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Abstract

Segmentation, denoising, and partial volume correction (PVC) are three major processes in the 

quantification of uptake regions in post-reconstruction PET images. These problems are 

conventionally addressed by independent steps. In this study, we hypothesize that these three 

processes are dependent; therefore, jointly solving them can provide optimal support for 

quantification of the PET images. To achieve this, we utilize interactions among these processes 

when designing solutions for each challenge. We also demonstrate that segmentation can help in 

denoising and PVC by locally constraining the smoothness and correction criteria. For denoising, 

we adapt generalized Anscombe transformation to Gaussianize the multiplicative noise followed 

by a new adaptive smoothing algorithm called regional mean denoising. For PVC, we propose a 
volume consistency-based iterative voxel-based correction algorithm in which denoised and 

delineated PET images guide the correction process during each iteration precisely. For PET 

image segmentation, we use affinity propagation (AP)-based iterative clustering method that helps 

the integration of PVC and denoising algorithms into the delineation process. Qualitative and 

quantitative results, obtained from phantoms, clinical, and pre-clinical data, show that the 

proposed framework provides an improved and joint solution for segmentation, denoising, and 

partial volume correction.
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1. Introduction

Positron emission tomography (PET) has been extensively used in oncology applications. It 

provides diagnostic and therapeutic interpretations by measuring tracer activity, which could 

be related to various physiological and pathological functionalities. It has been used for 

other diseases, including neurological disorders, infection, and inflammation. In radiation 

oncology applications, for instance, PET helps localization and staging of the tumors. PET 

images have high contrast, but low spatial resolution compared to magnetic resonance 

imaging (MRI) and computed tomography (CT). While low spatial resolution leads to 

inevitable partial volume effect, the reconstruction process of the PET images includes 

inherent multiplicative noise (i.e., image dependent) (Kirov et al. (2008); Chatziioannou and 

Dahlbom (1994)). Partial volume effect (PVE) is one of the major sources of information 

loss in PET images due to relatively poor spatial resolution. Therefore, there is a strong need 

for correcting partial volume before quantification of lesion metabolism and physiology. 

Similarly, noise removal methods (i.e., denoising) are vital because they enhance both 

quantitative metrics and visual quality for better diagnostic decisions. For image-based 

quantitative metrics, boundary delineation of the PET lesions is of utmost importance. For 

instance, disease severity and therapy response assessment require metabolic tumor volume 

(MTV) to be calculated on the delineated regions. Moreover, signal strength-based metrics 

such as the maximum and mean standardized uptake value (SUVmax and SUVmean, 

respectively) are routinely used for cancer staging, tumor characterization, and therapy 

response assessment.

Many effective solutions have been proposed in the literature to address these three 

problems. These methods mainly fall under two categories depending on their input: 

reconstruction-based and post-reconstruction methods. Reconstruction methods correct the 

PET signal during image generation, usually with maximum a posteriori estimation, and 

incorporation of anatomical information from CT imaging (Cheng-Liao and Qi (2011); 

Comtat et al. (2002); Kazantsev et al. (2011); Baete et al. (2004b,a); Somayajula et al. 

(2011); Chan et al. (2009)). Under most circumstances, images are more accessible than 
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original scanner signal, therefore in this paper, we focus on the post-reconstruction 

techniques in addressing these three challenges. Most post-reconstruction based methods 

either treat these three problems independently, or by solving two of them at simultaneously 

(such as PVC and denoising (Boussion et al. (2009))). Some works have also exploited the 

relationship between voxel clusters and imaging markers for specific applications such as 

kinetics parameters for dynamic myocardial perfusion PET (Mohy ud Din et al. (2015b)). 

However, to the best of our knowledge, no previous post-reconstruction methods have been 

applied for general purpose PET image processing to address all these three tasks jointly by 

using their interdependent associations. We hypothesize that solving these three tasks jointly 

will improve each task’s individual performance as well as final quantitative evaluations of 

the PET images. Our hypothesis stems from the following facts:

Fact 1: Noise degrades the performance of image segmentation (Foster et al. 

(2014a)),

Fact 2: Incorporation of object information (through delineation) into the denoising 

process improves denoising performance (Xu et al. (2014)),

Fact 3: Post-reconstruction PVC approaches amplifies noise (Rousset et al. (1998)),

Fact 4: Incorporation of segmented lesions into PVC improves accuracy of 

quantification as boundary information helps in determining the amount of spillover 

in PET images (Zaidi et al. (2006)),

Fact 5: PVC in noisy images could lead to erroneous inferences about uptake in 

certain regions (Soret et al. (2007)).

Background and Related Work

1.1. Noise—Noise in PET images follows non-Gaussian distribution (Bagci and Mollura 

(2013)). Noise reduces the sensitivity of image-based quantitative metrics due to distortion 

in PET image appearance. Hence, denoising is a necessary step for improving quantitative 

evaluations of PET images. There are reconstruction and post-reconstruction based 

denoising methods in the literature. In this paper, we confine ourselves into post-

reconstruction approaches only. The existing post-reconstruction methods for denoising PET 

images can be categorized into three classes: filter-based, patch-based, and statistics-based. 

Details of these categories are the following.

Most popular filter-based approaches are Gaussian smoothing, adaptive diffusion filtering 

(Tauber et al. (2011); Xia et al. (2015)), and filtering in image transform domain with 

support by anatomical information (Turkheimer et al. (2008)). None of these methods 

provide optimal denoising of PET images because Gaussian filtering often leads to 

information loss due to excessive blurring. Although adaptive diffusion filtering is 

considered capable of partially solving heavy blurring problem in anatomical images, it is 

not highly effective for PET images since the necessary structural information about 

diffusion process is limited by PET’s low resolution. Incorporation of anatomical 

information (through corresponding CT or MRI tissue segmentation) can help in defining 

regional homogeneities for the purpose of denoising, but it may also create artifacts. It is 

because anatomical-functional correspondence does not always hold for all voxel locations 
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(Bagci et al. (2013a); Kramer-Marek et al. (2012); Bagci et al. (2013b)). Note that this issue 

is different from the voxel correspondence problem, which can be solved by image 

registration algorithms (Bagci et al. (2013a); Bagci and Bai (2007)).

Statistics-based methods, on the other hand, build a deterministic relationship between noise 

and statistical measurements. Yet, strong image structures such as ridges, edges, and textures 

can have negative effects on the statistical estimations. Among statistics-based denoising 

approaches, the-state-of-the-art method is the soft-thresholding approach (Bagci and 

Mollura (2013)). Although noise distribution modeling in (Bagci and Mollura (2013)) is 

more realistic than other methods, considering PET noise as sole Poisson or Gaussian 

distribution is still sub-optimal, and some recent reconstruction-based approaches assume 

more realistic assumption of Poisson Noise. Lastly, patch-based methods have gathered a lot 

of interests due to their effectiveness in simultaneously estimating noise level and denoising. 

For instance, non-local means based denoising strategy (Buades et al. (2005)) is shown to 

preserve structures, even for images with low signal-to-noise-ratio (SNR) by considering 

global similarity measurement. Some works used non-local means method for PET image 

denoising, such as including temporal neighbor patches from dynamic PET images (Dutta et 

al. (2013)), patch-based denoising on the reconstruction process (Wang and Qi (2012)), and 

making use of CT anatomical priors (Chan et al. (2014)). Our method is significantly 

different from (Dutta et al. (2013)) because here in this study we aim to denoise static PET 

images and without the need for corresponding CT images as prior. Further, we modify the 

original non-local means method by considering the characteristics of PET images. Wang’s 

method (Wang and Qi (2012)), on the other hand, belongs to reconstruction-based denoising 

methods.

