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Blood Brain Barrier and Alzheimer’s Disease: Similarity and Dissimilarity
of Molecular Alerts
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Abstract: Background: Blood brain barrier and Alzheimer’s disease are interrelated. This interrela-
tion is detected by physicochemical methods, pharmacological and electrophysiological analyses.
Nature of the phenomenon is extremely complex. The description of this interrelation in mathemati-
cal terms is a very important task.

Objective: The systematization of facts, which are described in the literature and related to interac-
tion between processes, which influence Alzheimer's disease and blood brain barrier is the subject
of this work. In addition, establishing of correlations between molecular features and endpoints,
which are related to the treatment of Alzheimer's disease and blood brain barrier using the CORAL
software are subjects of this work.
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Methods: The information on logically structured analysis is available in the literature and building
up quantitative structure — activity relationships (QSARs) by the Monte Carlo method has been

DOI: used to solve the task of systematization of facts related to the "treatment of Alzheimer's disease vs.
10.2174/1570159X15666171016163951 . .
blood brain barrier".

Results: Comparison of agreements and disagreements of the available published papers together
with the statistical quality of built up QSARS are results of this work.

Conclusion: The facts from published papers and technical details of QSAR built up in this study
give possibility to formulate the following rules: (i) there are molecular alerts, which are promoters
to increase blood brain barrier and therapeutic activity of anti-Alzheimer disease agents; (ii) there
are molecular alerts, which contradict each other.
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1. INTRODUCTION permeation, in particular are attractive alternatives of the
direct experiment. Currently, there is no cure for Alzheimer's

Alzheimer’s disease is a disorder of the central nervous .
disease [1].

system accompanied by memory deterioration, and progres-

sive impairment of daily life activities. Aging of an organism
is a biochemical process. Therefore, the injection of chemi-
cals can influence this process. The blood-brain barrier is a
major factor hindering the development of neurotherapeu-
tics. Experimental methods of Blood Brain Barrier permea-
tion determination as well as experimental definition of
many other biomedical endpoints are cumbersome and ex-
pensive. Under such circumstances, computational approaches
for the prediction of biomedical endpoints, in general, and
computational methods for prediction of Blood Brain Barrier
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Being the most common form of dementia, Alzheimer’s
disease is currently affecting over 5.5 million people in the
United States and more than 35 million worldwide [2, 3].
The hallmark of the disease is progressive cognitive decline
that results in loss of language skills, difficulty in learning, loss
of memory, and alterations in personality and mood [4-6].

There are some circumstances, which indicate the possi-
ble interrelation between processes related to Alzheimer’s
disease and Blood Brain Barrier [7-9]. It has been noticed
that breakdown of the Blood Brain Barrier is a particularly
important development in Alzheimer’s disease progression
[10-12].

According to the listed circumstances, the attractive
paradigm to search agents versus Alzheimer’s disease can be
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Fig. (1). Possible scheme to design agents versus Alzheimer’s disease.

represented by scheme illustrated in Fig. (1). It is important
to note that there are logical implications and interrelation
between all the mentioned components of the paradigm.

2. ONTOLOGY

The information about the interaction between the ele-
ments of phenomena represented in Fig. (1) is very complex
and unclear owing to dynamical and combinatorial aspects.
The methods to represent this information in a format, which
is convenient for understanding, should be regarded as
methods of critical importance. One of the possible ways to
construct a method of the above mentioned quality is the
analysis of molecular alerts (features) able to influence the
blood brain barrier and likely able to suggest the perspective
list of molecular features valuable from the point of view of
drug discovery oriented to define a group of agents versus
Alzheimer’s disease.

2.1. Task Definition: Interrelation Between Blood Brain
Barrier and Alzheimer’s Disease

Much of the underlying biology leading to Alzheimer’s
disease is unknown. Popular etiologic hypotheses have
largely ignored the blood brain barrier as an important factor
contributing to the pathologic hallmarks of this most com-
mon form of dementia. However, evidence identifying blood
brain barrier dysfunction in Alzheimer’s disease continues to
escalate [13].

Normal ageing and Alzheimer's disease have many
common features. In many ways, both conditions only differ
by quantitative criteria. A variety of genetic, medical and
environmental factors modulate the ageing-related processes
leading to Alzheimer’s disease. Thus, Alzheimer's disease is
a metabolic disease [14]. The pathophysiological influence
of microelements, including aluminum and iron, is highly
controversial; at any rate, they may adversely affect of Alz-
heimer's disease progress [14].

The application of gene transfer (i.e. macromolecular
sequences of amino acids) can also be used to augment exist-
ing or provide new functions to cells in the hope that this
will be of therapeutic benefit [15].

The Blood Brain Barrier is a dynamic and complex inter-
face between the blood and the central nervous system regu-
lating brain homeostasis. Major functions of the Blood Brain
Barrier include the transport of nutrients and protection of

the brain from toxic compounds. The nutrition of the brain
involves small molecules like sugars, amino acids, vitamins,
and trace elements. Large biomolecules, lipoproteins, peptide
and protein hormones cross the Blood Brain Barrier by re-
ceptor-mediated transport [16]. Dysfunction in the transport
of nutrients at the Blood Brain Barrier is described in several
neurological disorders and diseases. The Blood Brain Barrier
penetration of neuroprotective nutrients, especially the po-
tential protective effect of polyphenols and alkaloids, on
brain endothelium is well-known [16, 17].

