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Abstract

Quantitative Magnetic Resonance Imaging (MRI) is based on a two-steps approach: estimation of 

the magnetic moments distribution inside the body, followed by a voxel-by-voxel quantification of 

the human tissue properties. This splitting simplifies the computations but poses several 

constraints on the measurement process, limiting its efficiency. Here, we perform quantitative MRI 

as a one step process; signal localization and parameter quantification are simultaneously obtained 

by the solution of a large scale nonlinear inversion problem based on first-principles. As a 

consequence, the constraints on the measurement process can be relaxed and acquisition schemes 

that are time efficient and widely available in clinical MRI scanners can be employed. We show 

that the nonlinear tomography approach is applicable to MRI and returns human tissue maps from 

very short experiments.
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1. Introduction

The possibility to store and process vast amounts of data at increasingly faster rates has 

boosted the application of numerical methods in physical sciences. Nowadays, solutions can 

be found to problems with hundred thousands or millions of unknowns [1,2]. A 

representative example is seismic full waveform inversion [3]; the underlying process is 

based on a wave equation which is nonlinear in the spatially-dependent unknowns. The 

reconstruction over 2D or 3D regions of the Earth’s interior is obtained by means of iterative 

algorithms. It is even possible to estimate multiple parameters simultaneously, such as wave 

velocity, density, anisotropy and attenuation.

Analogously to seismic waveform inversion, quantitative magnetic resonance imaging 

(qMRI) aims at reconstructing several parameters which characterize the internal structure of 
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the human tissue; in particular, the proton density (ρ), the longitudinal (T1) and transverse 

(T2) relaxation rates, among others.

One important difference between tomographic techniques and state of the art qMRI lies in 

their methodology. Quantitative MRI is built upon a two step approach. Firstly, each local 

contribution to the volumetric signal is estimated (signal localization), returning spatial maps 

of the transverse magnetic moment; this is usually achieved by applying a multi dimensional 

inverse Fourier transform to the data. Subsequently, the tissue parameters quantification is 

carried out for each location separately. The second step (parameter estimation) is thus 

obtained from a series of magnetization images by fitting relatively simplistic signal models 

[4] or by searching over a dictionary of complex signal fingerprints [5,6].

This separation leads to a simplified computational process but with significant costs. In 

order to satisfy the stringent criteria for Fourier encoding, one has to assume that the signal 

evolution during the readout only reflects the intended gradient encoding. Long single-shot 

readouts generally violate this condition, leading to image artifacts, e.g., geometrical 

distortion and intra-voxel dephasing. To avoid such artifacts, most clinical MR sequences 

have been designed to manipulate the nuclear spins into a reproducible state, which allows 

multiple measurements to be aggregated into one coherent frequency representation of the 

desired image (k-space). Consequently, MRI scans can be relatively time consuming when 

compared to CT or PET exams. Additionally, due to the overly simplifying assumptions in 

the Fourier encoding-based signal model, system imperfections such as off-resonances and 

radiofrequency field inhomogeneity are not easily taken into account.

MR Fingerprinting (MRF) [5] has shown a great potential to recover multi-parametric maps 

from unprecedented short acquisitions allowing strong aliasing artifacts to exist in each of 

the individual images. The RF excitation and gradient acquisition schemes need to be 

designed properly to ensure incoherence between the signal and the undersampling artifacts 

which are interpreted as zero-mean noise-like perturbations. Interleaved spiral [5] and radial 

[6] readout gradients are therefore preferred. These type of sequences are however, prone to 

gradient system imperfections such as eddy currents and thus require an additional 

sophisticated calibration of the hardware [7].

In this work, we pose quantitative MRI as a nonlinear tomographic problem by directly 

utilizing the fundamental relationship between the time-varying signal and the laws of 

physics that describe the experiment. Thereby, we unify the traditionally disjoined processes 

of signal localization and parameter estimation into one process. The macroscopic ensemble 

of magnetic spins in the body is treated as a large-scale nonlinear dynamical system, which 

is probed by superimposing a train of radiofrequency (RF) excitations and gradient fields. 