In the nuclear medicine imaging field, detailed noise characteristics of PET images are still 

open to debate and need to be carefully considered when choosing/designing an appropriate 

denoising approach. It is important to note that in the Sinogram domain (i.e. projection 

space), noise statistics are well-modeled by a Poisson distribution. With tractable 

optimization of Poisson likelihoods, reconstruction-based approaches have been proposed in 

the literature. It is also well-known that in a high count PET image, the noise distribution 

can be well approximated by a Gaussian based on the Central Limit Theorem. However, the 

opposite is not true for low count PET image. Several studies (Boulanger et al. (2010); 

Zhang et al. (2008); Salmon et al. (2014)), including our earlier technical paper in (Bagci 

and Mollura (2013); Mansoor et al. (2014)), propose to use variance stabilizing transform 

(VST) (Anscombe (1948)) to Gaussianize the non-Gaussian noise (purely Poisson was 

assumed) in PET images before noise minimization procedure. The motivation in such 

methods is to model noise with a more realistic noise models. In this work, we improve our 

earlier assumption of purely Poisson noise model by proposing a more realistic and 

advanced mixed Poisson-Gaussian model. This is mainly due to the observations and the 

facts of the nature of PET imaging where both Poisson and enhancing additive noise by PVC 

have been observed. Next, we develop a new patch-based denoising algorithm called 

“regional means denoising”, pertaining to the family of non-local means denoising methods.

1.2. Segmentation—PET image segmentation aims at separating and delineating the PET 

image into different uptake regions. Several methods have been proposed for PET image 
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segmentation. Among thresholding-based methods (fixed, adaptive, and iterative), iterative-

based thresholding approaches are most intuitive ones (van Dalen et al. (2007)). These 

methods are easy to implement but difficult to generalize due to lack of information on local 

intensity distribution and sub-optimal thresholding levels. Alternatively, more sophisticated 

approaches have been proposed such as machine learning techniques that exploit local 

appearance: Gaussian mixture model and supervised/unsupervised clustering methods 

(Foster et al. (2014b); Kerhet et al. (2009)) belong to this category. For defining a specific 

region of interest, region growing (Li et al. (2008)), level-set (Hsu et al. (2008)), and graph-

cut (Bagci et al. (2011)) are some of the most popular region and boundary-based methods. 

Lately, co-segmentation (joint segmentation) methods that incorporate anatomical 

information from CT and/or MR have been introduced to further promote region definition 

accuracy (Bagci et al. (2013b); Song et al. (2013); Xu et al. (2015)). Readers can refer to a 

recent review paper (Foster et al. (2014a)) for a comprehensive comparison of the PET 

image segmentation methods. Recent development of deep learning has enabled more 

robust, efficient, and accurate segmentation for many modalities, and most state-of-the-art 

techniques in segmentation are now based on deep convolutional neural networks. For 

example, the best performing methods for retinal vessel segmentation from fundus image 

(Liskowski and Krawiec (2016)), lung segmentation from CT image (Harrison et al. (2017)), 

and brain MR image segmentation (Akkus et al. (2017)) are mostly based on deep learning. 

However, PET image features unique characteristics of low resolution, relatively high 

contrast, and limited contextual information. Therefore, so far, only few studies used deep 

learning for PET image segmentation (Ibragimov et al. (2016)), and deep learning based 

approach has not been shown to be a significantly superior choice. In the current work, we 

target at delineating the boundaries between uptake regions across the entire image so that 

not only the high uptake regions, but other regions can also be used as prior information for 

both PVC and denoising processes.

1.3. Partial volume effect (PVE)—PVE is the change in apparent activity when an 

object partially occupies the volume of the imaging instrument both in space and 

time(Erlandsson et al. (2012)). It is a major hurdle particularly for clinical assessment of 

PET images where MTV is often needed to be derived from the images. The challenges for 

correcting PVE are posed by noise and unknown uptake region definition. Typical PVC 

methods rely on one or more assumptions for the point spread function (PSF) of the imaging 

device as well as PET noise characteristics (Erlandsson et al. (2012)). Note that the 

reconstructed PET image can be described as a convolution of the true activity distribution 

with the PSF because the PSF corresponds to the image of a point source and characterizes 

the spatial resolution. Thus, the ultimate goal in PVC is to reverse the effects of the system 

PSF in a PET image, leading to the restoration of true activity distributions. This inverse 

operation is called deconvolution, which can be employed either in image or frequency 

space. It is also important to note that the majority of PET images are reconstructed using an 

iterative method based on a Poisson likelihood model such as the frequently used OSEM 

algorithm. These methods produce images that are non-linear functions of the high-

dimensional data. Conventionally, EM (expectation maximization) based iterative algorithms 

have been used to characterize the mean and covariance of PET images. Due to non-

linearity, these iterative methods do not have a point spread function and they map the 
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Poisson data into images where noise distribution is no longer truly Poisson (Barrett et al. 

(1994); Xu and Tsui (2009); Ding et al. (2016)). This information, in fact, also supports our 

observation and claim about the mixed nature of the Poisson and Gaussian.

Deconvolution-based PVC methods are vastly common in the literature (Erlandsson et al. 

(2012); Yang et al. (1996)). Although these methods depend solely on PET data and 

promising results are obtained, noise amplification is inevitable, and ringing artifacts can 

appear in the vicinity of sharp boundaries. In order to address noise amplification problems, 

there have been many improved deconvolution-based methods presented. For instance, 

deconvolution methods such as Van Cittert, Richardson-Lucy, and MLEM (Kirov et al. 

(2008); Tohka and Reilhac (2008)), iteratively solve the restoration problem by better 

controlling the effects of noise. Noise can also be controlled for some special tasks with 

iterative deconvolution scheme (Mohy-ud Din et al. (2014); Mohy ud Din et al. (2015a); 

Naqa et al. (2006)). Nevertheless, post-processing smoothing via a proper denoising method 

remains a necessity in these methods due to unknown levels of PET noise. More recently, 

joint use of PET image with its high resolution anatomical correspondence (CT or MRI) is 

considered as an effective way for solving PVC problem (Thomas et al. (2011); Chan et al. 

(2013)). The general aim in such methods is to infer structural information from anatomical 

images as a prior information for stabilizing the problem. These approaches require 

anatomical images to be segmented accurately, which is in itself a difficult and ill-posed 

problem to solve. Moreover, segmented regions are often considered to be functionally 

homogeneous; however, this assumption does not always hold, either.

Regarding the mostly used PVC methods, it is worth noting the seminal contribution of 

Hoffman et al (Hoffman et al. (1979)), one of the first works in PVC, where authors define a 

parameter called Recovery Coefficient to reflect the apparent activity concentration of an 

object divided by its true concentration (Gallivanone et al. (2011)). Basically, for objects of 

different sizes and shapes scanned in a PET system, different recovery coefficient 

parameters are recorded similar to most look-up table approaches. The recovery coefficient 

method is then further improved for handling multiple regions so that not only spill-out, but 

also spill-in effects can be considered in recovery coefficient definition. This improved 

method is called Geometric Transfer Matrix (GTM) (Rousset et al. (1998)). Main 

shortcomings of the recovery coefficient and GTM methods stem from the ineffective use of 

local structural information, which eventually causes sub-optimal recovery of true activity 

distribution. Interested readers can find a review article on PVC methods, including both 

reconstruction and post-reconstruction approaches, and their detailed comparisons in 

(Erlandsson et al. (2012)).

As can be inferred from relevant works, denoising, segmentation, and PVC are closely 

related to each other such that the improvement of one could simplify and/or improve the 

solution of the other. However, to the best of our knowledge, there is no study solving these 

three important problems jointly, and in the same setting by utilizing their complementary 

strengths. Herein, we design an iterative approach for solving PET image segmentation, 

denoising, and PVC with the following steps:
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• Step 1: Stabilize mixed Poisson-Gaussian noise by generalized Anscombe 

transformation (GAT),

• Step 2: Estimate boundary of local uptake regions using affinity propagation 

(AP) clustering,

• Step 3: Denoise transformed PET images using “regional means denoising”,

• Step 4: Employ PVC by utilizing the region definition from segmentation 

solutions, and

• Step 5: Conduct optimal inverse GAT (IGAT) to transform the enhanced PET 

images into original intensity domain (SUV).

