DISCOVERY EXPRESS

Pathway Analysis of Gene Expression in Murine Fetal and Adult Wounds

Michael S. Hu, Wan Xing Hong, Michael Januszyk, Graham G. Walmsley, Anna Luan, Zeshaan N. Maan, Shawn Moshrefi, Ruth Tevlin, Derrick C. Wan, Geoffrey C. Gurtner, Michael T. Longaker, and H. Peter Lorenz^{*}

Division of Plastic Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, Stanford, California.

This abstract has been presented at the 8th Annual Academic Surgical Congress on February 5–7, 2013 in New Orleans, Louisiana and the 26th Annual Meeting of the Wound Healing Society on April 23–27, 2014 in Orlando, Florida.

Objective: In early gestation, fetal wounds heal without fibrosis in a process resembling regeneration. Elucidating this remarkable mechanism can result in tremendous benefits to prevent scarring. Fetal mouse cutaneous wounds before embryonic day (E)18 heal without scar. Herein, we analyze expression profiles of fetal and postnatal wounds utilizing updated gene annotations and pathway analysis to further delineate between repair and regeneration.

Approach: Dorsal wounds from time-dated pregnant BALB/c mouse fetuses and adult mice at various time points were collected. Total RNA was isolated and microarray analysis was performed using chips with 42,000 genes. Significance analysis of microarrays was utilized to select genes with >2-fold expression differences with a false discovery rate of <2. Enrichment analysis was performed on significant genes to identify differentially expressed pathways. **Results**: Our analysis identified 471 differentially expressed genes in fetal versus adult wounds following injury. Utilizing enrichment analysis of sig-

nificant genes, we identified the top 20 signaling pathways that were upregulated and downregulated at 1 and 12 h after injury. At 24 h after injury, we discovered 18 signaling pathways upregulated in adult wounds and 11 pathways upregulated in fetal wounds.

Innovation: These novel target genes and pathways may reveal repair mechanisms of the early fetus that promote regeneration over fibrosis.

Conclusion: Our microarray analysis recognizes hundreds of possible genes as candidates for regulators of scarless versus scarring wound repair. Enrichment analysis reveals 109 signaling pathways related to fetal scarless wound healing.

Keywords: wound healing, scarless repair, regeneration, microarray

INTRODUCTION

A LANDMARK REPORT by Rowlatt in 1979 described that human fetuses in early gestation heal wounds without scar formation in a process resembling regeneration.¹ Since then, this remarkable regenerative ability has been demonstrated across a number of mammalian species.^{2–4} Although key differences have been identified between fetal scarless wound regeneration and adult scarring wound repair, the exact mechanism remains largely unknown.⁵ We previously characterized the gene expression profile of fetal and adult wounds at

H. Peter Lorenz, MD

Submitted for publication January 29, 2018. Accepted in revised form January 29, 2018. *Correspondence: Division of Plastic Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Stanford University School of Medicine, 257 Campus Drive, Stanford. CA 94305-5148

(e-mail: plorenz@stanford.edu).

numerous time points following injury.⁶ However, owing to an outdated gene database and limited methods of analysis, the results of the study were difficult to extrapolate for further research. Herein, we perform gene expression analysis with updated gene annotations on embryonic day (E)17 scarless fetal and scarring adult mouse wounds. Moreover, we perform enrichment pathway analysis to identify functional molecular pathways differentially expressed between scarless and scarring repair. With identification of these pathways, many of which are novel to wound regeneration, we aim to provide new targets for promoting scarless wound healing.

CLINICAL PROBLEM ADDRESSED

Adult cutaneous wounds heal through a fibroproliferative response that results in incomplete regeneration of the original tissue.⁷ There is an overproduction of an unorganized collagen meshwork with loss of dermal appendages.⁸ The resultant scar tissue is weaker and has a tensile strength <80% of the original form.⁹ This highly evolved process, although efficient in protecting from infection, further injury, and water loss, can be problematic. In the pediatric population, scars can restrict growth and impede movement when they occur across joints. Furthermore, scars occurring in locations such as the face can lead to devastating psychological and social consequences. In addition, humans can develop pathological scars, such as keloids or hypertrophic scars, when wound healing occurs rampantly. This results in a scar that is characterized by excessive disorganized collagen deposition and is raised, cosmetically unpleasing, and often associated with symptoms such as pain and itching.¹⁰ The ability to prevent such scar formation and promote wounds to undergo regeneration would be highly beneficial to healthcare and society, by easing the tremendous clinical burden of scarring and fibrosis estimated to be in the tens of billions of dollars.⁹

MATERIALS AND METHODS

Animals

Six-week-old wild-type BALB/c mice were purchased from Charles River Laboratories (Wilmington, MA) and housed at 22°C with a 12-h day/12-h night cycle. All animals received water and normal chow *ad libitum*. For timed gestations, the mice were bred overnight and the day of vaginal plug was considered E0.5 day of gestation. Animals were maintained in the Stanford Animal Care Laboratory and all procedures were conducted in accordance with university-approved protocols according to National Institutes of Health (NIH) guidelines.

Fetal mouse wounding

Fetal wounding was performed as previously described.¹¹ Briefly, pregnant mice (gestational age E17) were utilized. After induction of anesthesia, midline laparotomy was performed using microsurgical scissors. The uterus and fetus selected for surgery were gently exposed using cottontip applicators. The surgical field was irrigated with warm (38°C) phosphate-buffered saline (PBS). The fetus was carefully positioned to allow access to the dorsum. A purse-string stitch using a 7-0 nylon suture was passed through the uterus overlying the site of intended dorsal wounding. A 3 mm incision was made through the uterine wall and amniotic sac in the center of the purse-string stitch. Using microsurgical scissors, a single full-thickness excisional wound, $\sim 1 \text{ mm}$ in diameter, was created on the dorsum of the fetus. The wound was marked with India ink. Warm (38°C) PBS was injected into the amniotic sac with a blunt-tipped 10-guage syringe as the purse string was closed and the syringe was carefully retracted. One fetus of unknown gender per litter was wounded. The peritoneal cavity was irrigated with warm (38°C) PBS. The peritoneum and abdominal skin were everted, reapproximated, and stapled closed. Prior studies from our laboratory have shown that the histology of these wounds reveal complete regeneration within 48 h. Hematoxylin and eosin and trichrome staining reveal rapid reepithelialization and normal collagen architecture.¹² Thus, time points less than 48 h were chosen for analysis of wounds. The pregnant mice were sacrificed and fetal wounds were harvested at 1, 12, and 24 h (n=3 for each)time point) following wounding by excising the wound with a 2 mm rim of surrounding tissue using microsurgical scissors, as previously described.⁶ An equivalent amount of tissue from the contralateral dorsum of the same fetus was collected in the same manner for normalization.

Adult mouse wounding

For adult wounding, 2 mm excisional wounds were generated on the back of 3-week-old BALB/c mice of mixed gender using punch biopsy after induction of anesthesia and preparation for aseptic surgery, as described above for pregnant mice. Mice were sacrificed and wounds were harvested at 1, 12, and 24 h (n=3 for each time point) following injury for comparison to fetal wounds. Wounds were harvested by excising the wound along with a 2 mm rim of normal tissue by punch biopsy for reproducibility, as previously described.⁶ An equivalent amount of tissue from the contralateral dorsum of the same fetus was collected in the same manner for normalization. The larger size wound, which is a fourfold increase in area, accounts for an approximately fourfold size discrepancy between the fetal and postnatal wound. However, despite the differences in wound size, the relative wound to body size in the fetal and postnatal mouse is not the same and may confound our data.

RNA extraction and amplification

RNA from fetal and adult wounds at various time points was extracted using the Trizol protocol (Invitrogen, Carlsbad, CA) as per manufacturer's instructions and as previously described.¹³ One microgram of RNA from each experimental sample (n=3 per group per time point) was amplified. One-microgram aliquots of universal mouse RNA were amplified in individual reaction mixtures and utilized as internal amplification controls.