The tissue properties are obtained by inversion of the underlying large scale nonlinear 

model. We name this method MR-STAT, which stands for Magnetic Resonance Spin 

TomogrAphy in Time-domain. We show that quantitative parameter maps can be accurately 

reconstructed by employing nonlinear optimization algorithms and parallel computing 

infrastructures which do not necessarily rely on the Fourier decoding step for spatial 

localization. The data collection process can thus be liberated from the standard sequence 

design constraints and very short acquisitions (order of seconds) provides sufficient data for 
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correct reconstructions. Although the time-domain formulation would in principle 

accommodate any read-out strategy, we show that established, experimentally robust 

cartesian gradient acquisition schemes can also be employed; a step which should facilitate 

the translation of the technique to clinical MRI systems. Finally, MR-STAT is also able to 

estimate the precision of the reconstructed multi-parametric maps; another important step 

towards the clinical application of qMRI.

2. Theory

2.1. The coupled space-time signal model

The behavior of the space/time dependent magnetization vector, m (r,t) is determined by 

superimposed radiofrequency and gradient magnetic fields, respectively denoted by b(t) and 

G(t) · r. The response of the magnetic spins is also affected by the T1(r) and T2(r) relaxation 

rates, which carry diagnostic information. The relationship between all these quantities is 

given locally by the Bloch equation [8]:

d
dt m = γb × m − q (1)

where

b =
ℜ(b)
𝔍(b)
G · r

, q =

mx
T2
my
T2
mz − 1

T1

, m(r, 0) =
0
0
1

and γ denotes the gyromagnetic ratio.

The signal, s, from a receiver coil is obtained from Faraday’s law of induction [9]:

s(t) = ∫
V

ρ(r)m (r, t)dr (2)

where ρ denotes the proton density of the tissue weighted by the spatially varying complex 

receive RF field B1
−. m is the transverse component of m and V is the volume enclosing the 

spins which emit signal.

The first step in qMRI typically aims at reconstructing the spatially dependent magnetization 

state. This is achieved by designing the experiment such that the signal can be modeled as
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s(t) = s (k(t)) = ∫
V

ρ(r)m∗(r)e−2πιk(t) · rdr (3)

where m* must be a time-independent state of the magnetization and k represents the 

accumulating effect of the gradient fields. Note that the system response is decoupled into a 

space-only dependent component ρ m* and a Fourier encoding term exp(−2πι k(t) · r) 

which is independent from tissue parameters. The unknown term is thus ρ m*. If Fourier 

transform requirements are fulfilled by the experimental settings, Inverse Fourier transform 

can be applied to the data to reconstruct ρ m*, obtaining thus a magnetization image. This 

decoupled approach typically leads to either long measurement times (m* must be in the 

steady-states or in static equilibrium) or to large reconstruction artifacts if the Nyquist 

sampling criterion is not fulfilled [5]. In the subsequent step, model-fitting strategies based 

on the Bloch Eq. (1) can be applied to each voxel separately to recover the tissue parameters 

on a local level. In the MR fingerprinting case [5], this is performed by an exhaustive search 

over a pre-computed dictionary of signals; a reconstruction strategy which although robust 

and straightforward, is undermined by the large dictionaries needed for high dimensional 

multi-parametric data. Furthermore, even a slight modification of a sequence requires an ad-

hoc computation of the corresponding dictionary.

Instead of relying on the standard decoupled Fourier model, we reconsider the coupled 

space-time equation, Eq. (2), and solve it directly. Denoting by d(t) the demodulated signal 

measured by the receiving coil of the MR scanner, the resulting tomographic approach is

Find the system’s parameters, α, that minimize

∫
τ

∣ s (α, t) − d(t) ∣2dt (4)

such that the Bloch Eq. (1) and Faraday’s law (Eq. (2)) hold.