Thus, the search for molecular features (fragments, 3D-
isomerism, intramolecular and intermolecular quantum me-
chanical conditions) with apparent influence to blood brain
barrier and destructed fragments of neurons can be a per-
spective for drug discovery.

2.2. Molecular Features which Influence to Blood Brain
Barrier

Mechanistic interpretation for QSAR related to blood
brain barrier usually based on physicochemical conditions
such as octanol/water partition coefficient, isolated atomic
energy [18], H-bond donor surface area, H-acceptor surface
area [19], Rotatable bonds count, Hydrogen bond acceptor
count [20]. There is influence of the presence of heavy atoms
on the blood brain barrier and central nervous system [17].
The binding energy predictions were highly correlated with
r2=0.88, F=692 .4, standard error of estimate =0.775, for se-
lected blood brain barrier active/inactive compounds (n=93)
[17].

Inhibition of efflux pumps present at the blood brain bar-
rier by nutraceuticals and plant compounds can be carried
out with a number of organic compounds such as Apigenin,
Berbamine, Catechin, Chrysin, Rutin, etc. [16]. The rings are
common attributes of these biologically active compounds
[16]. Thus the six-membered rings are of molecular feature
with influence on the blood brain barrier and central nervous
system [16]. Presence of nitrogen in rings and size of linear
molecular fragment connecting a couple of rings is also a
molecular alert related to blood brain barrier [21].

2.3. Molecular Features which Influence the Alzheimer's
Disease

Mechanistic interpretation for QSAR related to Alz-
heimer’s disease is usually based on physicochemical and
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biochemical conditions, such as molecular weight, total polar
surface area hydrophilicity, absorption rate constants, etc.,
without molecular alerts [22]. However, modifiers of phar-
macokinetics effects include molecular images such as 2-
propan-water, acetone-water and the number of carbon at-
oms [22]. Chlorine and oxygen connected to six-membered
rings, triple covalent bonds, as well as 3D-conformations can
also be examined as structural alerts related to endpoints
interrelated to Alzheimer’s disease [23]. Finally, groups of
five-membered and six-membered rings involve oxygen and
nitrogen respectively, aspotential agents for treating Alz-
heimer’s disease [24].

3. QSAR MODELS

3.1. Data

The binding affinity data (IC50 nM converted into nega-
tive decimal logarithm pIC50= -log;(IC50) of 233 gamma-
secretase inhibitors (potential agents for treatment Alz-
heimer’s disease) are studied in the literature [25, 26]. The
database for Blood brain barrier permeation (logBB) values
for 291 substances is available from the literature [27].

3.2. Optimal Descriptor

A model for biological activity is building up as one-
variable correlation

Activity = Cy +C, x DCW (T* ,N*) (1)

The Cy and C,; are regression coefficients (intercept and
slope) calculated with the Least squares method. “T” is
threshold to define rare features extracted from SMILES. For
instance, if T=3, all features which have prevalence less than
3 in the training set are considered as rare. The rare features
are not used to build up a model (their correlation weights
are zero). N is the number of epochs of the Monte Carlo op-
timization for correlation weights of molecular features in-
volved in the modelling process. The T* and N* are values
of the T and N which give the best statistical characteristics
for model calculated with Eq. 1 for the calibration set.

The optimal descriptor of correlation weights (DCW) of
different molecular features extracted from simplified mo-
lecular input-line entry system (SMILES) [28] and from mo-
lecular graph:

DCW(T*,N*)=DCW,,,,,(T*,N*)

+DC Wy (T, N*) @
where
DCWoy s (T* N*) = CW (HARD)
+3 W (Ss,)+ Y CW(SS,) )
DCW,,,(T*,N¥)= CW(C3)+CW (C4)

4

+CW(C5)+CW(C6)+CW(CT)

Twelve symbols for registration of molecular features
extracted from SMILES are reserved in the program for pos-
sible modifications in the future.
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Example of the molecular features extracted from
SMILES and represented by twelve symbols is shown in
Table 1. The C3 — C7 are situations in a molecular system
related to the presence (absence) of three-membered, four-
membered, five-membered, six-membered and seven-
membered rings. Table 2 represents general scheme of the
representation of different situations related to rings by
twelve symbols.

The CW(x) is the correlation weights for a molecular
feature x. The correlation weights are calculated with the
Monte Carlo method optimization. The CORAL software is
available for the calculations [29]. The optimal correlation
weights give maximal correlation coefficient value between
experimental and predicted activity for the training set. The
predictive potential of the model should be checked up
with external validation set [29]. The detailed description
of the CORAL software is available on the Internet
(http://www.insilico.eu/coral).

3.4. Predictive Models Built up with the CORAL Soft-
ware

Three different splits into the training and validation set
were studied for the binding affinity data on gamma-
secretase inhibitors (pIC50), and were also studied for Blood
brain barrier permeation (logBB). It is to be noted that the
training set for the CORAL models is structured into
training, invisible and calibration sets [30, 31].

Computational experiments have shown that efficacy of
the "training" can be improved by means of special set which
permanently checks the absence of overtraining. This set can
be named as “passive training set” or “invisible training set”.

In other words, there are two ways to use a “total” train-
ing set to build up correlation “descriptor - endpoint™:

Traditional scheme: all compounds of the total training
set are taken into the Monte Carlo optimization process. Re-
sult will be the maximal correlation coefficient between op-
timal descriptor and endpoint for all total training set.