Preparation of fluorescent complementary DNA probes

Fluorescent complementary DNA (cDNA) probes were prepared as previously described.¹³

Pretreatment of microarray chips

The Stanford Microarray Database Center was used to print mouse microarray chips with 42,000 specific cDNAs printed onto each lysine-coated slide. These cDNAs represent single accession numbers from Genbank (sequences and accession numbers of the cDNAs can be found on http://genomewww5.stanford.edu//index.shtml). Before hybridization, microarray chips were rehydrated, snap-dried, and crosslinked as previously described.¹³

Microarray hybridization

Microarray hybridization was performed as previously described.¹³

Microarray data analysis

Scanned images were analyzed using the Genepix Pro 4.0 software (Molecular Devices), as previously described.¹³ Significance analysis of microarrays (SAM) was used to select genes with significant expression differences between the E17 fetal and adult wound transcriptomes for each time point. Genes that had at least a twofold expression difference with false discovery rate <2 were selected.

Functional analysis of differentially expressed genes

To identify functional connections among significantly regulated genes, both network and pathway analyses of the probes filtered by microarray were performed using Ingenuity Pathways Analysis (Ingenuity Systems, Redwood City, CA), as previously described.¹³

RESULTS

Differential gene expression between adult and fetal wounds

Wound microarray data were normalized to agematched unwounded control skin (taken from the contralateral dorsum of the same fetus/adult during wound collection) data sets. Normalized transcriptomes from E17 fetal wounds were directly compared to normalized transcriptomes from adult wounds. SAM identified 471 differentially expressed genes with greater than twofold difference between E17 fetal and adult wounds at 1, 12, and 24 h postinjury. At 1 h following wounding, 178 genes were upregulated in E17 fetal wounds, whereas 13 genes were downregulated when compared to adult wounds (Table 1). At 12h following injury, E17 fetal wounds upregulated 112 genes, whereas adult wounds upregulated 141 genes (Table 2). Twenty-four hours postwounding, 16 genes were downregulated in E17 fetal wounds and 11 genes were upregulated versus adult wounds (Table 3).

Functional pathway analysis

Analysis of the 178 genes found to be upregulated in E17 fetal wounds at 1 h postinjury resulted in the identification of 20 functional pathways (Fig. 1B). The top five pathways were associated with the following: proline biosynthesis, arginine degradation, mevalonate pathway, and Parkinson's signaling. Utilizing the 13 downregulated genes in E17 fetal wounds, a list of 20 functional pathways were again identified (Fig. 1C). The top five pathways were as follows: interleukin (IL)-8 signaling, mechanistic target of rapamycin signaling, glucocorticoid receptor signaling, regulation of IL-2 expression in activated and anergic T lymphocytes, and T cell receptor signaling.

At 12 h following injury, out of 112 genes upregulated in E17 fetal wounds, 20 pathways were identified (Fig. 2B). The top five pathways were related to apoptosis, role of osteoblasts, osteoclasts and chondrocytes in rheumatoid arthritis, Rasrelated nuclear protein signaling, and protein ubiquitination pathway. Conversely, of 141 genes upregulated in adult wounds at 12 h, 20 functional pathways (Fig. 2C) reveal the top five to include the thioredoxin pathway, CXC chemokine receptor (CXCR)4 signaling, IL-1 signaling, Cdc42 signaling, and vitamin C transport.

Gene expression of E17 fetal and adult wounds at 24 h after injury reveal 27 differentially expressed

Table 1. Differentially expressed genes in embryonic day 17
fetal versus adult wounds at one hour postwounding

Table 1. (Continued)

Gene Symbol	Gene Name	Regulation
Cd177	CD177 antigen	Up
lunx1t1	Translocated to, 1 (cyclin D related)	Up
ldufa3	NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 3	Up
lettl21a	Methyltransferase like 21A	Up
fn	Stratifin	Up
.gfg1	ArfGAP with FG repeats 1	Up
pd5211	Tumor protein D52-like 1	Up
bcb1b	ATP-binding cassette, subfamily B (MDR/TAP), member 1B	Up
ab39	Calcium binding protein 39	Up
U019823	Expressed sequence AU019823	Up
hst11	Carbohydrate sulfotransferase 11	Up
spo	Translocator protein	Up
ex3	Peroxisomal biogenesis factor 3	Up
os6ka3	Ribosomal protein S6 kinase polypeptide 3	Up
ус	Myelocytomatosis oncogene	Up
co1	Aconitase 1	Up
tf1	Metal response element binding transcription	Up
had?	factor 1 FCH and double SH3 domains 2	l In
hsd2		Up
dc106	Coiled-coil domain containing 106	Up
gs1	Prostaglandin endoperoxide synthase 1	Up
egfa	Vascular endothelial growth factor A	Up
c1d22a	TBC1 domain family, member 22a	Up
34	CD34 antigen Nitria avida avettaga 2. indusible	Up
s2 ok1	Nitric oxide synthase 2, inducible	Up
	RIO kinase 1 (yeast)	Up
 	Amylo-1,6-glucosidase, 4-alpha-glucanotransferase	Up
m38a nem184b	Family with sequence similarity 38, member A Transmembrane protein 184b	Up
sa	Endosulfine alpha	Up
sa 1	Myeloid/lymphoid or mixed-lineage leukemia 1	Up Up
is13	Ribosomal protein S13	Up
nc1	COX assembly mitochondrial protein homolog	Up
	(Saccharomyces cerevisiae)	Οp
dlbp	High-density lipoprotein (HDL) binding protein	Up
os13	Ribosomal protein S13	Up
g3	B cell translocation gene 3	Up
	Galanin	Up
jyf2	GRB10 interacting GYF protein 2	Up
da	Cold shock domain protein A	Up
pep	Alanyl (membrane) aminopeptidase	Up
nt -	Isoprenylcysteine carboxyl methyltransferase	Up
	Active BCR-related gene	Up
nk3	Pantothenate kinase 3 Pro R coll loukomia transcription factor 1	Up
x1	Pre-B cell leukemia transcription factor 1	Up
x10	Sorting nexin 10	Up
ycbp ACNA1S	c-myc binding protein Calcium channel, voltage-dependent, L type,	Up
	alpha 1S subunit	Up
s15a	Ribosomal protein S15A	Up
fb	DNA fragmentation factor, beta subunit	Up
rc	RAR-related orphan receptor gamma	Up
b2	Growth factor receptor bound protein 2	Up
iz	Widely-interspaced zinc finger motifs	Up
c2	Hypermethylated in cancer 2	Up
gly1	N-glycanase 1	Up
ist	Calpastatin	Up
gs2	Prostaglandin-endoperoxide synthase 2	Up
p106	Zinc finger protein 106	Up

Gene Symbol	Gene Name	Regulation
Atxn1l	Ataxin 1 like	Up
ng5	Inhibitor of growth family, member 5	Up
Sorbs1	Sorbin and SH3 domain-containing 1	Up
ndc3b	Fibronectin type III domain containing 3B	Up
Sult1d1	Sulfotransferase family 1D, member 1	Up
lac1	RAS-related C3 botulinum substrate 1	Up
Scarb2	Scavenger receptor class B, member 2	Up
Ak3	Adenylate kinase 3	Up
Arpl16	Mitochondrial ribosomal protein L16	Up
Maneal	Mannosidase, endo-alpha like	Up
Slc25a18	Solute carrier family 25 (mitochondrial carrier), member 18	Up
Chrac1	Chromatin accessibility complex 1	Up
bln1	Fibulin 1	Up
nck	Pregnancy upregulated nonubiquitously expressed CaM kinase	Up
Cdkn2aip	CDKN2A interacting protein	Up
(cna1	Potassium voltage-gated channel, shaker-related subfamily, member 1	Up
Crnkl1	Crn, crooked neck-like 1 (Drosophila)	Up
kbkb	Inhibitor of kappaB kinase beta	Up
rim44	Tripartite motif-containing 44	Up
tfa	Electron transferring flavoprotein, alpha polypeptide	Up
/dac1	Voltage-dependent anion channel 1	Up
orcn	Porcupine homolog (Drosophila)	Up
Glo1	Glyoxalase 1	Up
ln	Phospholamban	Up
Ablim2	Actin-binding LIM protein 2	Up
Clip1	CAP-GLY domain containing linker protein 1	Up
TC4S	Leukotriene C4 synthase	Up
Cybb	Cytochrome <i>b</i> -245, beta polypeptide	Up
Cmbl	Carboxymethylenebutenolidase like (<i>Pseudomonas</i>)	Up
Col11a2	Collagen, type XI, alpha 2	Up
l10rb	Interleukin 10 receptor, beta	Up
acsin1	Protein kinase C and casein kinase substrate in neurons 1	Up
Rasl11a	RAS-like, family 11, member A	Up
Calm1	Calmodulin 1	Up
Sirt5	Sirtuin 5 (silent mating type information regulation 2 homolog) 5 (<i>S. cerevisiae</i>)	Up
Rhbdd3	Rhomboid domain containing 3	Up
Ggt1	Gamma-glutamyltransferase 1	Up
/mgt2	Membrane magnesium transporter 2	Up
Ccdc90b	Coiled-coil domain containing 90B	Up
gf2	Insulin-like growth factor 2	Up
bxo5 Ppp2r3d	F-box protein 5 Protein phosphatase 2 (formerly 2A), regulatory	Up Up
(cne2	subunit B", delta Potassium voltage-gated channel, Isk-related subfamily, gene 2	Up
Vdrg4	N-myc downstream regulated gene 4	Up
/cp	Valosin = containing protein	Up
Stat5b	Signal transducer and activator of transcription 5B	Up
ry4	Trypsin 4	Up
dia6	Protein disulfide isomerase associated 6	Up
Spcs2	Signal peptidase complex subunit 2 homolog (<i>S. cerevisiae</i>)	Up
Spag7	Sperm-associated antigen 7	Up
Vie1	Malic enzyme 1, NADP(+)-dependent, cytosolic	Up
3C018507	cDNA sequence BC018507	Up