In the equation, τ denotes the union of temporal acquisition intervals and α represents the 

unknown parameters over the whole region. Note that the reconstruction acts on the signal in 

time domain to directly derive the spatial distribution of the tissue’s characteristics. In the 

MR-STAT framework, the link between temporal and spatial domain is still provided by the 

gradient fields, but now the k-space data set constitutes a non-trivial entanglement of spatial 

and spin-dynamic information.

During an MR-STAT experiment, the magnetization is thus no longer expected to be in 

steady-states or equilibrium conditions but is free to evolve. Since there are no particular 

requirements on the state of the system, the excitation/acquisition scheme can be designed to 

boost the time-efficiency and to minimize the impact of gradient hardware imperfections. In 

this work, we consider measurement schemes (sequences) where RF excitation pulses and 

acquisition intervals are contiguous, thus the repetition time TR and echo-time TE are kept as 
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short as possible (see Fig. 1); there are no dead times and the data collection rate is thus 

maximized. We choose to employ a so-called Cartesian read-out scheme which is the 

standard acquisition modality due to its robustness with respect to hardware imperfections.

Since the reconstruction process no longer relies upon Fourier decoding, the underlying 

physical model can be easily expanded to include system imperfections such as off-

resonance frequency, ω(r), and transmit RF fields heterogeneity, B1
+(r). These quantities 

enter the reconstruction problem (4) through the vector of applied magnetic field b in the 

Bloch equation (Eq. (1)):

b = (ℜ(B1
+b), 𝔍(B1

+b), G · r + ω/γ)T .

Consequently, the extended set of unknowns in the MR-STAT equation (Eq. (4)) is

α = (T1, T2, ∣ ρ ∣ , ∠ρ, ∣ B1
+ ∣ , ω) .

The MR-STAT reconstruction problem (Eq. (4)) can be solved by a generic purpose 

derivative-based nonlinear minimization algorithm upon the discretization of the spatial and 

temporal domains. See the Methods section for the implementation details.

2.1.1. Spatial encoding, identifiability and precision estimates—The encoding 

capability of the MR-STAT approach can be derived by standard techniques in inversion 

theory. In particular, the identifiability of a system’s parameters [10] is reflected by the 

covariance matrix C ≡ η2(DTD)−1 where D is the Jacobian matrix of the model with respect 

to the parameters α and η is the noise variance.

To minimize noise amplifications, C should have a moderate condition number. This 

depends on both the acquisition length as well as the spatial resolution: for a fixed 

reconstruction grid, decreasing the sequence length leads to a more ill-conditioned matrix C 
and noise perturbations or model imperfections are thus amplified. In the extreme case that 

the sequence is too short, C becomes rank-deficient (infinitely large condition number) and 

the uniqueness of the solution is no longer guaranteed unless other regularization terms are 

introduced. This is analogous to reconstructions of undersampled k-space data in, for 

example, compressed sensing MRI [11,12]. To illustrate this theoretical analysis with a 

concrete example, we consider a homogeneous object with properties:

(T1, T2, ∣ ρ ∣ , ∠ρ, ∣ B1
+ ∣ , ω) = (0.833 [s], 0.083 [s], 1 [a . u . ], 0 [rad], 1 [a . u . ], 0 [Hz])

and construct C for varying spatial resolution and sequence length. The latter is expressed in 

terms of the number of readout lines in the sequence. The flip angles are randomly drawn 

from a normal distribution centered around 0 (see also the top of Fig. 2). The conditioning of 

the covariance matrix is reported in Fig. 3. As expected, the longer the sequence, the lower 

the noise amplification. The number of unknowns increases with the grid size, leading to a 
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larger scale problem requiring more data (longer sequences) to be fully determined and to be 

robust to noise perturbations. When C has full rank, the MR-STAT problem is fully 

determined and the algorithm returns not only the parameter maps but also their spatially 

dependent standard deviations. The standard deviation of the n-th parameter is given by 

σn ≈ [C]n, n. Note the analogy between σn and the so-called geometry factor (g-factor) in 

parallel imaging [13].

