remodeling.
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to 3 weeks of hypoxia followed by 3 weeks of normoxia
(Fig. 6(g)). Finally, media thickening of small-to-mid size
pulmonary arteries with concentric (Fig. 7(a)) or asymmetric
(Fig. 7(b)) remodeling was detected in the SUþHAB Day 26
group.

Administration of a high dose of SU alone increased
blood pressure (Fig. 5(e)) and lung weight (Fig, 5(g)). At
Day 26, the SU-Day 26 group had near normal histopath-
ology with occlusive proliferative lesions detected in less
than 2% of examined vessels and moderate medial remodel-
ing in 5–10% of vessels (Fig. 6(a) and (b); Fig. 7(d) to (g)).
Notably, compared with lungs from control animals, sec-
tions of lungs from the HAB Day 26 group had significant
losses of alveolar septa and enlarged airspaces, suggesting
emphysematous changes (Fig. 7(c)). This is consistent with a
previous report that SU induces lung cell apoptosis and
emphysema.39 Surprisingly, although emphysematous
changes were detected in rats treated with HAB or SU,
such changes were not detected in the SUþHAB group.
Analysis of emphysema development in rodents is challen-
ging because its distribution is spatially heterogeneous.
Because not all sections of the lung were sampled randomly,
it is possible that because of the heterogeneity of the disease,
we were not able to capture emphysematous changes in the
SUþHAB group. Nonetheless, future characterization of
the model should include quantification of emphysematous
changes in all lung sections.

ADA activity in plasma samples from pediatric SCD
patients and age-matched healthy controls are presented in
Fig. 8. SCD patients had higher ADA activity than healthy
controls (Fig. 8(a)). Importantly, plasma ADA activity was
higher in patients with the SS genotype and in symptomatic
(painful crisis) patients compared to heterozygous SCD and

asymptomatic patients, respectively (Fig. 8(d)). Plasma
ADA activity inversely correlated with hemoglobin and
hematocrit levels (Fig. 9(b) and (c)). Compared to asymp-
tomatic patients, patients in painful crisis had reduced urin-
ary adenosine levels (Fig. 8(e)), suggesting accelerated
extracellular adenosine metabolism. Adult asymptomatic
SCD patients also had increased urinary levels of inosine,
hypoxanthine, xanthine and inosine/adenosine ratios com-
pared to healthy controls, confirming the increased ADA
activity and accelerated adenosine metabolism in SCD
(Fig. 9(a) to (e). Compared to urinary levels of inosine,
the adult SCD patient had thirty times higher levels of
hypoxanthine (inosine vs. hypoxanthine, �1.1 lg/mL vs
�33 lg/mL), suggesting increased release/activity of PNP.
Adult SCD patients tended to have increased urinary
guanosine levels (Fig. 9(f)) and had significantly increased
guanine levels (Fig. 9(g)), further supporting the notion that
hemolysis in SCD is associated with increased PNP release.
Finally, SCD patients had reduced levels of 8-aminoguano-
sine and 8-aminoguanone, two endogenous inhibitors of
PNP (Fig. 9(h) and (i)) which, at least in part, may explain
the increased PNP activity in SCD.

Discussion

In the present study, we used HAB to induce hemolytic
vascular injury. A single dose of HAB induced a striking
increase in cell free hemoglobin, marked pulmonary vaso-
constriction, and systemic hypertension. Furthermore, a
single dose of HAB induced severe oxidative stress
and inflammatory responses in the lungs and was
associated with increased extracellular ADA activity, accel-
erated adenosine metabolism, and increased levels of

Fig. 7. Media thickening of small-to-mid size pulmonary arteries with concentric (a) or asymmetric (b) remodeling in SUþHAB treated rats on

Day 26. Emphysematous changes (c) and near normal structure of small pulmonary arteries (d–g) 26 days after administration of Sugen 5416

(200 mg/kg).
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Fig. 8. Plasma adenosine deaminase (ADA) activity (a), hemoglobin (b) and hematocrit (c), and adenosine urine levels (e) in healthy subjects and

pediatric patients with SCD. Plasma ADA activity is higher in patients with the SS genotype (a) and in symptomatic (painful crisis) patients (d)

compared to heterozygote SCD and asymptomatic patients, respectively.