Table 1. (Continued)

Gene Symbol	Gene Name	Regulation
Cbx5	Chromobox homolog 5 (<i>Drosophila</i> HP1a)	Up
Ano5	Anoctamin 5	Up
Zfp61	Zinc finger protein 61	Up
Crlf1	Cytokine receptor-like factor 1	Up
Dkc1	Dyskeratosis congenita 1, dyskerin homolog (human)	Up
Aff4	AF4/FMR2 family, member 4	Up
Ptprb	Protein tyrosine phosphatase, receptor type, B	Up
Eif4 h	Eukaryotic translation initiation factor 4H	Up
Mapkapk5	MAP kinase-activated protein kinase 5	Up
Rpl18a	Ribosomal protein L18A	Up
Keg1	Kidney expressed gene 1	Up
Pcf11	Cleavage and polyadenylation factor subunit homolog (<i>S. cerevisiae</i>)	Up
Prr5	Proline rich 5 (renal)	Up
Rcn3	Reticulocalbin 3, EF-hand calcium binding domain	Up
Bola1 B2gat2	Bola-like 1 (<i>Escherichia coli</i>)	Up
B3gat3	Beta-1,3-glucuronyltransferase 3	Up
Got2	(glucuronosyltransferase I) Glutamate oxaloacetate transaminase 2, mitochondrial	Up
Copz1	Coatomer protein complex, subunit zeta 1	Up
Cox17	Cytochrome c oxidase, subunit XVII assembly	Up
00/17	protein homolog (yeast)	Οp
Sf3b3	Splicing factor 3b, subunit 3	Up
Lims2	LIM and senescent cell antigen-like domains 2	Up
Fam3a	Family with sequence similarity 3, member A	Up
Bphl	Biphenyl hydrolase-like (serine hydrolase, breast	Up
	epithelial mucin-associated antigen)	
Odam	Odontogenic, ameloblast associated	Up
Ly6 g6e	Lymphocyte antigen 6 complex, locus G6E	Up
Rps15	Ribosomal protein S15	Up
Far2	Fatty acyl CoA reductase 2	Up
Ndufc2	NADH dehydrogenase (ubiquinone) 1, subcomplex unknown, 2	Up
Crip1	Cysteine-rich protein 1 (intestinal)	Up
Rer1	RER1 retention in endoplasmic reticulum 1 homolog (<i>S. cerevisiae</i>)	Up
Stra13	Stimulated by retinoic acid 13	Up
Mpv17l2	MPV17 mitochondrial membrane protein-like 2	Up
Nfatc3	Nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 3	Up
Mcam	Melanoma cell adhesion molecule	Up
Gnb2l1	Guanine nucleotide binding protein (G protein), beta polypeptide 2 like 1	Up
Slc12a2	Solute carrier family 12, member 2	Up
Rps3	Ribosomal protein S3	Up
Cda	Cytidine deaminase	Up
Ccnd3	Cyclin D3	Up
Wipf1	WAS/WASL interacting protein family, member 1	Up
Dhps Chr1	Deoxyhypusine synthase	Up
Cbr1 Rapgef4	Carbonyl reductase 1 Rap guanine nucleotide exchange factor (GEF) 4	Up Up
Itgb2	Integrin beta 2	Up
Sgk1	Serum/glucocorticoid regulated kinase 1	Up Up
Phf17	PHD finger protein 17	Up
Mxd3	Max dimerization protein 3	Up Up
Car10	Carbonic anhydrase 10	Up
Commd10	COMM domain containing 10	Up
Uck2	Uridine–cytidine kinase 2	Up
Ccl6	Chemokine (C–C motif) ligand 6	Up

Table 1. (Continued)

Gene Symbol	Gene Name	Regulation
Neu1	Neuraminidase 1	Up
Zfp735	Zinc finger protein 735	Up
Anxa10	Annexin A10	Up
Meis2	Meis homeobox 2	Up
Mtx1	Metaxin 1	Up
Mtfp1	Mitochondrial fission process 1	Up
Kpna3	Karyopherin (importin) alpha 3	Up
Pole3	Polymerase (DNA directed), epsilon 3 (p17 subunit)	Up
Gstk1	Glutathione S-transferase kappa 1	Up
Trpm1	Transient receptor potential cation channel, subfamily M, member 1	Up
Baz2b	Bromodomain adjacent to zinc finger domain, 2B	Up
lgf1	Insulin-like growth factor 1	Up
Vps37a	Vacuolar protein sorting 37A (yeast)	Up
Atp5 g1	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit c1 (subunit 9)	Up
Prdm2	PR domain containing 2, with ZNF domain	Up
Ube2z	Ubiquitin-conjugating enzyme E2Z (putative)	Up
Srp72	Signal recognition particle 72	Up
Pim2	Proviral integration site 2	Up
Ccng1	Cyclin G1	Up
Ncaph2	Non-SMC condensin II complex, subunit H2	Down
Actc1	Actin, alpha, cardiac muscle 1	Down
Acaa2	Acetyl-Coenzyme A acyltransferase 2 (mitochondrial 3-oxoacyl-Coenzyme A thiolase)	Down
Pycrl	Pyrroline-5-carboxylate reductase like	Down
Tcfcp2l1	Transcription factor CP2-like 1	Down
Hmgcr	Transcribed locus	Down
Gab1	Growth factor receptor bound protein 2-associated protein 1	Down
Mtmr9	Myotubularin-related protein 9	Down
Uchl1	Ubiquitin carboxy-terminal hydrolase L1	Down
Tsn	Translin	Down
Uba3	Ubiquitin-like modifier activating enzyme 3	Down
Nsun4	NOL1/NOP2/Sun domain family, member 4	Down
Zbtb8a	Zinc finger and BTB domain containing 8a	Down

genes. Of the 16 downregulated in E17 fetal wounds, 18 pathways were distinguished (Fig. 3B). Eumelanin biosynthesis, transfer RNA (tRNA) charging, glial cell line-derived neurotrophic factor family ligand-receptor interactions, neurotrophin/ tropomyosin receptor kinase (TRK) signaling, and platelet-derived growth factor signaling comprise the top five pathways. From the 11 genes upregulated in the fetal wounds, 11 pathways were identified to be relevant to fetal wound healing (Fig. 3C). The top five functional pathways include dolichol and dolichyl phosphate biosynthesis, intrinsic prothrombin activation pathway, chronic myeloid leukemia signaling, IL-6 signaling, and atherosclerosis signaling.