Steps (2-4) are performed in an iterative manner so that they can mutually benefit from each 

other. A flowchart of the proposed steps 1-5 is shown in Fig. 1. Preliminary idea and the 

initial results of the proposed method were presented at MICCAI 2014 (Xu et al. (2014)). In 

the next sections, we present our novel joint solution framework with validation and 

evaluation on large data sets including phantom, clinical, and pre-clinical PET imaging data.

Summary of our contributions

Our proposed system is novel as a whole. To our best of knowledge, our attempt is the first 

that jointly conducts segmentation, denoising, and partial volume correction (PVC) in an 

iterative manner. For each component (segmentation, denoising, and PVC) of the unified 

algorithm, we also have either incremental novelties or totally new approaches: for 

denoising, we have improved the current state of the denoising algorithms with a new noise 

model, which is more realistic and advance model consisting of Gaussian and Poisson. 

Nonlocal means based algorithm was modified and adapted to general PET image 

processing framework and the proposed regional means denoising method has been shown 

to be very effective with the cost of increased computational complexity. For PVC, we 

propose a totally new algorithm inspired by RBV algorithm (i.e., region based voxel-wise) 

which has been further improved through appropriate region definitions from segmentation 

and denoising steps. For segmentation component, we do not propose any new algorithm but 

show the necessary algorithmic background how PET image segmentation method can be 

integrated into the joint solution platform seamlessly. In the current setting, we use our 

recently published method of adapted affinity propagation algorithm (Foster et al. (2014b)), 

which allows iterative update of denoising and PVC algorithms. One another purpose of this 

study is to assess the extent to which these factors are affecting quantification process from 

PET images. Surprisingly, there has been no detailed investigation of the joint solution for 

PET image post-processing in the literature. We have conducted several different 

experiments consisting of phantoms, pre-clinical, and clinical PET scans. For clinical scans, 

we have used both PET/CT and PET/MRI. Our extensive evaluations prove the usefulness of 

joint solution for PET post-processing both in visual evaluation and quantification.

2. Methods

Methods pertaining to the proposed framework (see Fig. 1) are described below in details.
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Step 1 and 5: Generalized Anscombe Transformation and its Optimal Inverse

Additive white noise (Gaussian) is the basic hypothesis for most denoising methods 

regardless of the image modality. Gaussian noise is usually suppressed by averaging 

operation due to the assumption that the noise at different spatial locations are considered 

independent and identically distributed (i.e., Gaussian assumption). For non-Gaussian noise 

distributions, either new methods need to be developed, or non-Gaussian noise should be 

transformed into a more tractable Gaussian model.

In PET images, noise is more complex with multiple sources: while true signal, random and 

scatter coincidences during photon counting follows Poisson distribution (Chatziioannou 

and Dahlbom (1994); Bagci and Mollura (2013); Zaidi et al. (2006)), partial volume 

correction and other image reconstruction methods introduce additive white noise (Zaidi et 

al. (2006); Turkheimer et al. (2008)). Therefore, a mixed Poisson-Gaussian noise assumption 

is more realistic than either model alone. In practice, it will be tractable to transform the 

non-Gaussian noise into a Gaussian space in spite of explicitly modeling the unknown 

distribution of mixed Poisson-Gaussian noise (Anscombe (1948)). For this purpose, we 

adopt GAT and it’s optimal inverse, which have been shown to be optimal when 

transforming multiplicative noise into approximately Gaussian (Makitalo and Foi (2013)), as 

also indicated in our earlier study (Mansoor et al. (2014)).

GAT (Makitalo and Foi (2013)) is used for balancing the noise variation under the non-

Gaussian noise assumption as follows. Signals are modeled as Poisson variables corrupted 

by additive white (i.e., Gaussian) noise. Assuming that p denotes a Poisson distribution (i.e., 

p ∼ P(λ)) with underlying expected value (and variance) λ, and n denotes the Gaussian noise 

with mean μ and standard deviation σ (i.e., n ∼ 𝒩(μ, σ2)), then the observed PET image 

intensities are defined as:

x = αp + n, (1)

where α denotes the scale term accounting for the relationship between observed pixel data 

and the presumed Poisson model. Note that here we assume a continuous approximation of 

Poisson model when applying to images. For an observed intensity x, stabilization of the 

noise can then be achieved by GAT as follows:

GAT(x) =
2
α αx + 3

8α2 + α2 − αμ, x > − 3
8α − σ2

α + μ

0, otherwise,
(2)

where y = GAT (x) has approximately unit variance. These parameters are set a priori 

according to resolution and homogeneity properties of the candidate images. For instance, 

clinical and pre-clinical PET images show different resolution characteristics; therefore, it is 

recommended to learn/tune the parameters in a training step. Similarly, homogeneity of the 

images can be used to fine-tune these parameters. In our study, we inferred the parameter 

selection method by following (Makitalo and Foi (2013); Foi et al. (2008)) where authors 
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estimated the parameters from a single noisy image by fitting a global parametric model into 

locally estimated expectation and standard deviation pair. We have done this process for 

each experiments separately: phantom, pre-clinical, and clinical studies. Once PET image 

intensities are transformed by GAT, Gaussianized noise can be removed with the proposed 

joint solution framework. Final step (after employing denoising) is the inverse GAT 

operation in which the denoised PET images are transformed back into the original image 

space (called SUV domain). For inverse GAT (IGAT, step 5), we use the exact unbiased 

inverse of the GAT (Makitalo and Foi (2013)) to restore intensity information in SUV 

domain optimally without loss of information. Given y = GAT (x), λ, and α; IGAT is 

formulated as IGAT (y) = E(y|λ, α), where

E(y λ, α) = ∫ GAT(x)p(x λ, α)dx, (3)

and p(x|λ, α) is simply the probability density function for a variable x pertaining to Poisson 

distribution family.

Step 2: Affinity Propagation for PET Image Segmentation

As recently shown, the AP-based clustering algorithm can optimally delineate PET images 

without the need for prior information such as the number of clusters and shape/size of 

lesions (Foster et al. (2014b)). In this study, we integrate both newly designed PVC and 

denoising approaches into the iterations of this segmentation algorithm for generating a joint 

solution. In each iteration, solutions of the PVC, denoising, and delineation are updated and 

fed into the next iteration. This process is repeated until no more change is observed in the 

delineated regions.

To make the manuscript self-contained, we briefly summarize the AP-based PET image 

segmentation as follows: AP (Frey and Dueck (2007)) is a general clustering method for 

partitioning the data into clusters, using a pre-defined similarity criterion between data 

points. In our previous study (Foster et al. (2014b)), we have adapted AP to find optimal 
thresholding levels that cluster PET images into multiple distinct regions in an unsupervised 

manner. The adapted version of the AP is useful for PET image segmentation since AP is 

efficient, insensitive to clustering initialization, and produces clusters at a low(er) error rate 

than its alternatives. In Frey and Dueck’s paper (Frey and Dueck (2007)), clustering of the 

data samples is conducted through a message passing algorithm consisting of two messages 

between every data point (i.e., voxels in our case) using a similarity criterion: responsibility 
and availability. Initially, all voxels are considered as exemplars, and responsibility and 

availability messages are refined iteratively to choose fewer exemplars for the best 

representation of the clusters. Both responsibility and availability utilize similarity between 

data points as a driving force for the message passing algorithm.