Fig. 9. Accelerated purine metabolism in adult asymptomatic SCD patients. Changes in urine adenosine (a) and inosine (b) levels and adenosine/

inosine ratio (e) indicate increased extracellular ADA activity. Changes in inosine (b), hypoxanthine (c), guanosine (f) and guanine (g) levels

indicate increased extracellular PNP activity. Hemolysis in SCD patient is associated with large production of vasculotoxic hypoxanthine (c) and

xanthine (d). Reduced levels of endogenous PNP inhibitors 8-aminoguanosine (h) and 8-aminoguanine (i).
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extracellular inosine. Plasma free hemoglobin was cleared
from the circulation within 6 h after administration of
HAB. Daily infusions of HAB delivered around 210mg of
hemoglobin per day, which is six times more than the daily
doses of hemoglobin (35mg/day over 7 weeks) shown to
induce mild pulmonary vascular injury and moderate
PH.17 Yet, the total amount of intravascularly delivered
hemoglobin was similar in both studies (�1700mg over 7
weeks,17 versus �2200mg over 10 days). HAB contains
damage-associated molecular pattern molecules (DAMPs)
that drive hemolytic vascular injury and inflammation and
contribute to development of hemolytic vasculopathy and
PH.40,41 Therefore, it is not surprising that short-term (i.e.,
10-day), intermittent (i.e., approximately 6 h per day) expos-
ure to plasma free hemoglobin was sufficient to induce
severe lung injury (Figs. 3 and 4) compared to very mild
parenchymal and vascular lung injury seen with continuous
infusion of low doses of hemoglobin (35mg/day).17 Severe
lung injury in HAB treated rats included edema, hemor-
rhages, inflammatory infiltrates, congestion, perivascular
inflammation, and alveolar thickening and pulmonary vas-
cular injury in the form of severe vasoconstriction, perivas-
cular inflammation and moderate PH.

In order to determine whether repetitive hemolysis
induces permanent lung injury and progressive PH, some
of the animals were examined 16 days after completion of
the 10-day HAB treatment. Surprisingly, hemodynamic
and histopathological analysis revealed that most of the
hemolytic lung injury was resolved and moderate PH
was reversed within a 16-day period. This suggests that
the elevated pressure in the pulmonary circulation was pri-
marily due to vasoconstriction rather than to ‘‘fixed PH’’
and irreversible vascular remodeling. Indeed, careful exam-
ination of vessels (VVG stain) showed relatively intact
intima, and indicated that vessels with ‘‘media thickening’’
were actually markedly constricted, and mostly surrounded
by significant inflammatory infiltrates. These findings also
suggested that repetitive hemolysis, albeit for ten days, was
not sufficient to induce permanent vascular changes and
‘‘fixed’’ PH.

There are two dominant histopathological features of
SCD related to hemolytic pulmonary vasculopathy and
PH (Group 5 PH): (1) marked obliterative pulmonary vas-
cular remodeling in the form of thrombotic angiopathy with
organizing and recanalized thromboemboli; and (2) occlu-
sive endothelial cell proliferation and formation of PXL.15

Surprisingly, in the current study, only one animal showed
scattered fibrin thrombi in small vessels. Notably, in a rat
model of pulmonary embolism, infusion of autologous clots
induces transient (24-h) increases in pulmonary artery pres-
sure, with near complete fibrinolysis of autologous pulmon-
ary emboli within 5 days.42 This may explain, at least in
part, the resistance of rats to developing permanent hemo-
lysis-induced lung and pulmonary vascular injury and
thrombotic angiopathy. Whether longer (>10 days) expos-
ure to hemolysis would result in thrombotic angiopathy in

our model is unknown and future studies should examine
this possibility.