DISCUSSION

(continued)

Fetal cutaneous wound healing is uniquely characterized by scarless repair with full restoration

Table 2.	Differentially expressed genes in embryonic day 17
fetal ver	sus adult wounds at twelve hours postwounding

Gene Symbol	Gene Name	Regulation
Nck1	Noncatalytic region of tyrosine kinase adaptor protein 1	Up
Fcer1 g	Fc receptor, IgE, high affinity I, gamma polypeptide	Up
Retn	Resistin	Up
Gnat2	Guanine nucleotide binding protein, alpha transducing 2	Up
Ufd1I	Ubiquitin fusion degradation 1 like	Up
Pnpla2	Patatin-like phospholipase domain-containing 2	Up
Adcy4	Adenylate cyclase 4	Up
Nol7	Nucleolar protein 7	Up
Ccl9	Chemokine (C-C motif) ligand 9	Up
Ccng1	Cyclin G1	Up
Gpn2	GPN-loop GTPase 2	Up
Guk1	Guanylate kinase 1	Up
Pon3	Paraoxonase 3	Up
Vps72	Vacuolar protein sorting 72 (yeast)	Up
Bysl	Bystin like	Up
Cidec	Cell death-inducing DFFA-like effector c	Up
EII2	Elongation factor RNA polymerase II 2	Up
Mapk9	Mitogen-activated protein kinase 9	Up
Prim1	DNA primase, p49 subunit	Up
lrq1	Immunoresponsive gene 1	Up
Cog5	Component of oligomeric golgi complex 5	Up
Gk5	Glycerol kinase 5 (putative)	Up
Thumpd1	THUMP domain-containing 1	Up
Mfge8	Milk fat globule-EGF factor 8 protein	Up
ll2rb	Interleukin-2 receptor, beta chain	Up
Dgcr14	DiGeorge syndrome critical region gene 14	Up
Lingo1	Leucine-rich repeat and Ig domain-containing 1	Up
S100a3	S100 calcium binding protein A3	Up
Cdc5l	Cell division cycle 5 like (<i>S. pombe</i>)	Up
Sepn1	Selenoprotein N, 1	Up
Rnf215	Ring finger protein 215	Up
Ywhaq	Tyrosine 3-monooxygenase/tryptophan 5-	Up
типац	monooxygenase activation protein, theta polypeptide	Οp
Rtf1	Rtf1, Paf1/RNA polymerase II complex component, homolog (<i>S. cerevisiae</i>)	Up

Inositol 1,3,4-triphosphate 5/6 kinase

Tyrosine kinase, nonreceptor, 2

Chemokine (C-C motif) ligand 27A

Left-right determination factor 1

Autophagy/beclin 1 regulator 1

Exocyst complex component 4

B cell translocation gene 4

Proteasome (prosome, macropain) activator subunit 4

Cleavage and polyadenylation specific factor 4-like

Nudix (nucleoside diphosphate-linked moiety X)-type

Microtubule-associated protein, RP/EB family,

Mago-nashi homolog, proliferation associated

Complement component (3b/4b) receptor 1 like

Family with sequence similarity 158, member A

Breast cancer anti-estrogen resistance 1

Ly6/neurotoxin 1

Gastrokine 2

member 1

motif 14

(Drosophila)

Olfactory receptor 315

Elastase, neutrophil expressed

Acid phosphatase 6, lysophosphatidic

ltpk1

Tnk2

Lynx1

Ccl27a

Gkn2

Psme4

Cpsf4l

Lefty1

Ambra1

Mapre1

Btg4

Bcar1

Exoc4

Nudt14

Magoh

0lfr315

Fam158a

Elane

Аср6

Cr11

Table 2. (Continued)

Gene Symbol	Gene Name	Regulation
Rbm39 Phf12	RNA binding motif protein 39 PHD finger protein 12	Up Up
Retn	Resistin	Up
Wdr18	WD repeat domain 18	Up
Aqr	Aquarius	Up
Clk2	CDC-like kinase 2	Up
Rtf1	Rtf1, Paf1/RNA polymerase II complex component,	Up
	homolog (<i>S. cerevisiae</i>)	
Txn1	Thioredoxin 1	Up
Robo4	Roundabout homolog 4 (<i>Drosophila</i>)	Up
Ptpra	Protein tyrosine phosphatase, receptor type, A	Up
Pex11a	Peroxisomal biogenesis factor 11 alpha	Up
Vegfb	Vascular endothelial growth factor B	Up
Pcbp2	Poly(rC) binding protein 2	Up
Rab11fip5	RAB11 family interacting protein 5 (class I)	Up
Rab8a	RAB8A, member RAS oncogene family	Up
Gapdhs	Glyceraldehyde-3-phosphate dehydrogenase, spermatogenic	Up
Olfr976	Olfactory receptor 976	Up
Tnfrsf1b	Tumor necrosis factor receptor superfamily, member 1b	Up
Capns2	Calpain, small subunit 2	Up
Inpp5d	Inositol polyphosphate-5-phosphatase D	Up
Tnpo1	Transportin 1	Up
Rpl35a	Ribosomal protein L35A	Up
Nfia	Nuclear factor I/A	Up
Ewsr1	Ewing sarcoma breakpoint region 1	Up
Lamp2	Lysosomal-associated membrane protein 2	Up
Gmcl11	Germ cell-less homolog 1 (<i>Drosophila</i>) like	Up
Krt84	Keratin 84	Up
Mbtd1	mbt domain-containing 1	Up
S100a8	S100 calcium binding protein A8 (calgranulin A)	Up
Txnrd2	Thioredoxin reductase 2	Up
Senp2	SUMO/sentrin specific peptidase 2	Up
Tpbpa	Trophoblast specific protein alpha	Up
Gm13309	Predicted gene 13309	Up
Csnk2a2	Casein kinase 2, alpha prime polypeptide	Up
Tmem56	Transmembrane protein 56	Up
Cndp2	CNDP dipeptidase 2 (metallopeptidase M20 family)	Up
Cisd2	CDGSH iron sulfur domain 2	Up
Rab11b	RAB11B, member RAS oncogene family	Up
Sephs1	Selenophosphate synthetase 1	Up
Cxcl15	Chemokine (C–X–C motif) ligand 15	Up
Def8	Differentially expressed in FDCP 8	Up
Pbxip1	Pre-B cell leukemia transcription factor-interacting	Up
Pacsin2	protein 1 Protein kinase C and casein kinase substrate in neurons 2	Up
Kif1b	Kinesin family member 1B	Up
Al316807	Expressed sequence Al316807	Up
ltk	IL2-inducible T cell kinase	Up
Oca2	Oculocutaneous albinism II	Up
Zscan12	Zinc finger and SCAN domain-containing 12	Up
Adcy6	Adenylate cyclase 6	Up
Gsn	Gelsolin	Up
Dok2	Docking protein 2	Up
Oxct1	3-Oxoacid CoA transferase 1	Up
Apoa1	Apolipoprotein A-I	Up
Ppp1r15a	Protein phosphatase 1, regulatory (inhibitor) subunit	Up
Zfp365	15A Zinc finger protein 365	Up

Up

Table 2. (Continued)