The similarity function, responsibility & availability messages, and their iterative 

optimization are summarized in Fig. 2. Note that we use AP clustering to find optimal 

boundary information with respect to the similarity function, which is a novel and 
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considering intensity level as well as their spatial arrangements together. Further details of 

the AP-based PET image segmentation method can be found in (Foster et al. (2014b)).

Step 3: Regional Means (RM) Denoising

We present a new denoising method called “regional means denoising”, which can be 

considered as a non-local means based denoising with a new restricted search strategy 

different from conventional local search. Ultimately, the enhanced image can help AP 

generate improved delineation that in turn is beneficial to the denoising in the next iteration.

Theoretically, non-local means denoising is performed as follows: For a selected voxel in an 

image (Buades et al. (2005)), the weighted average of all voxels in the image is computed 

rather than using solely its neighbors. The non-local means algorithm uses the information 

of structural patterns within the image by considering the similarity between local patches 
with a size of N × N × N. However, this process is computational expensive and contains 

information redundancy due to the fact that the majority of patches can be irrelevant. 

Therefore in practice, the search of similar patches is generally restricted in a larger “search 

window” of M × M × M (M > N). This significantly reduced the actual computation, but in 

the mean time restricted the information utilization. To avoid this restriction, we have 

applied AP-based clustering algorithm to use object information gauging local patch 

similarity, thereby waiving the search restriction as follows.

Let J = GAT (I) be GAT transformed correspondence of 3-D PET image I. An observed 

intensity of a voxel u ∈ Z3 in image J is defined as J(u), and let L denotes the label (i.e., 

0,1,2,…) of a voxel u obtained as an outcome of AP-based segmentation. For efficiency and 

simplicity in algorithmic implementation, class labels are ordered consecutively, such that L 
(u) > L(v) if J(u) > J(v). Assume also that G denotes a size operation; hence, G (L (u)) 

simply indicates the number of voxels having the same label as that of voxel u. In the 

proposed pre-screening approach, regions Ω are searched as follows:

i. Locally search the image with a window size of M × M × M in 3D,

ii. Randomly sample min{M3, G(L(u))} voxels in the regions with class label L(u) 

(candidate region),

iii. Randomly sample min{M3, G(L(u) 1)} voxels in the regions with class label 

L(u) −1 (neighboring region I) if L (u) > 1,

iv. Randomly sample min {M3, G (L(u) + 1)} voxels in the regions with class label 

L(u) + 1 (neighboring region II) if L(u) < maxu L(u).

Here, we introduce additional samples from neighboring regions I and II to avoid potential 

“artificial boundaries” generated by confined smoothing. For example in Fig. 3, a 

theoretically homogeneous region could be classified into two groups due to imperfect 

thresholding under significant noise. Without adding more search regions, these two groups 

will be denoised separately, which eventually creates an artificial boundary between the two 

during iterations, leading to false segmentation. By introducing neighboring regions, this 

“self-reinforcement” effect can be eliminated. This may further be true for even more 

separations (homogeneous region gets classified into 3 or 4 intensity groups) under severe 
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noise/artifacts, but according to our experiments and from a realistic perspective, we chose 

the two immediate neighbors.

The resulting search region Ω is not restricted to local regions because we use only samples 

from segmentation. Then, we apply regional means (RM) averaging for recovering the actual 

value of the voxel u as:

RM(u) = ∑
v ∈ Ω

w(u, v)J(v) . (4)

By convention, the weights w(u, v) can be defined based on the similarity between two 

patches, and, centered at voxels u and v such that

w(u, v) = 1
𝒵(u)e

− 𝒜u − 𝒜v 2
2/ℱ2

, (5)

where 𝒜u − 𝒜v 2 represents the l2 distance between two intensity vectors from the two 

patches, and 𝒵(u) is a normalizing constant 𝒵(u) = ∑ve
− 𝒜u − 𝒜v

2/ℱ2
. The weighting 

parameters satisfy the conditions: 0 ≤ w(u, v) ≤ 1 and ∑vw(u, v) = 1, and parameter ℱ

determines the degree of filtering. With the information inferred from AP-based 

segmentation, our technique is capable of covering a sufficient number of voxels that can 

contribute to the denoising at voxel u. Indeed, as compared with conventional local-search 

NLM, the proposed method can increase the patch number up to four times. In return, the 

limited search space is significantly extended, leading to better performance. Histogram 

smoothing from AP is performed by utilizing a diffusion-based kernel-density estimation 

that uses the image local information effectively. Performing regional means denoising prior 

to delineation operation produces more reliable segmentation because smoothly estimated 

histogram of PET images can lead to better threshold levels maximizing the distance 

between clusters. More details and rationale are discussed in our previous work (Xu et al. 

(2014)).

Step 4: Partial Volume Correction (PVC)

A simplified model for true uptake value t and observed image f can be represented by f = t 
* h + n, where h is PSF of an imaging system, * denotes convolution operation, and n is 

Gaussian noise, which will be handled with regional means denoising algorithm in step 3. 

Here for partial volume correction, we followed the method of RBV (region-based voxel-

wise) (Thomas et al. (2011)) by incorporating reliable object information from AP-based 

segmentation. The incorporation of object information into the PVC helps recover true 

uptake distribution with low error and high efficiency. Specifically, to benefit from object 

information in step 2, a region definition from AP-based delineation is used to estimate the 

spill-over followed by the GTM method (Rousset et al. (1998)). GTM is used to obtain 

estimates of the true mean values within all regions. Since AP-based delineation algorithm is 
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known to be optimal in multi-region segmentation in PET images, inclusion of an effective 

object definition in PVC is guaranteed. At the end of this process, an intermediate image is 

created as s (p) = gi, ∀p ∈ bi where gi is the GTM corrected value of voxels within ith region 

of the segmented image b, obtained from the delineation step. Note that it is assumed that b 
includes non-overlapping regions z > 1 (i.e., segmented clusters) such that b = ∪i = 1: z bi, 

and gi is a single scalar value determined from the region i through GTM correction. Then 

following RBV (Thomas et al. (2011)) method, the final voxel-wise correction is perform by 

multiplying with by a correction term calculated from the GTM corrected image and the 

point-spread function (Thomas et al. (2011)).

We incorporate object information into the PVC with a parameter called the volume 
consistency weighting parameter, which is calculated based on Dice Similarity Coefficient 

(DSC) between current and previous iteration of the segmentation process resulted from step 

2: ci = DSC(bi, bi+1). Note that DSC indicates the accuracy of volume overlap between two 

segmentations (bi, bi+1). By setting t0 = f, PVC for a given voxel p is then performed as

ti + 1(p) = ti(p) + ci ⋅ f (p) ⋅
si(p)

si(p) ∗ h − 1 . (6)

It is worth mentioning that a global control factor is applied to prevent PVC for a given pixel 

to be larger than 1 (i.e., boundary condition). At each step, a maximum fraction of the 

correction is allowed, which is further factored by DSC. The accumulative correction is 

monitored and stopped at 1 or before. If segmentation convergence has not been reached at 

1, further steps will no longer have PVC, and a message will be generated suggesting users 

to adjust the parameter (although it is rare, this may happen with quick convergence only). If 

early stop happens, then additional PVC will be applied at the end. The proposed algorithm 

has been designed to reflect all these scenarios in a practical manner. In this way, higher 

degree of PVC is applied to later iterations when segmentation becomes stable (i.e., higher ci 

value), implying a more precise estimation of the uptake region.

3. Experiments and Results

3.1. Data

To evaluate denoising, PVC, and segmentation performances, we used three data sets: (i) 

phantom, (ii) clinical, and (iii) pre-clinical PET scans. Phantom images were used for 

precise evaluations of the proposed framework since ground truths were available. We have 

also included clinical PET scans in our experiments to test our system’s performance in 

routine practice. Furthermore, due to a wide range of applications of PET imaging in pre-

clinical studies, we extended our experiments to include small animal PET/CT scans and 

showed robustness and generalizability of our system.