Balance of correlations: The first half of the total training
set is involved in the Monte Carlo optimization process.
However, second half is not involved in the process. In this
case, the result will be maximal correlation coefficient be-
tween the optimal descriptor and endpoint for the first half of
compounds, whereas second half of compounds will give
hint whether the correlation is objective or this correlation is
preferable solely for the first active half of compounds.

Thus, the balance of correlation is building up a QSAR
model with the following participants:

(i) The training set is “builder of the model”;

(il) The invisible training set is the “inspector of the
model”; the inspector must detect and stop the proc-
ess of the overtraining;

(iii) The calibration set is an expert; the expert must de-
clare, “Model is ready”;

(iv) The validation set is the appraiser of real predictive
potential of the model.
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Table 1. Examples of representation of SMILES attributes by means of twelve symbols [SMILES = “NC(SCCF)=N”" ].
ID Comment 1 2 3 5 6 7 8 9 10 11 12
1 Representation of Sk N
C
*
S
C
C
F
(
N
2 Representation of SS, N C
C (
S (
S C
C C
F C
F (
= (
N =
= # N 0 S P F cl Br I
3 Definition of HARD attribute $ 1 0 1 0 1 0 1 0 0 0

“Brackets are the representation of molecular branching and used only “without”.

Table 2. Definition of SMILES attributes related to the presence of rings.
1 2 3 4 6 7 8 9 10 11 12
Ring status C X a h . y
The x is the size of rings i.e. x=3, 4, 5, 6, 7; If there are aromatic rings then a="A’, otherwise a="."; If there are heteroatoms in rings then h="H’, otherwise h=°."; The y is the number

of rings i.e. y=0, 1,2, ...

The advantage to this approach is the possibility of build-
ing up a model solely from 2D data on the molecular struc-
ture represented by SMILES with the interpretation of influ-
ence of different molecular features extracted from SMILES.
However, there are some disadvantages of the approach. In
particular, the Monte Carlo optimization is not a fast calcula-
tion especially for large datasets. In addition, some of the
SMILES fragments do not have transparent physical mean-
ing (e.g. symbols “[*, “@”, dots, etc.).

The models, which were built up with the balance of cor-
relations, are as follows:

Binding Affinity of Gamma-secretase Inhibitors (Poten-
tial Agents for Treatment Alzheimer’s Disease)

Split 1

pICsy = 12942501 (£ 0.0382248)
(= 0.0009709) * DCW(1,15) (5)

n=62, r’=0.8258, RMSE=0.623, F=284 (training set)
n=71, r’=0.6856, RMSE=0.727 (invisible training set)
n=51, r’=0.6810, RMSE=0.751 (calibration set)

n=49, r’=0.7752, RMSE=0.733 (validation set)

+ 0.1606057
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Table3. Lists of stable promoter of increase (all correlation weights are positive) or decrease (all correlation weights are negative)
for pIC50 and logBB.
No. Feature, F CW(F) Run 1 CW(F) Run 2 CW(F) Run 3 Training Set Invisible Training Set | Calibration Set
pICS0, split 1
1 ) ST 0.24936 0.81527 1.00426 62 71 51
2 O..(oue. 1.81598 2.00425 2.94093 62 71 51
3 O..=.... 0.62907 0.75437 1.18718 62 71 51
4 C3.....0 1.74618 3.12552 2.49983 60 71 51
5 C4....0 3.12573 4.43867 1.99580 60 71 51
6 Co(onne 0.68970 0.62551 0.25068 59 62 43
7 C..l... 1.37112 1.12572 1.43837 59 61 43
8 Covlvn 1.25445 1.43762 1.37518 57 63 46
9 c..lo... 0.37510 0.68855 0.24748 55 65 47
10 N 0.43569 0.12723 0.12950 50 54 38
11 Lo 0.62013 0.37156 0.50154 41 46 28
12 N..C...... 0.74564 0.93512 0.62564 41 43 29
13 S 1.87883 1.44122 2.56649 40 43 33
14 [..C...... 2.87716 1.68980 1.75250 38 34 25
15 Foii 0.68765 0.74914 0.37233 37 38 28
16 Cs.....0 4.87431 4.87313 3.87512 36 40 31
1 [ -0.50046 -0.62885 -0.05899 62 71 51
2 =.(en -0.37242 -0.24593 -0.56678 62 69 51
3 S -2.24798 -1.12583 -2.05997 62 71 51
4 Conn -0.56673 -0.56218 -0.50032 62 71 51
5 [ -0.06497 -0.18722 -0.31242 62 71 51
6 [N -0.56687 -0.49790 -0.81516 62 71 51
7 N -0.68973 -1.12750 -0.68769 54 62 41
8 [ o -0.74772 -1.12089 -1.81062 39 44 34
9 [..H...... -1.56676 -1.25190 -0.31208 38 34 25
10 CL.(....... -0.24951 -0.56565 -0.62721 35 27 26
11 C.=... -2.37058 -2.74693 -3.44246 26 30 14
12 H..@@...... -1.06063 -0.37158 -1.43490 21 21 13
13 [..@....... -2.31200 -2.81686 -1.50485 19 11 9
14 =.l.. -1.31479 -1.74616 -1.00456 9 15 10
15 [..N...... -0.43407 -2.19238 -1.93745 9 12 6
16 C6..AH4 -3.74966 -2.99712 -2.99987 8 6 5