Gene Symbol	Gene Name	Regulation
Eci1	Enoyl-Coenzyme A delta isomerase 1	Up
Gtsf1	Gametocyte specific factor 1	Up
Pole4	Polymerase (DNA directed), epsilon 4 (p12 subunit)	Up
Trmt1	TRM1 tRNA methyltransferase 1 homolog (S. cerevisiae)	Up
Rere	Arginine-glutamic acid dipeptide (RE) repeats	Down
Pabpn1	Poly(A) binding protein, nuclear 1	Down
Nras	Neuroblastoma ras oncogene	Down
Dnajb11	DnaJ (Hsp40) homolog, subfamily B, member 11	Down
Tmcc3 Atg14	Transmembrane and coiled-coil domains 3 VATG14 autophagy related 14 homolog	Down Down
Fn1	(<i>S. cerevisiae</i>) Fibronectin 1	Down
Zfp706	Zinc finger protein 706	Down
Sparc	Secreted acidic cysteine rich glycoprotein	Down
Ptbp2	Polypyrimidine tract binding protein 2	Down
Exoc4	Exocyst complex component 4	Down
Tmem186	Transmembrane protein 186	Down
Snx4	Sorting nexin 4	Down
Ndfip1	Nedd4 family-interacting protein 1	Down
Rpl10	Ribosomal protein 10	Down
Ldha	Lactate dehydrogenase A	Down
Usp16	Ubiquitin-specific peptidase 16	Down
Rbmxrt	RNA binding motif protein, X chromosome retrogene	Down
Ube2i	Ubiquitin-conjugating enzyme E2I	Down
Psmd10	Proteasome (prosome, macropain) 26S subunit, non- ATPase, 10	Down
Dab2	Disabled homolog 2 (<i>Drosophila</i>)	Down
Cdo1	Cysteine dioxygenase 1, cytosolic	Down
Snta1	Syntrophin, acidic 1	Down
Rpl6	Ribosomal protein L6	Down
lng1	Inhibitor of growth family, member 1	Down
Ldhb	Lactate dehydrogenase B	Down
Rps5	Ribosomal protein S5	Down
Ddx3x	DEAD/H (Asp–Glu–Ala–Asp/His) box polypeptide 3, X-linked	Down
Gm7536	Predicted gene 7536	Down
Mmgt2	Membrane magnesium transporter 2	Down
Zfp706	Zinc finger protein 706	Down
Hsd3b7	Hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7	Down
Gm13072	tRNA methyltransferase 11–2 homolog pseudogene	Down
Asah1	N-acylsphingosine amidohydrolase 1	Down
Birc3 Atp5 g3	Baculoviral IAP repeat-containing 3 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit C3 (subunit 9)	Down Down
Crabp2	Cellular retinoic acid binding protein II	Down
Clec14a	C-type lectin domain family 14, member a	Down
Arhgap4	Rho GTPase activating protein 4	Down
lkbkb	Inhibitor of kappa B kinase beta	Down
Commd10	COMM domain containing 10	Down
Tdp1	Tyrosyl-DNA phosphodiesterase 1	Down
Myh3	Myosin, heavy polypeptide 3, skeletal muscle, embryonic	Down
Aarsd1	Alanyl-tRNA synthetase domain containing 1	Down
Fndc3b	Fibronectin type III domain containing 3B	Down
Kpna3	Karyopherin (importin) alpha 3	Down
Prl8a2	Prolactin family 8, subfamily a, member 2	Down
Yap1	Yes-associated protein 1	Down
Cyp4f39	Cytochrome P450, family 4, subfamily f,	Down
	polypeptide 39	

Table 2. (Continued)

Gene Symbol	Gene Name	Regulation
VgII3	Vestigial like 3 (Drosophila)	Down
Kpna1	Karyopherin (importin) alpha 1	Down
Hspa8	Heat shock protein 8	Down
Usp47	Ubiquitin specific peptidase 47	Down
B3gaInt2	UDP-GaINAc:betaGlcNAc beta 1,3- galactosaminyltransferase, polypeptide 2	Down
Mmp14	Matrix metallopeptidase 14 (membrane-inserted)	Down
Wnt4	Wingless-related MMTV integration site 4	Down
Kcnq4	Potassium voltage-gated channel, subfamily Q, member 4	Down
Rer1	RER1 retention in endoplasmic reticulum 1 homolog (<i>S. cerevisiae</i>)	Down
Tspan13	Tetraspanin 13	Down
Glud1	Glutamate dehydrogenase 1	Down
Mcmbp	MCM (minichromosome maintenance deficient) binding protein	Down
Ranbp1	RAN binding protein 1	Down
Gm12918	Predicted gene 12918	Down
P4ha2	Procollagen-proline, 2-oxoglutarate 4-dioxygenase (proline 4-hydroxylase), alpha II polypeptide	Down
Zfyve21	Zinc finger, FYVE domain containing 21	Down
Homer2	Homer homolog 2 (<i>Drosophila</i>)	Down
Fastkd2	FAST kinase domains 2	Down
Gapdh	Glyceraldehyde-3-phosphate dehydrogenase	Down
Ak3	Adenylate kinase 3	Down
Ppp3r1	Protein phosphatase 3, regulatory subunit B, alpha isoform (calcineurin B, type I)	Down
Rbp7	Retinol binding protein 7, cellular	Down
MIIt3	Translocated to, 3	Down
Gstk1	Glutathione S-transferase kappa 1	Down
Mpdu1	Mannose-P-dolichol utilization defect 1	Down
Ccnb1	Cyclin B1	Down
Ccbl1	Cysteine conjugate-beta lyase 1	Down
Son	Son DNA binding protein	Down
Ak4	Adenylate kinase 4	Down
Trim44 Lmf1	Tripartite motif-containing 44 Lipase maturation factor 1	Down Down
Kihi9	Kelch-like 9 (<i>Drosophila</i>)	Down
Snap23	Synaptosomal-associated protein 23	Down
Asb11	Ankyrin repeat and SOCS box-containing 11	Down
Mrps9	Mitochondrial ribosomal protein S9	Down
Zrsr2	Zinc finger (CCCH type), RNA binding motif and serine/arginine rich 2	Down
Tkt	Transketolase	Down
Mapk9	Mitogen-activated protein kinase 9	Down
Kcne2	Potassium voltage-gated channel, Isk-related subfamily, gene 2	Down
Sirt5	Sirtuin 5 (silent mating type information regulation 2 homolog) 5 (<i>S. cerevisiae</i>)	Down
Slc25a11	Solute carrier family 25 (mitochondrial carrier oxoglutarate carrier), member 11	Down
Fbln1	Fibulin 1	Down
Gjb6	Gap junction protein, beta 6	Down
Cnot10	CCR4-NOT transcription complex, subunit 10	Down
Rbm5	RNA binding motif protein 5	Down
Car2	Carbonic anhydrase 2	Down
Lad1	Ladinin	Down
S100a10	S100 calcium binding protein A10 (calpactin)	Down
Parm1	Prostate androgen-regulated mucin-like protein 1	Down
Dffb	DNA fragmentation factor, beta subunit	Down
G3bp2	GTPase-activating protein (SH3 domain) binding protein 2	Down

(continued)

Table 2. (Continued)

Gene Symbol	Gene Name	Regulation
Pcmt1	protein-L-isoaspartate (D-aspartate) <i>O</i> - methyltransferase 1	Down
CACNA1S	Calcium channel, voltage-dependent, L type, alpha 1S subunit	Down
Grpel2	GrpE-like 2, mitochondrial	Down
Stxbp2	Syntaxin binding protein 2	Down
Sf3b3	Splicing factor 3b, subunit 3	Down
Wdr13	WD repeat domain 13	Down
Tecr	Trans-2,3-enoyl-CoA reductase	Down
Ccnd3	Cyclin D3	Down
ltgb1	Integrin beta 1 (fibronectin receptor beta)	Down
Dab2	Disabled homolog 2 (Drosophila)	Down
Ankrd46	Ankyrin repeat domain 46	Down
Tmem45a	Transmembrane protein 45a	Down
Cacng1	Calcium channel, voltage-dependent, gamma subunit 1	Down
Aldoa	Aldolase A, fructose bisphosphate	Down
Ceacam13	Carcinoembryonic antigen-related cell adhesion molecule 13	Down
Dct	Dopachrome tautomerase	Down
Mrps27	Mitochondrial ribosomal protein S27	Down
Rcbtb2	Regulator of chromosome condensation (RCC1) and BTB (POZ) domain containing protein 2	Down
Lage3	L antigen family, member 3	Down
Tbc1d14	TBC1 domain family, member 14	Down
Bax	BCL2-associated X protein	Down
Adrb2	Adrenergic receptor, beta 2	Down
Rnf6	Ring finger protein (C3H2C3 type) 6	Down
Hspa5	Heat shock protein 5	Down
Mt2	Metallothionein 2	Down
Fam38a	Family with sequence similarity 38, member A	Down
Mat2a	Methionine adenosyltransferase II, alpha	Down
Ankle2	Ankyrin repeat and LEM domain containing 2	Down
Prrg4	Proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane)	Down
Tceal7	Transcription elongation factor A (SII)-like 7	Down
lsca1	Iron-sulfur cluster assembly 1 homolog (S. cerevisiae)	Down
Pole2	Polymerase (DNA directed), epsilon 2 (p59 subunit)	Down
Sema4a	Sema domain, immunoglobulin domain (lg), transmembrane domain (TM), and short cytoplasmic domain, (semaphorin) 4A	Down
Ccl6	Chemokine (C–C motif) ligand 6	Down
Smad1	MAD homolog 1 (<i>Drosophila</i>)	Down
lgf2bp1	Insulin-like growth factor 2 mRNA binding protein 1	Down
Wbp1	WW domain binding protein 1	Down
Cnot6	CCR4-NOT transcription complex, subunit 6	Down
Fchsd2	FCH and double SH3 domains 2	Down
Glcci1	Glucocorticoid induced transcript 1	Down
Col1a2	Collagen, type I, alpha 2	Down
tRNA tra	ansfer RNA	

tRNA, transfer RNA.