Phantom data—In our experiments consisted of 20 PET-CT images obtained from two 

different NEMA phantoms with different reconstruction parameters. The first phantom is 

from the RIDER PET-CT phantom collection (Clark et al. (2013)), containing six spheres 
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with diameters of 10, 13, 17, 22, 28, and 37 mm; background activity concentration was 

0.44 uCi/ml, and hot sphere concentration is 1.75 uCi/ml. Images were reconstructed using 

3D-OSEM algorithm. The spatial resolution was 128×128×47 with a voxel spacing of 2.73 × 

2.73 × 3.27 mm, and the image intensities were in units of Bq/ml. The second phantom had 

five spheres with diameters of 4, 5, 6, 8, and 10 mm. The true activities were 32.2 mCi/ml in 

the spheres and 6.2 mCi/ml in the background. The spatial resolution was 256×256×95 with 

a voxel spacing of 0.95 ×0.95 ×1.90 mm, and the image intensities were in units of mCi/ml. 

These ground truth activity concentrations and CT correspondence allowed us to evaluate 

our proposed method’s performances reliably.

Clinical data—20 human PET/CT and 20 PET/MR images pertaining to patients 

diagnosed with different cancer types (i.e., lung, colon, and hereditary leiomyomatosis renal 

cell cancer) were collected after the IRB approval. For PET/MR, dixon sequence for 

attenuation correction and T2-weighted sequences for anatomic allocation were used for 

reconstruction (mMR, Siemens). The spatial resolution of the PET images was 172×172 in-

plane with varying number of slices (i.e., 189 to 211), and had a voxel spacing of 

4.17×4.17×2.00 mm. There was no need to re-register images as they were already in 

registration, due to the nature of hybrid imaging modalities. A subset of PET/CT and 

PET/MRI were obtained from the same patients who underwent both scanning in one week 

interval. Patients were injected with 8.82-10.79 mCi of 18F-FDG radiotracer and imaged 

58-150 min(s) post-injection. A fully 3D ordered subset expectation maximization (3D-

OSEM) algorithm was used for PET image reconstruction.

Pre-clinical data—20 PET scans obtained from 5 rabbits (4 longitudinal scans from each 

animal) were tested. The rabbits were aerosol infected with Mycobacterium Tuberculosis 

(Kbler et al. (2015)). Such pulmonary infection cases feature distributed metabolic activities 

with diffuse or multi-focal radiotracer uptake, leading to more challenging problems of 

partial volume, noise, and segmentation to be handled. The rabbits were injected via the 

marginal ear vein, with 1-2 mCi of 18F-FDG radiotracer and imaged 45-min post-injection 

with 30 min static PET acquisition. The spatial resolution was 128×128×120 with a voxel 

spacing of 1×1×1 mm. PET images were reconstructed using 3D OSEM (nanoScan, 

Mediso).

3.2. Evaluation on Method Convergence

The stopping criteria of the overall system is based on the DSC greater than a pre-defined 

threshold between two iterations. We defined the value of threshold to be 95%. The AP 

algorithm (Foster et al. (2014b)) accepts 200 maximum iterations for convergence, and it 

takes less than a second to segment one slice. Overall, implemented in pseudo-3D manner 

(slice-by-slice), the proposed algorithm mostly stops before 10th iteration for all 

experimental data, and the average processing time is 5 seconds per slice.

3.3. Evaluation of Denoising

We compared the proposed denoising strategy’s performance with commonly used PET 

image denoising methods including Gaussian filtering, anisotropic diffusion, and more 

advanced approaches such as non-local means and block matching (Dabov et al. (2007)). All 
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methods were performed after GAT stabilization for a fair comparison because as we 

showed in our earlier publication (Mansoor et al. (2014)) that denoising without GAT is 

inferior to results with GAT in all instances. We also removed the PVC block from the 

proposed method for showing the effect of denoising method itself without the contribution 

of PVC (i.e., PVC enhances the noise). In addition, note that although non-local means has 

been adopted for dynamic PET image denoising (Dutta et al. (2013)) and denoising with 

anatomical prior (Chan et al. (2014)), a proper way to apply it for static PET image without 

external anatomical information has not been well investigated. In this work, we included 

non-local means with anatomical prior (Chan et al. (2014)) for comparison. Several 

parameters had been experimented for each of the methods in comparison, and a set of 

parameters resulting in a similar quantitative gradient value at ROI boundaries and visually-

comparable structural preserving results have been selected.

Quantitative parameters for noise reduction, including SNR and max/mean uptake value, 

were computed for all uptake regions from several regions of interests (ROIs). The ROIs 

were identical for both original and filtered images. ROIs were drawn by experts, mainly 

over anatomical structures with uniformity assumption. For phantom analysis, all spheres 

and nearby background regions were selected for the evaluation. For human images, to 

ensure structure definition, a subset of human data with all three PET/CT/MRI modalities 

has been used. For qualitative evaluations, results at sample slices from both phantom and 

human images are shown in Fig. 4. As shown, the proposed method achieves greater noise 

reduction while preserving fine details from over-smoothing/blurring. Also note that non-

local means with anatomical prior relies heavily on the quality of anatomical guidance. It 

performs similar to conventional non-local means with relatively weak anatomical prior (top 

two rows), while generating crisper edges with stronger anatomical information (bottom two 

rows). However, it can also lead to artificial discontinuities due to the anatomical boundaries 

(last row).

Furthermore, relative contrast (RC) was calculated from measuring object-to-background 

contrast, which is not revealed by SNR. SNR and RC are conventionally defined as:

SNR = μℒ/σℒ,
RC = μℋ − μℒ / σℋσℒ,

(7)

where μℋ, μℒ, σℋ, and σℒ denote the mean and standard deviation of high/low uptake 

regions. For denoising methods to be effective, two most commonly used imaging markers 

for PET images, SUVmax and SUVmean, are expected to be not degraded after denoising.

Table 1 presents the quantitative results with the following parameters: SNR, RC, max/mean 

intensity value reduction rate (RR) and the ratio of uptake values in comparison with ground 

truths (phantom). In RR, we used both for object ratio (OR) and background ratio (BR) for 

relative comparison. Since the ground truth uptake value is known for the phantom image, 

these two evaluations provide us the information regarding how much suppression is 

resulted from denoising. In experimental results, the proposed method outperformed other 

methods in all quantitative metrics. Note that for clinical data (i.e. human subjects (H)), OR 
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and BR were not available because the true local uptake value was unknown unlike in the 

phantom case (i.e., P).

3.4. Evaluation of PET Image Segmentation

Segmentation analysis was applied only to phantom data with ground truth, since it does not 

require multiple annotators to evaluate surrogate of the truth as in real cases. DSC and 

Hausdorff distance (HD) were calculated for quantitative evaluation of segmentation results. 

High DSC and low HD values were obtained as follows: 92.75% for DSC and 3.14 mm for 

HD (pixel size of 2.73 × 2.73 mm), indicating highly satisfying delineation performance. 

Without denoising and PVC steps, the resulting average DSC and HD values were found to 

be 74.7% and 6.59 mm, respectively. The main reason for improving segmentation results 

with denoising is the improvement in the similarity function definition, where removing 

noise increases the similarity of the voxel intensities. Similarly, the PVC method improves 

true values of the voxel intensities; hence, similarity function of the AP.

3.5. Evaluation of PVC method

To quantitatively evaluate the performance of the proposed method, we used PET/CT images 

of the NEMA phantom. With phantom images, the ground truth regarding the precise 

boundaries of multiple spheres (representing the lesions with different sizes), as well as the 

true uptake values, which the partial volume correction attempted to recover, were known. 

Fig. 5 shows the intensity profiles along three example lines (marked as 1, 2, 3 in Fig. 5) 

before (Fig. 5(A), red) and after (Fig. 5(B), blue) applying the proposed PVC algorithm. 