(Table 3) contd....
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No. Feature, F CW(F) Run 1 CW(F) Run 2 CW(F) Run 3 Training Set Invisible Training Set | Calibration Set
pIC50, split 2
1 ) BT 0.37791 0.75136 0.50087 66 67 50
2 O 1.93510 231473 1.06252 66 67 50
3 Covnnnn 0.06720 0.43483 0.62375 61 61 45
4 C..l.... 1.56744 1.62065 1.75150 61 58 43
5 Coolvnnns 1.56080 1.18804 1.75301 60 60 46
6 No(ooenn 0.50498 0.62805 0.43364 54 49 36
7 C..C.... 0.37205 0.62336 0.37277 51 58 42
8 2 0.43523 0.56398 0.12820 45 51 32
9 C5....0 6.00472 5.99545 6.25140 43 36 34
10 N..C....... 1.37968 1.68793 1.87623 39 41 27
11 [..C....... 0.12456 0.49768 1.80975 37 38 23
12 [..H....... 1.62581 0.69162 1.00379 37 38 23
13 C2in. 0.99918 0.56194 1.12751 35 36 24
14 Fuoes 0.49877 0.44089 1.30846 34 37 28
15 Foonn 0.62920 0.69236 0.37820 33 35 27
16 T 3.12476 2.87269 3.37296 33 43 31
1 [ -0.55900 -0.55795 -1.06147 66 67 50
2 S -0.31255 -1.99752 -1.87560 66 67 50
3 Cuvee -0.24649 -0.62194 -0.37101 66 67 50
4 C3....0 -4.12984 -4.74520 -3.49783 66 66 49
5 [ -0.43299 -0.12822 -0.37044 66 67 50
6 [ -0.56748 -0.50425 -0.99606 66 67 50
7 Noooee -1.25121 -1.12588 -1.00118 57 60 39
8 Hoooooee -1.37596 -0.25167 -1.18672 37 38 23
9 c..Co. -0.37586 -0.37213 -0.49682 37 38 25
10 [ -1.37164 -1.62892 -0.87345 35 35 22
11 (eorlvenne -1.00341 -1.05836 -0.99682 32 44 32
12 C.=... -1.87617 -0.49606 -0.87942 26 28 23
13 C.@@...... -1.93993 -0.24818 -0.05935 23 21 15
14 [l -0.25399 -0.87790 -0.06226 22 25 17
15 $10011100100 -1.24578 -1.56069 -1.81534 13 10 7
16 C7..A.1... -0.24768 -1.18849 -0.62114 11 21 10
pIC50, split 3
1 ) BT 0.80782 0.12046 1.00472 61 63 55
2 = 0.80859 0.43861 1.24558 61 63 53
3 O 2.81151 2.62129 2.31681 61 63 55

(Table 3) contd....
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No. Feature, F CW(F) Run 1 CW(F) Run 2 CW(F) Run 3 Training Set Invisible Training Set | Calibration Set
pIC50, split 3

4 O..=.... 0.93514 1.43913 0.68355 61 63 55
5 [ 0.06327 0.00247 0.12191 61 63 55
6 C..l.... 0.81487 1.06109 1.12812 58 60 46
7 Courlvnnnn 0.68932 0.75280 0.93721 57 59 47
8 c..lo... 0.06090 0.30887 037182 53 58 51
9 No(ooenn 037516 0.87510 1.68538 50 48 43
10 2 0.94011 1.18721 1.05999 48 43 36
11 [..C....... 1.18350 0.74643 1.12063 39 35 26
12 N..C....... 1.25462 1.31352 1.62911 37 42 33
13 T 1.24827 2.00081 0.93984 36 39 36
14 C5....0 3.43701 5.50479 6.44186 35 37 34
15 Foonn 1.12015 0.55846 1.12187 35 33 27
16 S 1.99622 1.55892 1.68773 33 37 34
1 [ -0.37339 -0.06365 -0.62191 61 63 55
2 S -1.62730 -2.31258 -2.12289 61 63 55
3 Cuiee -0.37397 -0.69070 -0.56000 61 63 55
4 [ -0.62350 -0.50475 -1.12573 61 63 55
5 Nuooee -1.12086 -1.31212 -2.06263 54 53 48
6 C..C.... -0.24581 -0.06071 -0.37304 48 47 46
7 [..H....... -0.44110 -0.30958 -1.24568 39 35 26
8 @@.......... -0.87191 -0.19206 -0.62280 30 20 14
9 C.=... -1.75324 -1.80866 -1.87391 28 25 22
10 [l -0.12014 -0.56717 -0.31449 24 22 18
11 [..@....... -2.05908 -1.00253 -0.12596 16 10 13
12 C7..A..1 -1.06160 -1.43859 -0.62483 15 16 14
13 $10011100100 -0.62031 -0.25133 -2.50400 9 12 7

14 [20ee -1.31346 -1.43451 -0.75249 9 8 7

15 C6...AHA4... -0.94103 -2.06365 -1.55992 8 7 7

16 S.C. -1.12210 -1.62776 -1.19212 8 1 1

LogBB, split 1

1 Cuee 0.69000 0.44177 0.44099 101 102 42
2 C4....0 1.44233 1.93619 0.87009 100 104 43
3 C3....0 9.24711 8.24931 6.37970 99 102 43
4 C..C.... 0.18958 0.24932 031713 90 88 41
5 Covnnnn 1.06715 0.74746 1.24582 87 91 35
6 C..l.... 0.50407 0.68784 0.99825 80 76 26