of normal dermal architecture. However, in adults, cutaneous wound healing is characterized by physiologic scarring. The goal of this study is to identify candidate pathways important to the scarless wound healing process that might also contribute to decreased scarring and regenerative healing in adult wounds. To achieve this goal, we performed microarray analysis on fetal and adult wounds at three different time points following wounding: 1, 12, and 24 h, to study the temporal activation or

Table 3. Differentially expressed genes in E17 fetal versus
adult wounds at twenty-four hours postwounding

Gene Symbol	Gene Name	Regulation
Frs2	Fibroblast growth factor receptor substrate 2	Up
Cdk12	Cyclin-dependent kinase 12	Up
Serinc3	Serine incorporator 3	Up
Dct	Dopachrome tautomerase	Up
Tars2	Threonyl-tRNA synthetase 2, mitochondrial (putative)	Up
Atg14	VATG14 autophagy related 14 homolog (<i>S. cerevisiae</i>)	Up
Rprd1a	Regulation of nuclear pre-mRNA domain containing 1A	Up
Pdgfra	Platelet-derived growth factor receptor, alpha polypeptide	Up
Mcfd2	Multiple coagulation factor deficiency 2	Up
Wfdc15b	WAP four-disulfide core domain 15B	Up
Ncaph	Non-SMC condensin I complex, subunit H	Up
Col1a1	Collagen, type I, alpha 1	Down
Pdzk1ip1	PDZK1 interacting protein 1	Down
Zcchc17	Zinc finger, CCHC domain containing 17	Down
Ctbp2	C-terminal binding protein 2	Down
Sec31a	Sec31 homolog A (S. cerevisiae)	Down
Rpl22	Ribosomal protein L22	Down
Slc46a2	Solute carrier family 46, member 2	Down
Krt8	Keratin 8	Down
lgf2bp2	Insulin-like growth factor 2 mRNA binding protein 2	Down
Dhdds	Dehydrodolichyl diphosphate synthase	Down
Abhd14b	Abhydrolase domain containing 14b	Down
Krt18	Keratin 18	Down
Arid4a	AT rich interactive domain 4A (RBP1-like)	Down
Necap2	NECAP endocytosis associated 2	Down
Txndc17	Thioredoxin domain containing 17	Down
Krt16	Keratin 16	Down

E, embryonic day.

suppression of relevant genes to regenerative healing. In addition, to better understand the functionality of observed differential gene regulation, we performed signal pathway analysis. This technique allowed us to identify gene cascades that are regulated during the different phases of wound healing.

Updated discoveries in differential gene expression

Using microarray analyses similar to those previously described by Colwell *et al.*, we found 191, 253, and 27 genes that were differentially expressed between E17 fetal and adult wounds at 1, 12, and 24 h postinjury, respectively. E17 was the earliest gestational age where scarless healing occurs,^{6,12} and that allowed reproducible and reliable survival after surgery. The results represent an overall increase from the 175, 134, and 19 differentially expressed genes, at each respective time point, which were identified in the previous study. With the updated gene database utilized in this new study, we were able to detect not only a more accurate but also expanded set of genes that may

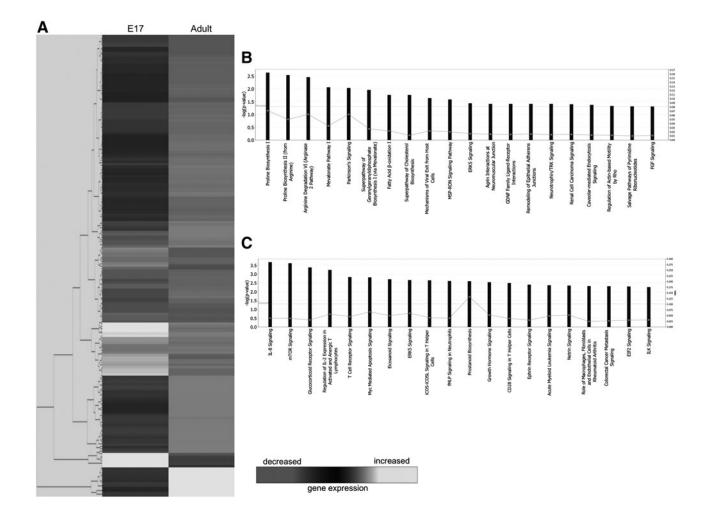


Figure 1. Microarray analysis of E17 fetal and adult wounds at 1 h postwounding. (A) Hierarchical clustering of differentially regulated genes from E17 fetal and adult wounds at 1 h postwounding. Individual genes are clustering according to the dendrogram on the *left*, and expression levels are represented in the heatmap on the *right. White/lighter gray* and *darker gray* indicate upregulation and downregulation, respectively. (B) Canonical pathways significantly enriched for among genes whose expression was significantly upregulated in E17 samples compared to adult. (C) Canonical pathways significantly enriched for among genes whose expression was significantly downregulated in E17 samples compared to adult. E, embryonic day.

serve as potential candidates for further study in scarless regeneration. Furthermore, improved pathway analysis abilities provided an objective, unified picture of associated functional pathways rather than solely individual genes, thereby further elucidating possible mechanisms in fetal wound healing. Interestingly, our results reveal some pathways that corroborate earlier hypotheses by Colwell *et al.*, such as the upregulation of protein ubiquitination in fetal wounds at 12 h, while providing additional context for understanding specific prior findings, such as the earlier discovery of greater expression of angiomotin and our new association of the intrinsic prothrombin activation pathway in fetal wound healing 24 h postinjury.

The phenotype of fetal scarless healing is skin regeneration that cannot be differentiated from unwounded skin. Collagen deposition is unchanged and dermal appendages are present after fetal scarless repair. Although our analyses did not solely focus on the phenotypic sequelae, we identified myriad genes and pathways that may play a role in regeneration. Below, we discuss in greater detail some of the most relevant pathways found to be differentially activated in E17 fetal versus adult wounds at various time points following injury. Although the potential roles of these pathways are discussed individually, they may interact together. Such potential interactions are yet unknown and not discussed in this article.

Proline biosynthesis I

The proline biosynthesis I pathway in humans cumulates with the synthesis of L-proline. Proline, a major component of collagen and hydroxyproline, found in only a few other proteins in vertebrates, is

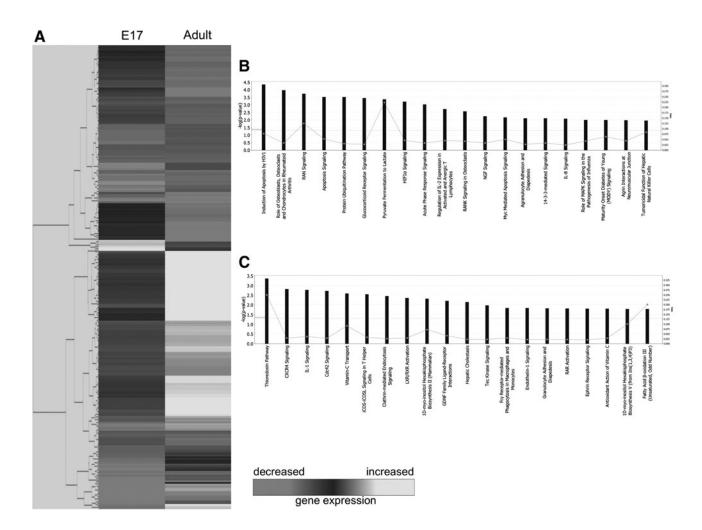


Figure 2. Microarray analysis of E17 fetal and adult wounds at 12 h postwounding. (A) Hierarchical clustering of differentially regulated genes from E17 fetal and adult wounds at 12 h postwounding. Individual genes are clustering according to the dendrogram on the *left*, and expression levels are represented in the heatmap on the *right. White/lighter gray* and *darker gray* indicate upregulation and downregulation, respectively. (B) Canonical pathways significantly enriched for among genes whose expression was significantly upregulated in E17 samples compared to adult. (C) Canonical pathways significantly enriched for among genes whose expression was significantly downregulated in E17 samples compared to adult.

essential to the stabilization of the collagen triple helix.¹⁴ As such, the proline biosynthetic pathway can correspondingly contribute to the modulation of wound healing and scar formation. An hour after wounding, our results demonstrated markedly increased activation of the proline biosynthesis pathway in E17 wounds compared to adult wounds. While traditionally excess collagen has been associated with a number of fibrotic disorders, such as lung cirrhosis, excessive scar formation, and cirrhosis of the liver,¹⁵ our results suggest that early upregulation of synthesis of a core component of collagen may actually contribute to scarless regeneration. This may be due to the effect of early upregulation of proline synthesis on the type of collagen deposited or the metabolism of collagen, especially as poly(L-proline) has been found to be an effective competitive inhibitor of vertebrate type I collagen prolyl 4-hydroxylase.¹⁶ However, the exact mechanism underlying this observation remains to be delineated and more studies are required to elucidate means by which early upregulation of proline synthesis contributes to scarless repair.