Final segmentation is shown in Fig. 5(C). Finally, Fig. 5(D1-D3) depicts the results obtained 

from the proposed volume-consistency based PVC. In comparison, Fig. 5(E1-E3) denotes 

the result with evenly distributed weights instead of volume-consistency weights, and Fig. 

5(F1-F3) shows the result obtained from the conventional deconvolution approach 

(Gallivanone et al. (2011)). As can be seen, the proposed algorithm successfully corrects 

PVE for different-sized objects successfully while minimizing the noise and segmenting the 

image. Note that for the evenly distributed weights (E1-E2), the signal was preserved, but 

not well-recovered to its theoretical value (almost unchanged). It could be due to false 

correction at earlier stages (region boundaries falsely identified), leading to ineffective 

recovery, which is further suppressed by denoising.

Fig. 6 presents the quantitative results of the proposed PVC, compared with true object and 

background regions for the phantom images (i.e., ground truth). Phantoms were used as 

baselines for PVC, and the ratio was calculated to test the performance of the PVC methods; 

the perfect correction was indicated by a ratio of 1. As illustrated in Fig. 6, the proposed 

method promoted the signal strength while keeping it around 1. Gibbs effect and 

overshooting were observed in deconvolution-based method (as much as 40%). We 

compared our method with two widely used PVC methods from the literature (RBV 

(Thomas et al. (2011)) and Iterative-Yang (Erlandsson et al. (2012))). We used publicly 

available implementation from (Thomas et al. (2016)). As can be depicted from Fig. 6, the 

proposed iterative method with evenly distributed weights has almost the same PVC 

performance with the state-of-the-art methods. While RBV method utilized the GTM 

approach voxel-by-voxel, GTM provided the regional values for the segmented regions. On 
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the other hand, Iterative-Yang algorithm estimated the region mean values within the 5 

iteration loop and very similar to RBV algorithm. Note that these state-of-the-art methods 

rely heavily on the pre-defined segmentation map, which is often obtained from CT or MRI. 

For PET-only cases, it is very important that the mask is as accurate as possible, and a 

carefully selected manual threshold plays a critical role in generating the mask as an input to 

PVC algorithm. Last, but not least, overall uptake ratio may be good in those methods, but 

for small lesions, an artificial appearance (discontinuity in local uptake distribution) is 

inevitable. In our case, the proposed method did not impose any of these limitations.

3.6. Evaluation on Human PET/CT and MRI/PET Scans

We used human PET/CT and PET/MRI scans, for which there was no “ground truth” 

available. Hence, we measured relative SNR and RC values for all ROIs defined by expert 

interpreters. Also, the percentage change in SUVmax and SUVmean were computed for 

which, a small change is desirable for the precise denoising approach. Fig. 7 and Fig. 8 

illustrate the results for the proposed joint solution for PET/CT and PET/MR images, 

respectively. Blue and red circles show the regions used to compute RC (high and low 

contrast regions) percentage change in SUVmax and SUVmean. We also included a measure 

of kurtosis for evaluation of denoising algorithms, since noise variation is linked to kurtosis 

of the local regions and studied extensively in the literature for estimating unknown noise 

level (Zoran and Weiss (2009)). With kurtosis-based evaluation, lower kurtosis value 

(obtained from a local region) indicates a lower standard deviation of the noise pertaining to 

that region. Therefore, instead of measuring noise variation, which is rather difficult or 

impossible to measure, without prior assumptions, kurtosis can be used to estimate the 

underlying noise level of the images.

Kurtosis (κ) can be defined as κ X = C4 X /C2
2 X  where Ck(.) is the k-th cumulant function. 

Table 2 presents the quantitative metrics of SNR, RC, kurtosis, rate of change in SUVmax & 

SUVmean, and Rmax and Rmean of the ROIs. Since PVC promotes the signal, both SUVmax 

and SUVmean were greater than the corresponding values in unprocessed images. RC were 

higher in denoised images due to improved contrast. Similarly, kurtosis was found to be 

lower in denoised images owing to less variation in noise level.

3.7. Evaluation on Small Animal PET Scans

Fig. 9 shows original, denoised and corrected, and segmented images pertaining to small 

animal PET images. These images served as small animal models for infectious disease: 

unlike cancer cases, uptake patterns often appear as multi-focal and diffuse. Therefore, it is 

quite challenging to correct partial volume for high uptake regions. AP is well suited to 

delineate such uptake regions as shown previously in our study (Foster et al. (2014b)). Then, 

object information can be used to simplify PVC strategy. Table 2 (last column) presents the 

quantitative results of SNR, RC, SUVmax and SUVmean change rate of the ROIs pertaining 

to the pre-clinical PET scans.
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3.8. Quantitative Evaluations With Respect to Image Quality

SNR, RC, and kurtosis can be considered as the image quality factors in PET imaging. 

While we use SNR to reflect the quality factor of noise, we use RC (relative contrast) to 

obtain contrast and sharpness information from the images, and kurtosis to estimate the 

standard deviation of the noise locally. In our experiments, we noticed that our algorithm 

works best when both SNR and RC are high, and kurtosis is low. Furthermore, we did not 

observe any cases where the algorithm fails to improve image quality (SNR, RC, kurtosis). 

Relatively less improvements were obtained when image SNR or RC was too low. While the 

average of lowest SNRs in all experiments was 3.37 (from preclinical studies), more than 

100% improvements were obtained. This was the same for RC and kurtosis-based 

evaluations. It is also noteworthy to mention for images even with low SNR, RC, and 

kurtosis (indicating lower image quality, high noise, and artifacts) were improved with the 

presented framework.

3.9. Visual Assessment by Expert Interpreters

For qualitative assessment of denoised and partial volume corrected PET images, two expert 

interpreters (double-boarded by radiology and nuclear medicine, and having more than 15 

and 10 years of experiences, respectively) ranked the output of five different methods based 

on the overall quality for diagnostic purposes on all clinical PET/CT and PET/MR images: 

Gaussian, anisotropic diffusion, non-local means, block matching, and the proposed. Sample 

images were labeled as “Method 1” to “Method 5” without revealing the specific algorithm, 

and the experts rated the sample images from 1-to-5, 1 being the best and 5 being the worst 

in terms of visual/diagnostic quality. Note that this evaluation accounts for human 

perception, rather than for computerized analysis, and the visual judgment from experts can 

be quite subjective based on one’s individual preferences.

In total 50 samples were included in this study. Images for a single subject were randomized 

and presented simultaneously to viewers. Viewers were asked to evaluate the overall quality 

of each image based on the clarity of large and small regions, noise level, strength of the 

edges by assessing continuity of the borders, smoothness level, and visible (expected) 

texture. Table 3 listed the summary of this qualitative evaluation. As shown from the result, 

all filtered images were significantly better than the original images, and the proposed 

method consistently performed better than all other methods. For the methods of anisotropic 

diffusion, non-local means, and block matching, the two human experts have different 

opinions on the performance of anisotropic diffusion v.s. block matching, and non-local 

means denoising was rated slightly higher than those two (i.e., lower the rate, better the 

method). We have also compared these five methods’s results with paired t-test. The results 

were found to be statistically significantly different from each other (P< 0.05).

4. Discussion

We proposed a generalized framework for jointly solving three major problems pertaining to 

PET image interpretation and analysis: PVC, segmentation, and denoising. Individual effects 

of these major problems on diagnostic decisions have been largely studied in the literature 

(Foster et al. (2014a); Bagci and Mollura (2013); Erlandsson et al. (2012)). In this study, we 
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confine ourselves to image quality assessment and correctness of the image quantification 

parameters from a system point of view; therefore, detailed exploration of each effect in 

purely clinical cases is kept outside the scope of this paper.