(Table 3) contd....
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No. Feature, F CW(F) Run 1 CW(F) Run 2 CW(F) Run 3 Training Set Invisible Training Set | Calibration Set
LogBB, split 1
7 C.=... 1.06451 1.00467 0.93251 80 80 24
8 C5....0 5.18616 4.87599 3.06013 66 70 32
9 N..C...... 1.06163 1.25062 1.05830 61 59 20
10 No(ooenn 1.87440 1.80861 1.50002 50 50 16
11 O.=.... 3.74850 3.12144 3.50390 45 49 17
12 O..C.... 1.87390 1.62698 1.50087 42 35 10
13 =.2.. 1.31662 237411 1.93516 41 37 12
14 C.3..... 1.56423 0.24589 0.69105 36 43 10
15 $10011000000 3.49649 2.87644 4.06526 32 23 7
16 C5..H.1... 0.93855 0.49718 0.24570 29 28 11
1 S -1.94237 -2.00425 -1.12592 89 86 30
2 [ -1.94146 -1.44173 -1.93644 88 91 35
3 Noooee -1.69081 -1.80786 -1.68985 74 69 22
4 O -3.93612 -3.12302 -3.87867 66 69 27
5 = -0.87699 -0.37408 -0.56436 62 58 23
6 C.2.... -1.87318 -2.18807 -1.87392 60 59 16
7 O -1.74592 -1.74659 -1.50041 43 49 19
8 2 -2.06074 -0.87009 -1.37681 36 35 10
9 N.=.... -1.62360 -1.50313 -2.12455 30 35 11
10 =.3.. -0.68502 -0.93424 -1.18858 26 29 8
11 N..2...... -2.81032 -1.19035 -2.12915 24 19 6
12 [ -0.81319 -1.12785 -1.31036 10 8 3
13 =.4.. -1.31236 -0.81692 -0.68350 9 19 5
14 N..H.... -1.12172 -0.87838 -1.62984 7 6 3
15 [..C....... -2.87947 -2.75490 -2.06543 7 5 3
16 Br.......... -0.49505 -0.49665 -1.94093 6 2 2
LogBB, split 2
1 C3.....0... 10.87070 9.99674 11.00131 103 103 41
2 Cueee 0.12071 0.12533 0.37494 101 106 41
3 C..C.... 0.93320 0.87535 0.50239 89 96 37
4 Covnnne 1.19210 1.25322 0.62690 83 93 36
5 C.=... 0.37918 1.37448 0.44201 80 86 24
6 ) BT 1.49679 0.12476 1.06684 74 88 26
7 C..l.... 1.18368 1.49925 1.56002 74 88 26
8 C5....0 425337 4.68880 4.12680 68 66 36
9 N..C....... 1.74585 1.50379 1.31711 61 68 19

(Table 3) contd....
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No. Feature, F CW(F) Run 1 CW(F) Run 2 CW(F) Run 3 Training Set Invisible Training Set | Calibration Set
LogBB, split 2

10 2 1.37069 0.93599 0.87107 56 71 15
11 =.l.. 1.00094 1.00452 1.18761 48 61 19
12 No(oonnn 2.00333 2.24552 1.81625 47 50 18
13 O.=.... 3.62311 3.49517 3.37670 42 52 19
14 =.2.. 1.18866 0.62164 0.18527 40 45 11
15 C.3..... 1.31047 0.87676 1.31327 38 47 9

16 O..C... 2.12437 2.25455 1.81321 36 40 12
1 C4....0 -0.49732 -0.50309 -0.50008 103 106 41
2 C7...0 -3.50133 -3.24763 -2.87060 90 88 34
3 S -1.12942 -2.24834 -1.31595 85 96 28
4 [ -1.62048 -1.81308 -1.18864 84 94 36
5 Noooee -2.49537 -2.68449 -2.25354 70 78 23
6 O -3.62711 -4.25421 -3.56712 64 75 28
7 = -2.18783 -0.74894 -1.93659 56 71 23
8 C.2.... -2.49624 -2.30834 -1.81363 56 70 15
9 O -2.12646 -1.87628 -2.00250 41 54 18
10 N.=.... -1.12893 -0.99861 -0.99789 37 34 5

11 2 -1.75032 -0.75119 -0.49969 35 43 8

12 =.3.. -1.00262 -0.62848 -0.25161 27 32 7

13 N..2...... -2.00309 -0.24532 -0.87223 22 29 5

14 T -0.80988 -2.37982 -1.12535 16 17 3

15 =.4.... -2.24740 -0.99940 -1.12895 12 17 3

16 [..C....... -3.81523 -3.37811 -2.81052 8 6 2

LogBB, split 3

1 Cuvee 0.00132 0.19167 0.25322 103 104 40
2 C3....0 9.74655 10.49769 9.50124 102 104 40
3 C..C.... 1.00004 1.25242 1.00283 92 97 33
4 Covnnn 0.50101 1.37191 1.00401 90 89 35
5 C..l.... 1.31706 1.00284 1.49553 77 83 27
6 C.=... 0.55849 1.49910 0.06478 76 87 25
7 C5....0 6.00291 4.74699 5.25173 71 66 32
8 N..C....... 1.24857 0.87346 1.62565 61 63 21
9 No(ooenn 0.75396 1.37567 1.68298 58 43 17
10 O.=.... 1.50315 2.50127 1.49589 49 45 18
11 =.2.. 3.25269 1.68316 2.25396 38 45 12
12 B 1.62996 0.75194 0.74545 36 45 10

(Table 3) contd....