IL-8 signaling

In adult wounds, IL-8 has been shown to be primarily responsible for chemotaxis of neutrophils, which contributes to the inflammatory process.¹⁷ While IL-8 is known to stimulate inflammation in adult wound healing, its role in fetal wound healing remains unclear. Our results demonstrate downregulation of IL-8 signaling pathways in fetal wounds 1 h postinjury in comparison to adult wounds. This diminished IL-8 pathway activation corresponds to a diminished inflammatory

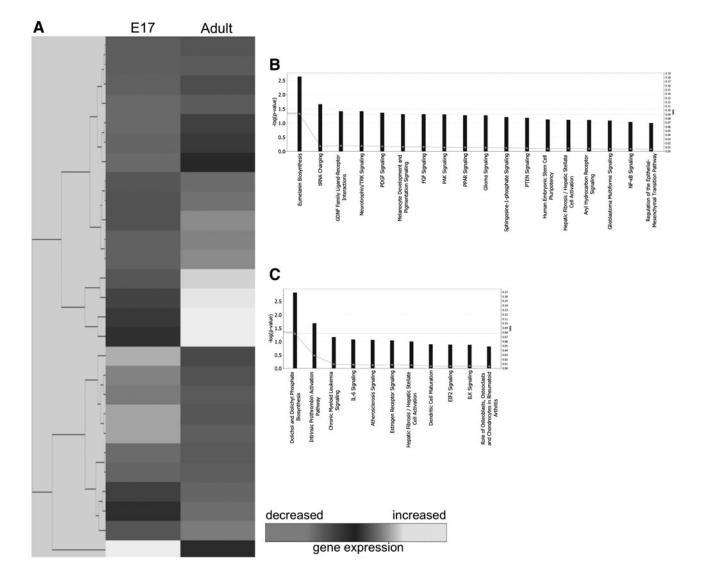


Figure 3. Microarray analysis of E17 fetal and adult wounds at 24 h postwounding. (A) Hierarchical clustering of differentially regulated genes from E17 fetal and adult wounds at 24 h postwounding. Individual genes are clustering according to the dendrogram on the *left*, and expression levels are represented in the heatmap on the *right. White/lighter gray* and *darker gray* indicate upregulation and downregulation, respectively. (B) Canonical pathways significantly enriched for among genes whose expression was significantly downregulated in E17 samples compared to adult. (C) Canonical pathways significantly upregulated in E17 samples compared to adult.

response commonly found in fetal wounds as well as the lack of polymorphic leukocyte infiltrate seen in scarless wound healing.¹⁸ Less inflammatory cell recruitment and diminished cytokine release have been suggested to cause decreased paracrine stimulation of extracellular matrix production, as well as increased fibroblast and epithelial cell migration and proliferation.¹⁷ Thus, this lack of inflammatory cascade amplification may be crucial to the formation of an environment conducive to scarless wound healing. Last, excessive IL-8 has been found in disease states characterized by excessive fibroplasia, such as pulmonary fibrosis¹⁹ and psoriasis,²⁰ further underscoring its contribution to profibrotic processes.

Apoptosis signaling

Apoptosis is critical to the normal progression of wound healing. Especially, as the wound matures, apoptosis plays an important role in the regulation of collagen synthesis and degradation through its regulation of fibroblast and endothelial cell death. Our results indicate that E17 fetal wounds demonstrated upregulation of apoptosis signaling pathways 12h following wounding in comparison to adult counterparts. This finding is supported by published studies demonstrating a role for increased induction of apoptosis in fibroblast populations as a possible mechanism for promotion of scarless wound healing.²¹ Furthermore, recent studies have suggested that decreased rates of apoptosis in mice may lead to the formation of hypertrophic scars and keloids.²² Taken together, these data suggest that initiation of apoptosis following injury may contribute to scarless wound healing through the programmed removal of damaged and unwanted cells at the site of injury.

CXCR4 pathway

CXCR4 encodes the receptor for stromal cellderived factor-1 (SDF-1), which acts as a potent chemoattractant for lymphocytes and monocytes²³ and is further responsible for the trafficking of circulating stem and progenitor cells to areas of tissue damage during cutaneous wound repair.^{24,25} SDF-1 is often induced by proinflammatory factors, such as tumor necrosis factor- α (TNF- α) and IL-1,²⁶ and has also been found in elevated levels in fibrotic disorders. Our results demonstrate upregulation of CXCR4 pathway in adult wounds 12h following injury in comparison to fetal wounds. This finding is in concordance with recent experimental data suggesting that the activation of SDF-1 signaling by proinflammatory factors recruits cells expressing CXCR4 such as fibrocytes, which contribute to the formation of hypertrophic scars.²⁶ The regulation of SDF-1 and CXCR4 thus provides an important ligand-receptor target for reducing scarring through inhibition of fibrocyte trafficking.

Neurotrophin/TRK signaling

Neurotrophin is synthesized and released by many skin cells, including keratinocytes, melanocytes, and fibroblasts.²⁷ In skin, neurotrophins help regulate innervation and act as prosurvival and growth factors. As such, they are believed to play an important role in regulating skin homeostasis in both physiologic and pathologic states. Data from our pathway analysis indicate that neurotrophin and its receptor TRK signaling are upregulated in adult wounds 24h postinjury in comparison to E17 fetal wounds, and as such may play an important role in scar formation. This finding is supported by studies showing that neurotrophin acts to recruit fibroblasts. In addition, injury and inflammation both act to enhance neurotrophin production, mainly by keratinocytes at the site of injury, supporting the role of neurotrophin signaling during wound repair.²⁸ Altered levels of neurotrophin signaling may thus be expected to contribute to adult scar formation, although no studies to date have looked at this relationship.

Intrinsic prothrombin activation pathway

Thrombin, which is produced from prothrombin, enhances the production of cytokines such as IL-1,

6, and 8, and TNF- α to upregulate the production of growth factors that in turn induce cellular proliferation at the site of injury.²⁹ This suggests that prothrombin, thrombin, and their receptors may be responsible for modulating the various phases of scar formation. Our microarray results indicate that the intrinsic prothrombin activation pathway is upregulated in fetal wounds 24 h following wounding in comparison to the adult. Increased levels of thrombin and prothrombin have been found in old scars, suggesting that these proteins play an extended role in wound healing beyond the more immediate coagulation following injury. The unexpected result that this pathway is more active during scarless repair suggests an unknown function during extracellular matrix formation and remodeling. Interestingly, studies have found that the administration of thrombin peptides to incisional wounds in rats accelerates normal wound healing and enhances neovascularization.³⁰ However, more studies are required to delineate the exact mechanisms by which differential activation of this pathway contributes to scarring versus regeneration.

INNOVATION

Using functional pathway analysis, we demonstrated differential pathway regulation in E17 fetal wounds that undergo scarless regeneration following injury. Due to the large amount of data generated by pathway analysis, we have limited our discussion to pathways known to be particularly relevant to wound healing. We believe that identifying these pathways most likely to be proregenerative or profibrotic provides a valuable foundation for further experimental study investigating mechanisms underlying the regenerative ability of early embryonic skin, with possible applications to other organ systems.