3. Methods

3.1. Implementation

For reasons that will soon become clear, we split the vector of unknowns in two parts, 

namely: α = (ρ,β) where β contains the spatial distribution of (T1,T2, ∣ B1
+ ∣, ω). Given a 

demodulated dataset in the time domain, d(t), the reconstructed parameter maps, (ρrec, βrec), 

are obtained by solving the following nonlinear least squares problem, which is derived 

upon the discretization of Eq. (4):

(ρrec, βrec) = arg min
ρ, β ∑

j = 1

J
d j − ∑

r = 1

R
ρrm j, r(T1, r, T2, r, ∣ B1, r

+ ∣ , ωr)Δs

2
Δt, (5)

such that Eq. (1) holds.

The first and second sum in the objective function approximate, respectively, the time and 

the volume integral from Eqs. (4) and (2). J is the total amount of acquired data samples, R 
is the number of spatial grid points, Δs and Δt are, respectively, the space and time 

discretization intervals. Using matrix-vector notation, Eq. (5) can be written as

(ρrec, βrec) = arg min
ρ, β

‖d − M(β)ρ‖2 (6)

such that Eq. (1) holds.

where the matrix M(β) is given by

[M(β)] j, r ≡ Δsm j, r(T1, r, T2, r, ∣ B1, r
+ ∣ , ωr) .

Since the reconstruction problem is nonlinearly dependent on β and linearly dependent on ρ, 

it can be solved by the variable projection method (VARPRO) [14]. Note that, if the vector β 
was a solution of Eq. (6), then the parameters ρ could be found by solving a linear least 

squares problem, whose solution is given by
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ρ = M†(β)d (7)

where M† is the pseudo-inverse of M. Substituting this back into Eq. (6) we obtain the 

reduced functional:

β∗ = arg min
β

‖[I − M(β)M†(β)] d‖2 . (8)

Note that the linear parameter no longer plays a role in the equation.

VARPRO solves Eq. (6) by first solving the reduced nonlinear problem in Eq. (8). The 

optimal linear parameters are eventually found by substitution into Eq. (7): ρ*=M†(β*)d.

Solving Eq. (8) instead of Eq. (6) results in a faster and robuster convergence for non-convex 

problems. Additionally, initial guesses for ρ are unnecessary. The largest computational 

burden for solving Eq. (8) is given by the calculation of the derivatives of the system matrix 

M with respect to the nonlinear variables, that is dM(β)/dβ. In this work, they are calculated 

by first order forward finite difference approximations. We point out that the VARPRO 

method has many applications and has even been used to solve different MR problems 

before [15–17].

The minimization problem is implemented in Matlab making use of the built-in trust region 

minimization algorithm and the VARPRO implementation given by [18]. The Bloch 

equation simulator is implemented in C [19] and was adapted to include slice profile 

response, off-resonance effects and B1
+ inhomogeneities. The reconstruction is halted after 

30 iterations or earlier if the maximum component of the gradient of the objective function 

is smaller than 10−6 (first order optimality measure).

Unless otherwise stated, the reconstruction algorithm is initialized with the following values:

(T1, T2, ∣ B1
+ ∣ , ω)start = (1.0 [s], 0.1 [s], 1.0 [a . u . ], 0.0 [Hz]) .

These values are uniform over the whole FOV. As explained, the (complex) proton density 

variable need not be initialized since it is reconstructed by solving a standard linear least 

squares problem.

3.1.1. Computational complexity and parallelization—On the computation side, the 

MR-STAT reconstruction problem for a 2D or 3D geometry at realistic spatial resolution is 

extremely demanding. Since all parameter maps are reconstructed at once, the number of 

unknowns is vast. To illustrate for a 2D acquisition of a Ns×Ns voxels grid, the number of 

unknowns is Ns
2 × 6 since there are 6 parameters per voxel. Since Ns ~  (10)2, the total 

number of unknowns is  (105). As a consequence, the number of data points should also be 
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(105). In addition, the response of the system has also to be calculated in the slice selective 

direction to correctly incorporate the effect of the slice profile. The reconstruction algorithm 

must calculate the response of the physical equations for  (105) voxels over  (105) time 

points.