778 Current Neuropharmacology, 2018, Vol. 16, No. 6

Toropova et al.

No. Feature, F CW(F) Run 1 CW(F) Run 2 CW(F) Run 3 Training Set Invisible Training Set | Calibration Set
LogBB, split 3
13 C.3..... 0.00153 0.25042 0.74564 36 45 10
14 Lo 1.87609 2.19099 3.00002 34 27 14
15 Ce......0... 2.50113 4.75479 437791 33 27 16
16 O..C... 0.62800 0.49543 0.74706 31 37 14
1 [ -0.50197 -1.74939 -1.25398 92 89 35
2 C7....0... -3.00432 -2.24765 -2.50016 92 86 35
3 S -1.74993 -2.19227 -0.93260 84 93 30
4 N -1.50133 -2.62558 -3.30976 69 75 24
5 = -0.37305 -0.00161 -0.68413 66 63 18
6 O -3.49561 -3.49608 -3.05869 66 69 28
7 C..2.... -1.25479 -1.19206 -1.56163 55 66 17
8 O -1.62599 -1.87859 -2.25388 46 48 15
9 2 -1.25291 -1.75055 -2.00114 37 36 11
10 N..=.... -3.00207 -2.49735 -2.24940 31 34 10
11 C5..H.1 -0.31727 -0.62372 -0.06462 29 29 6
12 =3 -1.25013 -2.25139 -0.31558 27 29 6
13 (eorlvenne -1.49562 -1.56378 -2.00367 23 16 7
14 N..2.... -2.18457 -2.87062 -2.50423 23 24 8
15 [ -0.44089 -0.31661 -0.31291 8 11 3
16 [..H....... -0.75060 -0.74589 -0.12414 8 6 2
Split 2 n=101, r’=0.7438, RMSE=0.286, F=287 (training set)
pICsy = 32737064 (= 0.0326601) + 0.1974723 (=  n=104, r’=0.7540, RMSE=0.331 (invisible training set)

0.0013567) * DCW(1,15) (6)

n=66, r’=0.7711, RMSE=0.694, F=216 (training set)
n=67, r’=0.7702, RMSE=0.703 (invisible training set)
n=50, r’=0.7258, RMSE=0.718 (calibration set)
n=50, r’=0.7676, RMSE=0.645 (validation set)

Split 3

pICsy = 2.1408654 (+ 0.0416128) + 0.1757965 (+
0.0012683) * DCW(1,15) (7)

n=61, r’=0.7725, RMSE=0.665, F=200 (training set)
n=63, r’=0.7724, RMSE=0.756 (invisible training set)
n=55, r’=0.7610, RMSE=1.11 (calibration set)

n=54, r’=0.7753, RMSE=0.882 (validation set)
Blood Brain Barrier Permeation (logBB)

Split 1

Log(BB) = -0.8609358 (+ 0.0066439) + 0.0537248 (+
0.0003448) * DCW(1,15) (8)

n=43, r’=0.9141, RMSE=0.198 (calibration set)
n=43, r’=0.8592, RMSE=0.240 (validation set)
Split 2

Log(BB) = -0.9164493 (+ 0.0072757) + 0.0385240 (+
0.0002497) * DCW(1,10) (9)

n=103, r’=0.6830, RMSE=0.350, F=218 (training set)
n=107, ’=0.6828, RMSE=0.330 (invisible training set)
n=41, r’=0.8350, RMSE=0.229 (calibration set)

n=40, r’=0.8310, RMSE=0.319 (validation set)

Split 3

Log(BB) = -0.5038388 (+ 0.0053701) + 0.0231569 (+
0.0001622) * DCW(1,10) (10)

n=104, r’=0.6388, RMSE=0.359, F=180 (training set)
n=105, ’=0.6477, RMSE=0.389 (invisible training set)
n=41, r’=0.8344, RMSE=0.275 (calibration set)

n=41, r’=0.7273, RMSE=0.274 (validation set)
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Table4. Molecular features which have the same effect for pIC50 (denoted 1) and logBB (denoted 2).

TRN1' iTRN1 CLB1 TRN2 iTRN2 CLB2

pIC50-splitl-logBB-splitl

O.=.... 62 71 51 45 49 17
C3.....0... 60 71 51 99 102 43
C4....0 60 71 51 100 104 43
Covnnne 59 62 43 87 91 35
C..l.... 59 61 43 80 76 26
No(ooenn 50 54 38 50 50 16
) DO GO 41 46 28 25 29 14
N..C....... 41 43 29 61 59 20
C5....0 36 40 31 66 70 32
N..l...... 36 33 22 23 23 6
O..C... 22 23 20 42 35 10
[ 62 71 51 88 91 35
= 62 69 51 62 58 23
S 62 71 51 89 86 30
Nuooee 54 62 41 74 69 22
pIC50-splitl-logBB-split2