Proliferative vasculopathy and PXL at autopsy have been
reported in 60% of SCD patients.14,15 Yet, the most com-
monly used experimental model of SCD, the Berkeley
mouse, does not develop significant endothelial vascular
injury and pulmonary angioproliferative vasculopathy.16,17

This precludes studies of hemolytic pulmonary vascular
injury and PH in this model. Therefore, we used the
‘‘second hit’’ approach to produce a model that more closely
mimics vascular lesions in humans. Endothelial injury was
induced by the VEGF antagonist SU and subset of animals
was exposed to repetitive hemolysis. SU alone induced sys-
temic hypertension, moderate PH and mild-to moderate
vascular remodeling. This is consistent with our preliminary
data that SU in a dose-dependent manner induces systemic
hypertension and mild-to-moderate PH, pulmonary vaso-
constriction, and mild vascular remodeling.38 Notably, one
SU treated animal was hemodynamically unstable and died
before RV pressure measurements were taken. This animal
developed significant vascular lesions that were character-
ized by endothelial cell proliferation, media hypertrophy,
and disruption of the vascular elastic lamina in several
small arteries (data not shown) and had marked RV hyper-
trophy (RV/LVþS: 0.577 vs. 0.317� 0.010 for the rest of the
SU Day 26 group). This finding indicates a variable
response to SU per se in healthy, but outbreed, Sprague
Dawley rats. Furthermore, this finding suggests that
VEGF inhibition per se (albeit in a small number of animals;
1 out of 6) may induce angioproliferative PH and warrants
further investigation of the chronic effects of high- versus
low-dose of SU on systemic and pulmonary artery pressure
and pulmonary vascular structure.

In contrast to repetitive hemolysis alone that induced
reversible and moderate PH, the ‘‘second hit’’ approach
resulted in development of progressive and severe PH with
occlusive angioproliferative vascular injury and formation
of PXL. While hemolysis alone induced only moderate
and reversible lung injury and PH with no signs of angio-
proliferative lesions, when hemolysis was superimposed on
endothelial injury (i.e., SU treatment) severe, progressive,
and angioproliferative PH occurred. This is similar to the
‘‘two-hit’’ SUþhypoxia model of PAH. Noteworthy,
SUþHAB Day 26 rats develop similar PH (RVPSP
�85mmHg) and number of occlusive lesions (�15%) as
rats treated with low-dose SU (20mg) and exposed to hyp-
oxia for 3 weeks followed by normoxia for 3 weeks.
Furthermore, SUþHAB Day 26 rats develop similar PXL
lesions compared to SUþhypoxia rats, albeit in smaller
numbers (�5% vs 10%, SUþHAB vs. SUþhypoxia,
respectively). Therefore, in our model, chronic hemolysis
(i.e., HAB treatment) could be viewed as a substitute for
chronic (3-week) hypoxia. In the current study, we did not
measure blood oxygen saturation levels. Therefore, we
cannot rule out the possibility that hypoxia (due to
anemia and emphysematous changes) contributed to the
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observed pulmonary vascular injury in HAB and SUþHAB
treated rats. However, in SCD mice repeatedly exposed to
8% oxygen for 3 h, only a transient drop in SpO2 occurred
within the first hour of hypoxia that was associated with a
dramatic increase in respiratory rate.43 In contrast, daily
HAB administration did not cause signs of distress, labored
breathing, or tachypnea. Interestingly, normoxic activation
of hypoxic responses (HIF-1a and VEGF) has been
reported in SCD patients and linked to development of
PH in SCD.44 The underlining mechanisms of the patho-
genic effects of the hemolysis-SU interaction and hypoxic-
pathway activation are unknown and deserve further
investigation that should include correlation of markers of
normoxic activation of hypoxic responses (HIF-1a and
VEGF) to changes in purine metabolism.

To the best of our knowledge this is the first model to
exhibit hemolysis-induced angioproliferative lesions that
more closely mimics pulmonary vascular changes seen in
SCD patients. Noteworthy, whether PXL represent a
by-standing morphologic marker of vascular injury or play
a role in the pathogenesis and/or progression of PH has not
yet been clarified. In this regard, published data in PAH
patients,45 and our preliminary data in female rats with
accelerated and severe angioproliferative PAH,38 suggest
that the incidence of occlusive lesions, rather than the
number of PXL, correlates with pulmonary artery pressure.
Nonetheless, three-dimensional reconstruction studies sug-
gest a topographical association of occlusive and plexiform
lesions, with concentric occlusive lesions being present prox-
imally to PXL.46 PXL have a complex cellular composition
that likely contributes to a micro-environment that is rich
in angiogenic, proliferative, and inflammatory factors.
Therefore, it is plausible that PXL may indirectly (i.e., via
the induced micro-environment) contribute to increased pul-
monary vascular resistance and remodeling and disease
progression.