For the second and third reconstruction tests in this work (see below), we parallelize the 

computations in the following way: suppose that we employ a Cartesian acquisition scheme 

with the read-out direction along the y-axis; in this case, the signal, sj, over the j-th read-out 

interval, τj, is given by

s j(t) ∝ ∫X × Y × Z
m(r, t j)e

t j − t

T2 e
ι(t − t j)ω(r)

e
−ιγGy(t − t j)ydr

where the 3D integration interval X×Y×Z ⊂ ℝ3 contains all nuclear spins emitting a signal. 

Given that for this kind of sequence, the duration of the read-out τj is only 1 ms or less, we 

can neglect the T2 decay and the dephasing due to ω. The signal equation becomes (we use 

the 1D k-space notation: ky ≡ γ /2π∫ t j
t Gy(τ)dτ:

s j(ky) ≈ ∫X∫Y∫Z
m (x, y, z, t j) e

−i2πkyy
dxdydz

and applying 1D Fourier Transform along the y direction, ℱy:

ℱys j(y∼) = ∫X∫Z
m (x, y∼, z, t j)dxdz

ℱysj(ỹ) represents the signal generated at time tj by the nuclear spins located in the 2D 

interval X×Z at the y-coordinate given by ỹ . The signal from spins with different y-

coordinates does not contribute to ℱysj(ỹ). In other words the MR-STAT reconstruction 

problem can be decomposed into many independent subproblems, each one corresponding 

to a given coordinate ỹn with n = 1,…,Ns. Parallelization is thus carried out by assigning 

each subproblem to a different computing core. The reconstruction time is defined as the 

longest runtime among all jobs.

The whole code is compiled as a Linux stand-alone executable and deployed to the High 

Performance Computing cluster of the UMC Utrecht by linking it to the corresponding 

Matlab run-time library.

3.2. Reconstructions

To demonstrate the design flexibility of MR-STAT, we employ several types of acquisition 

schemes: one where the tip angles are randomly drawn from a normal distribution (Fig. 2); 

one which follows a sinusoidal pattern where each lobe is weighted by a randomly chosen 

value (Fig. 8-top) and one with piecewise constant excitations (Fig. 9-top). For the latter RF-
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train, each constant tip angle section is preceded and followed by a half-angle pulse acting, 

respectively, as excitation and tip-back pulses. All the sequences start with a 180° inversion 

pulse. Each read-out interval is centered between excitations and all gradients are balanced, 

thus a single isochromat accurately represents the dynamics of a voxel.

3.2.1. In silica low resolution reconstruction—A simple 2D object made of three 

homogeneous compartments is reconstructed on a 32×32 grid (see Fig. 4). The T1 and T2 

rates for the three compartments A, B, and C correspond to cerebrospinal fluid (CSF), gray 

and white matter values, respectively. In this case, the off-resonance and transmit RF maps 

were set to ω=0 Hz and B1
+ = 1 [a.u.], respectively. A random RF excitation train is applied 

analogously to the one shown in Fig. 2. Two-hundred and fifty-six RF pulses are interleaved 

with a 2D Cartesian read-out gradient scheme consisting of 32 phase encoding steps which 

are repeated 8 times. The resulting sequence duration is 1.2 s. Gaussian noise is 

superimposed to the time-domain signal such that ||noise||/||signal||=0.01.

3.2.2. In-silica high resolution reconstruction—The central slice of a numerical 

human brain model [20] is used to create a synthetic MR-STAT data set. The reconstructed 

in-plane resolution is 1 mm ×1 mm which corresponds to a 216×216 voxels matrix. The 

tissue parameters for the biological components are given in Table 2. The amplitude and 

phase maps of the transmit RF field are obtained from a numerical electromagnetic 

simulation of a 3 T headcoil driven in quadrature. Without loss of generality, a uniform 

receive sensitivity is assumed in this example. The off-resonance map is taken from [21] and 

is scaled to fit the range of [−15,15] Hz in the head (see the bottom of Fig. 7). For the 

acquisition, a Cartesian trajectory is used. The duration of each read out is 0.86 ms with a 4 

μs dwell time per sample. The read out lines (ky direction) cover the 2D k-space in 

ascending order, starting with the smallest negative values of kx and repeating this pattern 

for the equivalent of 8 full k-space coverages. In total, 1728 lines are acquired in 8.3 s 

resulting in approximately 3.7 · 105 time data points. The random tip angles sequence is 

shown at the top of Fig. 2.