) BT 62 71 51 74 88 26
O.=.... 62 71 51 42 52 19
C3....0 60 71 51 103 103 41
Covnnnn 59 62 43 83 93 36
C..l.... 59 61 43 74 88 26
No(ooenn 50 54 38 47 50 18
Lo 41 46 28 33 28 14
N..C....... 41 43 29 61 68 19
Fuoes 37 38 28 21 11 5
C5....0 36 40 31 68 66 36
N..l...... 36 33 22 26 27 5
O..C... 22 23 20 36 40 12
[ 62 71 51 84 94 36
= 62 69 51 56 71 23
S 62 71 51 85 96 28
Nuooeee 54 62 41 70 78 23
pIC50-splitl-logBB-split3

O..=.... 62 71 51 49 45 18
C3....0 60 71 51 102 104 40

(Table 4) contd....
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TRN1' iTRN1 CLB1 TRN2 iTRN2 CLB2

pIC50-splitl-logBB-split3

Covnnne 59 62 43 90 89 35
C..l.... 59 61 43 77 83 27
No(ooenn 50 54 38 58 43 17
Lo 41 46 28 34 27 14
N..C....... 41 43 29 61 63 21
C5....0 36 40 31 71 66 32
O..C... 22 23 20 31 37 14
[ 62 71 51 92 89 35
= 62 69 51 66 63 18
S 62 71 51 84 93 30
Noooee 54 62 41 69 75 24
(ool 39 44 34 23 16 7
pIC50-split2-logBB-split1

Covnnne 61 61 45 87 91 35
C..l..... 61 58 43 80 76 26
No(ooenn 54 49 36 50 50 16
C..C.... 51 58 42 90 88 41
C5....0 43 36 34 66 70 32
N..C....... 39 41 27 61 59 20
O..C... 22 18 19 42 35 10
[ 66 67 50 88 91 35
S 66 67 50 89 86 30
Noooee 57 60 39 74 69 22
pIC50-split2-logBB-split2

) BT 66 67 50 74 88 26
Covnnne 61 61 45 83 93 36
C..l.... 61 58 43 74 88 26
No(ooenn 54 49 36 47 50 18
C..C.... 51 58 42 89 96 37
2 45 51 32 56 71 15
C5....0 43 36 34 68 66 36
N..C....... 39 41 27 61 68 19
Fuonen 34 37 28 21 11 5
O..C... 22 18 19 36 40 12
[ 66 67 50 84 94 36
S 66 67 50 85 96 28
Nuooee 57 60 39 70 78 23

(Table 4) contd....
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TRN1' iTRN1 CLB1 TRN2 iTRN2 CLB2

pIC50-split2-logBB-split3

Covnnne 61 61 45 90 89 35
C..l.... 61 58 43 77 83 27
No(ooenn 54 49 36 58 43 17
C..C.... 51 58 42 92 97 33
C5....0 43 36 34 71 66 32
N..C....... 39 41 27 61 63 21
O..C... 22 18 19 31 37 14
[ 66 67 50 92 89 35
S 66 67 50 84 93 30
Nuooeee 57 60 39 69 75 24
(eorlvenne 32 44 32 23 16 7
pIC50-split3-logBB-split1

O.=.... 61 63 55 45 49 17
C..l.... 58 60 46 80 76 26
No(oonn 50 48 43 50 50 16
N..C....... 37 42 33 61 59 20
C5....0 35 37 34 66 70 32
N..l.... 32 31 29 23 23 6
[ 61 63 55 88 91 35
S 61 63 55 89 86 30
Noooee 54 53 48 74 69 22
pIC50-split3-logBB-split2

) BT 61 63 55 74 88 26
O.=.... 61 63 55 42 52 19
C..l.... 58 60 46 74 88 26
No(ooenn 50 48 43 47 50 18
2 48 43 36 56 71 15
N..C....... 37 42 33 61 68 19
C5....0 35 37 34 68 66 36
N..l..... 32 31 29 26 27 5
[ 61 63 55 84 94 36
S 61 63 55 85 96 28
Nuooeee 54 53 48 70 78 23
pIC50-split3-logBB-split3

O.=.... 61 63 55 49 45 18
C..l.... 58 60 46 77 83 27
No(ooenn 50 48 43 58 43 17

(Table 4) contd....



782 Current Neuropharmacology, 2018, Vol. 16, No. 6

Toropova et al.

1 1 1 2 2 2 TRN1' iTRN1 CLB1 TRN2 iTRN2 CLB2
pIC50-split3-logBB-split3
N..C....... + + + + + + 37 42 33 61 63 21
C5....0 + + + + + + 35 37 34 71 66 32
[ - - - - - - 61 63 55 92 89 35
S - - - - - - 61 63 55 84 93 30
Nuooeee - - - - - - 54 53 48 69 75 24

“TRNI, iTRN1 and CLBI are the numbers of a feature in the training, invisible training and calibration sets for endpoint 1; TRN2, iTRN2 and CLB2 mean the same for endpoint 2.