The initial characterization of our new rat model of
hemolytic angioproliferative PH has several limitations.
First, due to problems with patency of the jugular vein
line, HAB was administered only for ten days. Therefore,
it is possible that longer exposure to hemolysis alone would
induce irreversible PH, thrombotic angiopathy, and paren-
chymal injury. Second, in addition to PH and RV dysfunc-
tion, cardiovascular manifestations of SCD also include
both systolic and diastolic left ventricular dysfunction.47 In
the current study, the SUþHAB rats were evaluated within
26 day after initiation of treatments, and the long-term pro-
gressive character of angioproliferative PH and its impact
on both right and left ventricle function were not addressed.
Finally, for reasons explained in the Methods, we used a
high dose of SU (200mg/kg). This resulted in such severe
PH that in some rats RVPSP levels were similar to the sys-
temic blood pressure. This is in contrast to moderate, but
deadly, PH seen in SCD patients. Therefore, further
improvements of the model are warranted. This should
include the use of low-dose SU in combination with

prolonged exposure to hemolysis, extended recovery, and
measurement of RV and LV systolic and diastolic function
and structure.

RBCs are rich in ADA and PNP,18,19 and therefore
during hemolysis significant alterations in purine metabol-
ism would be expected. Indeed, previous studies indicate
that hemolysis may be associated with increased release of
ADA.22,48,49 Therefore, in the present study we examined
ADA and PNP activity and changes in purine metabolism
in hemolysis-associated PH (HA-PH) rats and in pediatric
and adult SCD patients. An important finding of this study
is that in rats exposed to repetitive hemolysis and in patients
with SCD, there is increased release of ADA from lysed
RBCs, increased ADA plasma levels, and reduced extracel-
lular adenosine levels. At present it is unknown whether, in
addition to extracellular hemoglobin, the increased release
of ADA and accelerated adenosine metabolism contribute
to development of hemolytic vasculopathy and HA-PH.
Nonetheless, based on well-defined biological effects of
adenosine,22,50 it is plausible that accelerated adenosine
metabolism may have adverse effects in hemolytic vasculo-
pathy and PH. In this regard, adenosine induces pulmonary
vasodilation even under conditions of severe NO deficiency
(i.e., conditions seen in patients with SCD and PH) and
attenuates hypoxia-induced pulmonary inflammation.51 In
SCD mice, activation of A2A receptors improves baseline
pulmonary function, reduces pulmonary inflammation,
and prevents hypoxia-reoxygenation-induced exacerbation
of pulmonary injury,52 whereas genetic removal of A2A

receptors in mice enhances pulmonary inflammation, con-
fers PH, and increases pulmonary vascular remodeling.53

Overall, these data are indicative of the potential adverse
vascular effects of extracellular ADA in hemolytic vasculo-
pathy. Countering these findings, a recent study suggests
that adenosine signaling may have detrimental effects and
that both ADA and reductions in extracellular adenosine
levels produce beneficial effects in Berkeley mice with
SCD.54 However, the clinical significance of findings in
SCD mice need to be confirmed in patients with SCD.
Compared to human SCD, Berkley SCD mice have more
severe sickling and extravascular hemolysis;16 and due to the
longer plasma half-life of adenosine in mice, SCD mice
have very high adenosine concentrations in the range of
7–8mM,54 which are sufficient to activate low affinity A2B

receptors. Yet, in SCD patients, much lower extracellular
concentrations of adenosine (0.5 mM) are detected.54 This
underscores the need for further studying adenosine metab-
olism and receptor signaling not only in SCD mice, but also
in HA-PH rats and in patients with SCD.