A Gaussian shaped RF pulse and a slice selective gradient waveform along the z axis are 

applied. The RF pulse is 1 ms long and is defined on a 0.1 ms dwell time step. The slice 

profile variation throughout the sequence is taken into account by discretizing the spatial 

domain in the slice-selective direction by 50 points and integrating the magnetization 

response for each point. This integration is applied to both the forward (signal simulation) 

and backward (reconstruction) steps. Gaussian noise is superimposed to the time-domain 

signal such that ||noise||2/||signal||=0.01. The resulting time-domain signal is shown at the 

bottom of Fig. 2.

The parameter ω is initialized by applying a median filter to the true off-resonance map. In 

experimental practice, this dataset could be generated with a fast B0 calibration scan. The 

other parameters are initialized with the same values as reported in Implementation section.

3.2.3. In-vivo experimental demonstration at 3.0 T—Finally, MR-STAT is 

implemented on a 3 T whole-body MR system (Philips-Ingenia). A single slice is acquired 
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for a brain of a healthy volunteer with a 15 channel receive head-coil. Written informed 

consent from the volunteer participating in this experiment was obtained.

We employ two different sequences. The first RF train (Fig. 8, top) consists of 16 sinusoidal 

sweeps. Each lobe corresponds to a k-space filling and is randomly scaled to achieve 

maximum amplitude levels in the range 5° ≤ θ ≤ 75°.

The second RF train (Fig. 9, top) consists of piecewise constant flip angles, whose values are 

drawn from a uniform distribution in the range [5°,60°]. Each of the 16 k-space fillings is 

thus characterized by the same tip angle excitation. In addition, a half-angle pre-pulse and a 

half angle tip-back pulse are applied, respectively, before and after each segment.

In both sequences, the excitation phases alternate between 0° and 180°. A Gaussian shaped 

RF pulse with duration 0.81 ms and a slice selective gradient are employed to achieve a 3 

mm slice thickness. The shortest possible values for TE and TR are chosen, namely (TE,TR)= 

(2.78,5.56) ms. The sequences are preceded by an adiabatic inversion pulse. The sequence 

parameters are converted into MATLAB format and imported in the reconstruction software. 

Analogously to the synthetic case, the slice profile variation across the sequence is included 

in the model by simulating the RF pulses on a 15 μs grid and taking 11 samples along the 

slice direction. As starting values for ω we choose 0 Hz everywhere.

The spatial resolution is 1.8×1.8 mm2 and the scan time is 7.8 s. The measured signals are 

shown in Figs. 8 and 9.

In these two tests, we reconstruct T1 and T2 value and we treat the other parameters as 

nuisance variables, that is, they are considered unknown but their estimation is not required 

to be precise.

4. Results

4.1. In silica low-resolution reconstruction

Fig. 4 illustrates the application of MR-STAT to the small scale reconstruction test. The 

distribution of reconstructed values from each compartment are reported in the histogram 

plots. The standard deviations as estimated from the covariance matrix C are averaged over 

each compartment and are reported in Table 1. In the same table, also the true standard 

deviations obtained from the reconstructed values are reported. These are calculated as

1
K − 1 ∑

k = 1

K
Ti

recon − Ti
true 2, i = 1, 2

where K is the number of voxels in a given compartment. From Table 1 it is clear that not 

only the T1 and T2 values are accurately reconstructed (as shown in Fig. 4), but also the 

estimated and truly obtained precision levels are very similar.
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The convergence curve for the reconstruction algorithm is reported in Fig. 5 and displays the 

relative residual norm as a function of the iteration number, that is, the model-data misfit 

normalized on the norm of the data:

relative residual norm = ‖d − M(β)ρ‖
‖d‖ .