Table 5. Molecular features which have the opposite effect for pIC50 (denoted 1) and logBB (denoted 2).
1 1 TRN1' iTRN1 CLB1 TRN2 iTRN2 CLB2

pIC50-splitl-logBB-splitl

O..(oue. + + + 62 71 51 43 49 19
20 + + + 31 33 18 36 35 10
Conn - - 62 71 51 101 102 42
C.=... - - 26 30 14 80 80 24
pIC50-splitl-logBB-split2

O..(coue. + + + 62 71 51 41 54 18
C4....0... + + + 60 71 51 103 106 41
20 + + + 31 33 18 35 43 8
C7.....0 + + + 28 21 22 90 88 34
Conn - - 62 71 51 101 106 41
C.=... - - 26 30 14 80 86 24
pIC50-splitl-logBB-split3

O..(coue. + + + 62 71 51 46 48 15
20 + + + 31 33 18 37 36 11
C7.....0 + + + 28 21 22 92 86 35
Conen - - 62 71 51 103 104 40
C.=... - - 26 30 14 76 87 25
pIC50-split2-logBB-split1

O + + + 66 67 50 66 69 27
20 + + + 31 30 25 36 35 10
Conn - - 66 67 50 101 102 42
C3.....0 - - 66 66 49 99 102 43
C.=... - - 26 28 23 80 80 24
pIC50-split2-logBB-split2

O + + + 66 67 50 64 75 28
20 + + + 31 30 25 35 43 8

(Table 5) contd....
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1 1 1 2 2 2 TRN1' iTRN1 CLB1 TRN2 iTRN2 CLB2

pIC50-split2-logBB-split2

C7....0... + + + - - - 27 23 21 90 88 34
Cuee - - - + + + 66 67 50 101 106 41
C3.....0... - - - + + + 66 66 49 103 103 41
C.=... - - - + + + 26 28 23 80 86 24
pIC50-split2-logBB-split3

O + + + - - - 66 67 50 66 69 28
2 + + + - - - 31 30 25 37 36 11
C7....0 + + + - - - 27 23 21 92 86 35
Cuee - - - + + + 66 67 50 103 104 40
C3....0 - - - + + + 66 66 49 102 104 40
C.=... - - - + + + 26 28 23 76 87 25
pIC50-split3-logBB-splitl

= + + + - - - 61 63 53 62 58 23
O + + + - - - 61 63 55 43 49 19
Cuiee - - - + + + 61 63 55 101 102 42
C..C.... - - - + + + 48 47 46 90 88 41
C.=... - - - + + + 28 25 22 80 80 24
pIC50-split3-logBB-split2

= + + + - - - 61 63 53 56 71 23
O + + + - - - 61 63 55 41 54 18
C7...0 + + + - - - 22 23 24 90 88 34
Cuee - - - + + + 61 63 55 101 106 41
C..C.... - - - + + + 48 47 46 89 96 37
C.=... - - - + + + 28 25 22 80 86 24
pIC50-split3-logBB-split3

= + + + - - - 61 63 53 66 63 18
O + + + - - - 61 63 55 46 48 15
C7...0 + + + - - - 22 23 24 92 86 35
Cuiee - - - + + + 61 63 55 103 104 40
C..C.... - - - + + + 48 47 46 92 97 33
C.=... - - - + + + 28 25 22 76 87 25

“TRNI, iTRN1 and CLBI are the numbers of feature in the training, invisible training and calibration sets for endpoint 1; TRN2, iTRN2, and CLB2 mean the same for endpoint 2.

3.5. Molecular Features which Influence the pIC50 and

logBB Extracted from Coral-models

Table 3 contains correlation weights of different molecu-
lar features obtained in three runs of the Monte Carlo method

optimization procedure. These features are extracted accord-
ing to the principles: (i) these have significant prevalence in
training, invisible training and calibration sets; and (ii) these
features have stable positive or stable negative correlation
weights in all runs.
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3.5. Molecular Features, which have Similar Effects for
pIC50 and logBB

Table 4 contains lists of molecular features which are
promoters of increase for both pIC50 and logBB together
with features which are promoters of decrease for both
pIC50 and logBB. In the first approximation, oxygen and
nitrogen connected in rings and oxygen connected with car-
bon or nitrogen are promoters of increase for both pIC50 and
logBB. Branching and the presence of double bonds as well
as nitrogen itself are promoters of decrease for both pIC50
and logBB.

3.6. Molecular Features, which have Opposite Effects for
pIC50 and logBB

Table 5 contains lists of molecular features, which have
opposite effect on both pIC50 and for logBB. In the first
approximation, presence of two rings and presence of carbon
with double covalent bond have opposite effects on pIC50
and logBB.

It is to be noted that the number of features which have
the same effect for pIC50 and logBB is larger than the num-
ber of features which have opposite effects for pIC50 and
logBB. Consequently, the consideration of interrelations
between these endpoints (maybe not only those) can be a
perspective in the aspect of drug discovery.

Supplementary materials section contains SMILES and
numerical data on examined endpoints.

CONCLUSION

There are arguments to consider the interrelation between
gamma-secretase inhibitors activity (pIC50) and blood brain
barrier permeation (logBB). The interrelation is described in
the literature and confirmed in this work (Table 4). The inter-
relation can be detected and described in terms of molecular
features extracted from SMILES and molecular graph which
are involved in building up QSAR models for the pIC50 and
logBB. The examination of equivalent and opposite effect of
the presence of molecular features for other endpoint can be
useful for other pairs of endpoints. From practical point of
view, these can be (a) water solubility and octanol water
partition coefficient; (b) water solubility and toxicity; (c)
carcinogenicity and mutagenicity, etc.

LIST OF ABBREVIATIONS

QSAR = Quantitative structure — activity relation-
ships

CWs = Correlation weights

BBB = Blood brain barrier

AD = Alzheimer's disease

SMILES = Simplified molecular input-line entry

system
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