Another important finding of this study is that in adult
asymptomatic SCD patients there is increased release/activ-
ity of PNP and accelerated metabolism of two other purines,
inosine and guanosine. This is accompanied by increased
downstream production of vasculotoxic hypoxanthine and
xanthine, and generation of reactive oxygen species, as evi-
denced by in vivo increased free radical production and
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protein oxidation in HAB treated lungs. Notably, in ische-
mia/reperfusion injury (I/R) increased PNP release/activity
in hepatic endothelial cells results in low inosine/guanosine
levels and accumulation of hypoxanthine/xanthine, and cor-
relates with O2� production and poor liver function.55 In
contrast, both guanosine and inosine reduce I/R injury
related oxidative/nitrosative stress. Guanosine, by inducing
antioxidant enzyme heme oxygenase-1 (HO-1), inhibits the
production of reactive oxygen species (ROS),24 and prevents
lipopolysaccharide-induced production of oxidative stress
and inflammatory responses.23 Noteworthy, pharmacologic
or gene therapy augmentation of HO-1 activity provides
protection against inflammation and vaso-occlusion in
SCD mice.56,57 Inosine also attenuates oxidative stress and
related I/R end-organ damage.25,28–31 Finally, platelet acti-
vation plays a significant role in vaso-occlusive crisis in
SCD. It is significant, therefore, that guanosine and inosine
exhibit anti-platelet effects. For example, these purines inhi-
bit ADP-induced release of ATP, attenuate ADP- and col-
lagen-induced platelet aggregation in vitro, delay platelet
plugging and thrombus formation in vivo, and reduce plate-
let aggregation under arterial flow conditions.26–28 The
effects of PNP in hemolytic vasculopathy and PH are
unknown. Yet, based on reported effects of inosine and
guanosine and the present data, it is plausible that inhibition
of PNP (i.e., inhibition of inosine and guanosine metabol-
ism) may confer beneficial effects in hemolytic vasculopathy
and PH. Notably, our preliminary data (presented at ATS
2018 annual meeting, Abstract B27:801) indicate that 8-ami-
noguanosine, a potent endogenous inhibitor of PNP, retards
the progression of PAH and reduces angioproliferative
lesions in female rats with SUþhypoxia-induced PH.
Because RBCs are very rich in ADA and PNP, we consider
ADA and PNP as important erythroid DAMPs that work-
ing in concert with extracellular hemoglobin (heme, iron)
may exacerbate hemolytic vasculopathy and PH (Fig. 10).

Urinary purine analysis confirms previous reports and
supports the notion that hemolysis is associated with
ADA release and accelerated adenosine metabolism.
Furthermore, for the first time, we report that SCD is asso-
ciated with significant release of PNP and accelerated
metabolism of guanosine and inosine. Yet, the initial char-
acterization of the purine metabolome in SCD patients and
our new rat model of hemolytic PH have several limitations.
The presented data do not prove causation and it is not clear
how changes in purine metabolism affect hemolytic vascular
injury and PH. Furthermore, the effects of hemolysis and
related PH on both right and left ventricle function and
structure were not investigated. Therefore, future investiga-
tion of the purine metabolome in HA-PH rats, SCD mice,
and SCD patients should include correlations of purines and
their metabolites levels with (1) markers of hemolysis and
normoxic activation of hypoxic responses, (2) actual or
echocardiography estimated pulmonary artery pressure
and cardiac output and (3) right and left ventricular func-
tion and structure. Finally, purine metabolism may be quite

different in rats and mice compared to SCD patients.
Therefore, use of microdialysis techniques to measure
plasma and extracellular purine levels in accessible tissues
and organs (i.e., skeletal muscle, kidney, vascular lumen),
should provide not only further insight into the role of the
purine metabolome in hemolytic vasculopathy and PH, but
also address the question of how data in rodents are relevant
to hemolytic vasculopathy in SCD patients.

In summary, our study demonstrates that repetitive hem-
olysis induces PH. Moreover, we report the development of
a rat model of hemolysis-induced PH that more closely
mimics pulmonary vasculopathy seen in patients with
chronic hemolysis associated PH. Repetitive hemolysis-
induced PH is associated with increased extracellular ADA
and PNP activity and altered adenosine, inosine, and guano-
sine metabolism. Further characterization of this new rat
model of hemolysis-induced angioproliferative PH and add-
itional studies of ADA and PNP activity and the purine
metabolome in hemolysis-induced vasculopathy and PH
are warranted.
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