The data-model misfit eventually reaches the noise level after 5 iterations and the algorithm 

halts soon afterwards.

4.2. In-silica high resolution reconstruction

Beside T1, T2 and ρ, also the transmit field profile and off-resonance map are reconstructed; 

they are displayed in Figs. 6 and 7. They closely agree with the true values. In Table 2, the 

mean values and corresponding variations over each tissue type are reported and show high 

precision.

The root-mean-squared-errors (RMSE) for the B1
+ and ω maps are also very small, namely:

RMSE( ∣ B1
+ ∣ ) = 0.0043 [a . u . ], RMSE(ω) = 0.12 [Hz] .

The reconstruction time is about 90 min. The median number of performed iterations as 

calculated over all parallel reconstruction processes is 13.

The standard deviations estimated by MR-STAT for T1 and T2 are shown, respectively, in 

Fig. 6 (b) and (d). For comparison, the actual error maps, respectively defined as 

∣ T1 − T1
recon ∣ and ∣ T2 − T2

recon ∣, are also reported and they show clear similarities.

4.3. In-vivo experimental demonstration at 3.0 T

The obtained T1 and T2 maps are shown at the bottom of Figs. 8 and 9. The reconstruction 

algorithm was halted after 12 iterations since the solution did not significantly improved 

during the last few iterations. The computation time was about 12 min for both datasets.

5. Discussion

Traditional quantitative MR methods are typically performed in two steps; first a series of 

images is reconstructed, then the quantitative parameters are estimated from these images on 

a voxel-by-voxel basis. The recently introduced MRF method [5] works along similar lines, 

but shifts the focus away from the signal localization process and onto the temporal 

dynamics of the spin-system. Although MRF still adheres to the traditional two step 

procedure, it sacrifices accurate signal triangulation in favour of a high sampling rate. The 

resulting undersampling artifacts in each image are treated as a large, zero-mean, noise-like 

process, thus the signal model includes a substantial pseudo-stochastic component. MR-

STAT relies instead on a fully deterministic strategy by employing a coupled space-time 

model that encapsulates the entire MR experiment. Consequently, the model accuracy is 

drastically enhanced and the brute-force exhaustive search is replaced by iterative 
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minimization methods which exploit the structure of the underlying dynamics. The MR-

STAT approach aims thus at a better utilization of the information carried by the data and to 

the elimination of the dictionary search, which is notoriously hindered by the curse of 

dimensionality. Another important benefit of taking this route is that it provides deep 

insights into the important aspect of error estimation. The availability of standard deviation 

maps is a valuable tool for quality monitoring; a fundamental aspect for the clinical 

application of quantitative MRI.

It is important to realize that the gradient trajectory used in MR-STAT does not necessarily 

relate directly to the spatial resolution. The k-space in MR-STAT is not a spatial frequency 

domain, as is the case in standard MRI acquisition approaches. Although some 

demonstrations shown here still use a one dimensional Fourier transform along the read-out 

direction for parallelization, the MR-STAT formalism can, in principle, remove the explicit 

Fourier relationship between the time and image domain in its entirety. This will be 

beneficial in the case of non-cartesian trajectories such as radial and spiral or for non-linear 

gradient field systems [22]. As we move more and more along this direction, it may be better 

to think of trajectories in gradient space than in an actual k-space. Inversion theory provides 

tools to generalize the concept of encoding capability for transient-states sequences when 

time and space dependence are implicitly entangled in the signal and results from Fourier 

theory are no longer applicable.