ACKNOWLEDGMENTS AND FUNDING SOURCES

This work was supported, in part, by a grant from NIH grant R01 GM087609 (to H.P.L.), a Gift from Ingrid Lai and Bill Shu in honor of Anthony Shu (to H.P.L.), the Hagey Laboratory for Pediatric Regenerative Medicine and Children's Surgical Research Program (to M.T.L. and H.P.L.), and NIH grant R01 GM116892 (to M.T.L. and H.P.L.). Additional funding was provided by the American Society of Maxillofacial Surgeons (ASMS)/Maxillofacial Surgeons Foundation (MSF) Research Grant Award (to M.S.H., M.T.L., and H.P.L.), the Sarnoff Cardiovascular Research Foundation (to W.X.H.), the California Institute for Regenerative Medicine (CIRM) Clinical Fellow training grant TG2-01159 (to M.S.H.), and the Stanford University School of Medicine Transplant and Tissue Engineering Fellowship Award (to M.S.H.).

AUTHOR DISCLOSURE AND GHOSTWRITING

No competing financial interests exist. The content of this article was expressly written by the authors listed. No ghostwriters were used to write this article.

ABOUT THE AUTHORS

Michael S. Hu, MD, MPH, MS, is a postdoctoral fellow at Stanford pursuing a career in plastic surgery. Wan Xing Hong, MD, MS, is a general surgery resident. Michael Januszyk, MD, PhD, Anna Luan, MD, Zeshaan N. Maan, MD, Shawn Moshrefi, MD, and Ruth Tevlin, MB, BCh, BAO, MRCSI, are plastic surgery residents. Graham G. Walmsley, MD, PhD, is a stem cell scientist working in venture capital. Derrick C. Wan, MD, is

KEY FINDINGS

- We identified 471 differentially expressed genes between fetal and adult wounds.
- Enrichment analysis revealed 109 signaling pathways related to fetal scarless repair.
- Twenty signaling pathways were upregulated and downregulated at 1 and 12 h after injury.
- Twenty-four hours after injury, 18 signaling pathways were upregulated in adult wounds and 11 pathways were downregulated compared to fetal wounds.

an associate professor of plastic surgery. **Geoffrey C. Gurtner, MD**, and **Michael T. Longaker, MD**, **MBA** are professors of surgery. **H. Peter Lorenz**, **MD** is a Professor and Chief of Plastic Surgery at the Lucile Packard Children's Hospital at Stanford. His clinical interests are in craniofacial surgery, pediatric plastic surgery, and reconstructive and cosmetic surgery. His laboratory group is studying mechanisms underlying scarless skin healing and the function of progenitor cells during wound repair/ regeneration.

REFERENCES

- Rowlatt U. Intrauterine wound healing in a 20 week human fetus. Virchows Arch A Pathol Anat Histol 1979;381:353–361.
- Lorenz HP, Longaker MT, Perkocha LA, Jennings RW, Harrison MR, Adzick NS. Scarless wound repair: a human fetal skin model. Development 1992;114:253–259.
- Lorenz HP, Whitby DJ, Longaker MT, Adzick NS. Fetal wound healing. The ontogeny of scar formation in the non-human primate. Ann Surg 1993; 217:391–396.
- Beanes SR, Hu FY, Soo C, Dang CM, Urata M, Ting K, et al. Confocal microscopic analysis of scarless repair in the fetal rat: defining the transition. Plast Reconstr Surg 2002;109:160–170.
- Buchanan EP, Longaker MT, Lorenz HP. Fetal skin wound healing. Adv Clin Chem 2009;48:137–161.
- Colwell AS, Longaker MT, Peter Lorenz H. Identification of differentially regulated genes in fetal wounds during regenerative repair. Wound Repair Regen 2008;16:450–459.
- 7. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999;341:738–746.
- 8. Lo DD, Zimmermann AS, Nauta A, Longaker MT, Lorenz HP. Scarless fetal skin wound healing

update. Birth Defects Res C Embryo Today 2012; 96:237-247.

- Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 2008;453: 314–321.
- Shih B, Garside E, McGrouther DA, Bayat A. Molecular dissection of abnormal wound healing processes resulting in keloid disease. Wound Repair Regen 2010;18:139–153.
- Walmsley GG, Hu MS, Hong WX, Maan ZN, Lorenz HP, Longaker MT. A mouse fetal skin model of scarless wound repair. J Vis Exp 2015:52297.
- Colwell AS, Krummel TM, Longaker MT, Lorenz HP. An in vivo mouse excisional wound model of scarless healing. Plast Reconstr Surg 2006;117: 2292–2296.
- Hu MS, Januszyk M, Hong WX, Walmsley GG, Zielins ER, Atashroo DA, et al. Gene expression in fetal murine keratinocytes and fibroblasts. J Surg Res 2014;190:344–357.
- Prockop DJ, Kivirikko KI, Tuderman L, Guzman NA. The biosynthesis of collagen and its disorders (first of two parts). N Engl J Med 1979;301:13–23.
- Zimny M, Klosterhalfen B, Conze J, Hamacher K, Fehler S, Schumpelick V, et al. Uptake of cis-4-[18

F]fluoro-L-proline in scar formation: a marker of collagen synthesis? Nucl Med Commun 2002;23: 695–698.

- Myllyharju J, Kivirikko KI. Identification of a novel proline-rich peptide-binding domain in prolyl 4hydroxylase. EMBO J 1999;18:306–312.
- Liechty KW, Crombleholme TM, Cass DL, Martin B, Adzick NS. Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J Surg Res 1998;77:80–84.
- Hu MS, Maan ZN, Wu JC, Rennert RC, Hong WX, Lai TS, et al. Tissue engineering and regenerative repair in wound healing. Ann Biomed Eng 2014; 42:1494–1507.
- Vaillant P, Menard O, Vignaud JM, Martinet N, Martinet Y. The role of cytokines in human lung fibrosis. Monaldi Arch Chest Dis 1996;51:145–152.
- Konstantinova NV, Duong DM, Remenyik E, Hazarika P, Chuang A, Duvic M. Interleukin-8 is induced in skin equivalents and is highest in those derived from psoriatic fibroblasts. J Invest Dermatol 1996;107:615–621.
- Abe M, Yokoyama Y, Ishikawa O. A possible mechanism of basic fibroblast growth factorpromoted scarless wound healing: the induction

of myofibroblast apoptosis. Eur J Dermatol 2012; 22:46–53.

- Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang El, Loh SA, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 2007;21:3250–3261.
- Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996;184:1101–1109.
- Zong ZW, Cheng TM, Su YP, Ran XZ, Shen Y, Li N, et al. Recruitment of transplanted dermal multipotent stem cells to sites of injury in rats with combined radiation and wound injury by interaction of SDF-1 and CXCR4. Radiat Res 2008;170: 444–450.
- Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients

through HIF-1 induction of SDF-1. Nat Med 2004; 10:858-864.

- Ding J, Hori K, Zhang R, Marcoux Y, Honardoust D, Shankowsky HA, et al. Stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 in the formation of postburn hypertrophic scar (HTS). Wound Repair Regen 2011;19:568–578.
- Palazzo E, Marconi A, Truzzi F, Dallaglio K, Petrachi T, Humbert P, et al. Role of neurotrophins on dermal fibroblast survival and differentiation. J Cell Physiol 2012;227:1017–1025.
- Peters EM, Raap U, Welker P, Tanaka A, Matsuda H, Pavlovic-Masnicosa S, et al. Neurotrophins act as neuroendocrine regulators of skin homeostasis in health and disease. Horm Metab Res 2007;39: 110–124.
- Artuc M, Hermes B, Algermissen B, Henz BM. Expression of prothrombin, thrombin and its receptors in human scars. Exp Dermatol 2006;15:523–529.

 Carney DH, Mann R, Redin WR, Pernia SD, Berry D, Heggers JP, et al. Enhancement of incisional wound healing and neovascularization in normal rats by thrombin and synthetic thrombin receptoractivating peptides. J Clin Invest 1992;89:1469–1477.

Abbreviations and Acronyms

- $\begin{array}{l} {\rm cDNA} = {\rm complementary\ DNA} \\ {\rm CXCR} = {\rm CXC\ chemokine\ receptor} \\ {\rm E} = {\rm embryonic\ day} \\ {\rm IL} = {\rm interleukin} \\ {\rm NIH} = {\rm National\ Institutes\ of\ Health} \end{array}$
- PBS = phosphate-buffered saline
- SAM = significance analysis of microarrays
- SDF-1 = stromal cell-derived factor-1
- $TNF-\alpha = tumor necrosis factor-\alpha$
- TRK = tropomyosin receptor kinase
- tRNA = transfer RNA