As it was mentioned in the beginning, the detailed characteristics of the PET image noise is 

not entirely known. Positron emission itself is well characterized by a Poisson distribution, 

but Gaussian noise assumption is often being considered in the literature due to other noise 

characteristics coming from scanner’s detection system as well as other electronic 

components in the scanner. Resulting noise is further altered during image reconstruction 

and correction steps. However, noise realizations are shown to be conflicting with this 

assumptions as shown in different studies (Vardi et al. (1985); Rzeszotarski (1999)). In 

Teymurazyan et al. (2013), authors have evaluated statistical properties of the PET data and 

compared five noise models (Poisson, normal, negative binomial, and Gamma). Authors 

have showed that different reconstruction techniques could affect the type of noise. For 

instance, RAMLA-reconstructed PET images are well characterized by Gamma distribution 

while filtered back projection based reconstructed PET images produce comparable 

conformity with both normal and Gamma statistics. It was also indicated in the study that 

the noise was neither Gaussian nor Poisson. Although this study showed evidence of noise 

statistics as a combination of Gaussian and Poisson, authors have chosen to model the 

combined model as a Gamma distribution instead of mixed Poisson-Gaussian. In our current 

effort, instead of relying on a single Gamma distribution, we model the noise without 

restricting its distribution either into Gamma noise either, because Gamma model is not as 

flexible as a mixture model of Poisson-Gaussian. Note that the Gamma distribution is deeply 

intertwined with more Poisson distribution than Gaussian. It is because converging Gamma 

into Gaussian requires a large shape parameterization, which may not be desirable for a 

flexible noise distribution modeling (Kotlarski (1967)).

GAT has a significant role in the proposed framework but it is also desirable to identify 

when GAT has the most and least roles. We observed the following facts, which are 

overlapping with the findings from the literature: (1) when noise variation across different 

patches is small, GAT has a minimal role. This is expected because the underlying noise 

distribution in the image is almost Gaussian. (2) Conversely, GAT is the most effective when 

variation of noise is large, implying that the underlying noise distribution is almost Poisson. 

It is worth noting that mixture of Gaussian and Poisson with an analytic formulation 

depicted in Eq. 1 allows us to switch the noise model either into fully Gaussian nature or the 

opposite (i.e., fully Poisson). With a proper parameter tuning, weight of each model can be 

arranged accordingly. Since GAT will not distort images that are already with Gaussian 

noise, it will be more effective when the noise is mixed. In order to ensure that GAT behaves 

properly, we used a non-classical SVT (i.e., generalized Anscombe’s transform: GAT) where 

GAT encompasses the suffers that Anscombe’s original formulation may have when there 

are too high variation in the PET images.

It should be noted that PVC is comparatively more challenging in pre-clinical imaging 

where sizes of structures are very small relative to the achievable resolution on pre-clinical 

PET scanners. PVC studies in this aspect are limited, and available methods are often tuned 

for clinical studies. In our work, the proposed joint solution is general enough that both 
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clinical and pre-clinical images were partial volume corrected, denoised, and segmented 

successfully. One of the limitations of our work is that the correction of motion effects is not 

considered within the scope of this paper. Motion, due to cardiac, respiratory, or patient 

movement, is another factor that can introduce additional distortions. Herein, we confine 

ourselves to PVC without specifically characterizing the source of PVE.

There are numerous parameters in our proposed framework due to the integration of three 

major frameworks. One may wonder if those parameters are set during the iterations of the 

system or a priori. In our current implementation, most parameters were learned from 

representative image samples prior to the experiments, and they were kept the same during 

iterations of the proposed system. One also may wonder if there is a substantial theoretical 

proof about the mixed noise model where two important parameters are being used to weight 

Poisson and Gaussian portion. To our best of knowledge, there is no theoretical proof yet 

confirming the theoretical optimality of the inversion and noise minimization except the 

work in (Mansoor et al. (2014)) where we experimentally showed how GAT de-correlate 

non-Gaussian noise. Since GAT is known to perform well when noise is Poisson, this 

information partially proves the mix nature of the Poisson and Gaussian.

Although this study is focused on a post-reconstruction algorithm for PVC and noise 

removal, it should be noted that there are strong aspects of reconstruction driven PVC and 

noise reduction methods that make them attractive (Barrett et al. (1994); Xu and Tsui 

(2009); Ding et al. (2016)). Since post-reconstruction based PVC algorithms can increase 

both respiratory-gated and non-gated values significantly, a significant source of error may 

appear when quantifying lesions particularly at lung regions. Instead, reconstruction driven 

PVC methods with distance dependent PSF and motion incorporation can easily alleviate 

this problem. However, both motion and variable PSF integration into the reconstruction 

algorithm is not straightforward and requires experimental validations.

Our proposed joint solution requires a delineation method to be accurate, and provides 

feedback on multiple tissue types (with respect to the level of uptake). Therefore, any 

segmentation method providing this information can be replaced by AP-based segmentation 

algorithm. In this sense, our joint solution platform is flexible, and open to further 

improvements. Depending on the application, the strength and weakness of the proposed 

framework can both lay on the integrated system. On one hand, the three tasks can be 

mutually beneficial to each other and improve the performance; on the other, the proposed 

method makes it difficult to decouple one from each other, and thus the computational cost 

is naturally higher if only one function is needed. We have further qualitatively 

experimented some variations of the proposed method by replacing certain components. 

Specifically, we have done the following three: replacing RBV correction with conventional 

deconvolution; replacing regional means denoising with anisotropic diffusion; and replacing 

affinity propagation segmentation with k-means clustering. The results are shown in Fig. 10, 

as shown, with regular deconvolution, there will be a smoothed ringing artifact, while with 

anisotropic diffusion, there will be residual noise. As for k-means clustering, we find that the 

result are almost identical with reasonable choice of clusters, indicating that for PVC and 

denoising, our method is not sensitive to clustering method.
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There are studies in the literature showing joint segmentation of PET/CT and PET/MRI 

(Bagci et al. (2013b); Song et al. (2013); Xu et al. (2015)), and even denoising approach 

utilizing both PET and MRI was proposed based on wavelet coefficient exchange between 

structural and functional images (Turkheimer et al. (2008)). In the present research, we did 

not explore joint denoising, PVC, and segmentation of anatomical structures (from CT or 

MRI). These studies summarize the benefit of using effective anatomical information in PET 

image analysis tasks. As an extension to the current study, a similar system can be built for 

CT/MR images where both anatomical and functional images can be utilized. It should also 

be noted that for MR images, there will be additional steps such as intensity inhomogeneity 

correction and standardization prior to denoising (Bagci et al. (2012, 2010)).

In radiology and nuclear imaging sciences, visual assessment is often accepted as ground 

truth evaluation or complementary qualification. However, human visual judgment can be 

quite subjective, especially for tasks without definite answer. Even experts can have 

significant variations. During qualitative evaluation, some experts may give preference to 

low noise level and clearly-defined structure boundaries for its clarity in diagnosis; while 

others may view similar patterns as “artificial” and consider moderate amount of noise as 

more “realistic”. Despite potential biases, qualitative judgment is still desirable to be used in 

real clinical settings, and it is more powerful when combined with quantitative results. In our 

experiments, potential uncertainties due to these variations are explained.

5. Conclusion

We presented an effective framework for generating a joint solution for PET image 

denoising, partial volume correction, and segmentation. We incorporated uptake region 

delineations into the novel regional means denoising technique to enhance the SNR, which 

in turn helps improve the segmentation and PVC accuracies. We utilized generalized 

Anscombe transformation, and its optimal inverse before and after the denoising-

segmentation procedure, which essentially Gaus-sianize the noise in PET images under the 

mixed Poisson-Gaussian model. For PVC, we used a new volume-consistent voxel-wise 

correction method where effective use of the object information was inferred from the 

segmentation iterations. Experimental results demonstrated that the proposed joint solution 

framework successfully removes the noise, corrects the partial volume effect, and delineates 

uptake regions with high efficacy.
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Highlights

• Interactions among segmentation, denoising, and partial volume corrections 

have been utilized to improve solution of each of these problems for PET 

images.

• Noise in PET imaging is modeled as mixed Poisson-Gaussian, as it is more 

realistic than the current standards.

• Partial volume correction is shown to improve when segmentation and noise 

information are incorporated into the proposed joint solution model.

• Segmentation process gets benefit from denoising and partial volume 

correction step, leading to improved boundary definitions of lesions in PET 

images.

• Extensive set of experiments (phantom, pre-clinical, and clinical) with PET, 

PET/CT, and PET/MRI validate the proposed algorithm?s performance.
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Figure 1. 
Flowchart of the joint solution platform for denoising, segmentation, and PVC of PET 

images. After PET images are transformed into a Gaussian space via Generalized Anscombe 

Transformation, affinity propagation based clustering algorithm is used iteratively to 

delineate regions of interest. Denoising is performed through a new regional means 

denoising algorithm that helps precise definition of segmented regions and PVC itself. The 

algorithm stops when segmentation converges. The output of the image is transformed back 

into the original image domain through the optimal inverse transformation of Anscombe’s 

method.
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Figure 2. 
AP uses max-product belief propagation to define representative exemplars through 

maximizing the objective function of argmaxk[a(i, k) + r(i, k)]. The similarity (s(i, j)) 
between data point i and point j is obtained from the probability density function (pdf) 

estimate of the PET image histogram. Note that the larger the probability difference between 

points i and j is, the smaller the probability of having the same label for data points i and j. 

Furthermore, di j
G is the computed geodesic distance between point i and j along the pdf of the 

histogram, and di j
x  is the Euclidean distance between point i and j along the x-axis. In 

summary, AP applies the data clustering operation on the pdf of the PET histogram, and 

separation of the clusters are provided by the optimal threshold(s) obtained from the 

maximization of the AP function.
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Figure 3. 
PET denoising results: without (left) and with (right) neighboring regions I and II.

Xu et al. Page 28

Med Image Anal. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Qualitative evaluations for denoising: (A) PET images, (B) the corresponding anatomical 

images (CT and MR), (C) Gaussian filtering, (D) anisotropic diffusion, (E) non-local means, 

(F) block matching, (G) non-local means with anatomical prior, and (H) the proposed 

method. Colorbar corresponds to raw data numbers (counts).
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Figure 5. 
Intensity profile along three (1, 2, 3) sample lines in PET image (A) before and (B) after 

PVC with (C) showing the grouped final AP segmentation result with object (blue) and 

background (red) ROI definition: (D1-D3) the proposed method with volume consistency 

weights. (E1-E3) the proposed iterative method with evenly distributed weights, and (F1-F3) 

deconvolution method.
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Figure 6. 
Quantitative evaluations for the PVC: max uptake value ratio within ROIs as compared with 

phantom truth and two state of the art methods (RBV (Thomas et al. (2011)) and 

IterativeYang (Erlandsson et al. (2012)).)
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Figure 7. 
PET/CT scans: (A) original image; (B) after PVC and denoising; (C) final segmentation 

result; (D) corresponding CT image. Colorbar corresponds to raw data numbers (counts).
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Figure 8. 
PET/MRI scans: (A) original image; (B) after PVC and denoising; (C) final segmentation 

result; (D) corresponding MR image. Colorbar corresponds to raw data numbers (counts).
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Figure 9. 
Pre-clinical PET scans: (A) original image; (B) after PVC and denoising; (C) final 

segmentation result.
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Figure 10. 
Replacing RBV correction component with deconvolution(left) and replacing regional 

means denoising with anisotropic diffusion (right).

Xu et al. Page 35

Med Image Anal. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 36

Ta
b

le
 1

Q
ua

nt
ita

tiv
e 

ev
al

ua
tio

ns
 f

or
 th

e 
pr

op
os

ed
 d

en
oi

si
ng

 s
tr

at
eg

y 
in

 c
om

pa
ri

so
n 

w
ith

 o
th

er
 m

et
ho

ds
 a

re
 p

re
se

nt
ed

. P
: p

ha
nt

om
; H

: h
um

an
. H

ig
he

r 
SN

R
, R

C
, 

O
R

, B
R

, a
nd

 lo
w

er
 m

ax
 R

R
, m

ea
n 

R
R

 in
di

ca
te

 b
et

te
r 

pe
rf

or
m

an
ce

. W
e 

ha
ve

 c
ho

se
n 

on
ly

 a
 s

ub
se

t o
f 

PE
T

 im
ag

es
 f

ro
m

 P
E

T
/C

T
 a

nd
 P

E
T

/M
R

I 
be

ca
us

e 

ha
lf

 o
f 

th
e 

im
ag

in
g 

da
ta

 w
er

e 
ob

ta
in

ed
 f

ro
m

 th
e 

sa
m

e 
pa

tie
nt

s 
w

ho
 h

av
e 

un
de

rw
en

t b
ot

h 
sc

an
ni

ng
 in

 o
ne

-w
ee

k 
in

te
rv

al
.

SN
R

R
C

M
ax

 R
R

M
ea

n 
R

R
O

R
B

R

P
H

P
H

P
H

P
H

P
P

O
ri

gi
na

l
11

.7
3

7.
08

11
.3

2
34

.1
4

0%
0%

0%
0%

59
.2

8%
85

.0
2%

G
au

ss
ia

n
15

.6
2

7.
01

12
.8

8
27

.7
6

11
.0

8%
9.

27
%

9.
55

%
5.

51
%

53
.9

9%
85

.2
1%

D
if

fu
si

on
21

.0
5

7.
25

16
.3

8
33

.9
8

13
.2

0%
7.

20
%

7.
37

%
3.

37
%

55
.9

9%
85

.7
2%

N
on

-L
oc

al
 M

ea
ns

21
.8

8
7.

69
13

.7
0

37
.6

7
13

.2
7%

7.
04

%
11

.0
3%

3.
61

%
54

.4
1%

85
.8

9%

B
lo

ck
 M

at
ch

in
g

20
.3

6
9.

92
14

.0
2

39
.9

7
7.

32
%

6.
96

%
6.

87
%

3.
59

%
56

.2
7%

85
.4

1%

A
na

to
m

ic
al

 P
ri

or
21

.7
3

8.
41

14
.6

2
40

.3
3

9.
68

%
6.

92
%

6.
31

%
2.

14
%

56
.7

3%
85

.8
5%

P
ro

po
se

d 
M

et
ho

d
35

.5
5

11
.8

2
19

.1
5

52
.4

0
2.

97
%

3.
55

%
2.

61
%

1.
29

%
58

.2
4%

86
.2

6%

Med Image Anal. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Xu et al. Page 37

Table 2

Denoising performance of the proposed method on clinical and pre-clinical images. High SNR, RC; low 

kurtosis and low uptake change rate indicate superior performance.

PET/CT MRI/PET Preclinical

SNR
Original 8.67 16.02 3.37

Proposed 23.79 39.70 7.54

RC
Original 26.17 8.38 29.26

Proposed 49.70 14.13 41.08

Kurtosis
Original 2.51 3.80 4.48

Proposed 2.21 2.72 2.33

Uptake Change Rate
SUVmean 1.8% 5.11% 3.14%

SUVmax 3.47% 6.28% 3.09%
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Table 3

Qualitative evaluation result for different methods.

Expert 1 Score Expert 2 Score

Mean Stdev Mean Stdev

Original Images 5 0 4.76 0.66

Anisotropic Diffusion 2.34 0.66 3.08 1.07

Non-local Means 3.86 0.35 3.52 0.65

Block Matching 2.8 0.49 2.5 0.93

Proposed Method 1 0 1.14 0.35
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