The primary cost of the MR-STAT approach is that all quantitative parameters must be 

estimated at once, which leads to a formidable inversion problem. We have however been 

able to reconstruct multiparametric maps using a high performance computing facility 

within a reasonable computation time. The experimental design is more flexible since 

neither steady-states or static equilibrium conditions are needed nor the incoherence between 

undersampling artifacts and true signal; this allows for very short acquisitions (few seconds 

for a 2D slice) based upon experimentally reliable cartesian read-out schemes. In one of the 

experiments (see Fig. 9), we employed a step-wise flip-angle scheme combined with a 

standard bSSFP sequence, which is a widely available protocol on regular MR systems and 

does not require major adaptations on the acquisition. Also on the reconstruction side, 

flexibility is guaranteed by the inverse approach of MR-STAT; any changes made by the 

operator at the console during the exam can be easily accommodated in the reconstruction.

MR-STAT has been developed upon the philosophy that scanner time is much more 

expensive than computing time. We believe that this gap will keep growing in the future as 

computing power and algorithmic acceleration constantly increase. The current trends in 

bio-informatics and genomics show that local computing clusters or cloud computing on 

remote servers are becoming increasingly available in a hospital setting. The moderate 

investment in terms of the required computing infrastructure is highly profitable given the 

potential of MRSTAT for improving cost-effectiveness and patient comfort due to the 

reduced scan times and more simple workflows.

This study has focused on the computational and experimental proof-of-principle of MR-

STAT. There is room left to study and optimize the accuracy, precision and speed of this 

framework. For instance, regularization techniques could be applied to reduce the noise 
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amplification in the in-vivo measurements. Other techniques that could enhance MR-STAT 

are parallel imaging [13,23,24] and compressed sensing [11,12]. The availability of multiple 

independent receivers and sparsity regularization terms can dramatically improve the 

triangulation of the signal origins thus greatly improving the conditioning of the 

comprehensive optimization problem. In general, optimum experiment design techniques 

[25,26] could be applied to maximize the differentiation between signal evolutions and 

possibly enhance the rate of convergence while maintaining short acquisition times.

With this work, we intended to prove that quantitative MRI can be treated as a nonlinear 

tomographic problem and therefore large scale nonlinear optimization techniques can be 

successfully applied. We hope that this manuscript will inspire researchers from other fields, 

to try and apply their experience and knowledge in the area of large scale inversion problems 

to the qMRI and medical imaging in general.

6. Conclusion

A new framework for multi-parametric quantitative MRI, called MR-STAT, has been 

presented. Signal localization and parameter estimation are solved simultaneously by 

inverting a coupled space-time model from time domain data. This is obtained by 

established large scale nonlinear inversion techniques running on a high performance 

computing facility. The measurement efficiency is boosted by the elimination of dead times 

and traditional assumptions that inject artifacts into standard reconstruction approaches are 

circumvented. Moreover, this new formalism provides insights into the precision estimation 

of fast quantitative MRI.
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Fig. 1. 
Fragment of an MR-STAT data acquisition sequence. The spatially selective RF pulse is 

scaled by the tip angles θj. Gx and Gy are encoding gradients. Gz is the slice selective 

gradient. Note that the excitation (Exc) and acquisition (Acq) intervals follow one another 

without interruption, that is, the fixed echo and repetition times are the shortest possible.
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Fig. 2. 
Tip angles and time-domain signal for the MR-STAT sequence applied to the insilico 

simulated head experiment at 3 T.
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Fig. 3. 
Noise amplification in the MR-STAT experiment when all six parameters (T1,T2,|ρ|, ∠ρ, 

∣ B1
+ ∣, ω) are reconstructed. The numerical values inside the table refer to the log 10 of the 

condition number of the covariance matrix C. Large values mean large noise amplification. 

The condition number is reported as a function of the experiment length (numbers of readout 

lines) and spatial resolution (grid sizes) for a small scale, homogeneous in-silico model. The 

number of samples per readout line is equal to the number of grid points along one 

dimension. An empty cell means that C is rank deficient (infinite condition number) and the 

problem can not be solved.
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Fig. 4. 
Precision estimate test. A simple 2D object (top row) undergoes a simulated MR-STAT 

acquisition and reconstruction. The reconstructed T1 (left) and T2 (right) maps are shown on 

the second row. The histogram plots report the distribution of the reconstructed values over 

each compartment A, B and C. The standard deviations of these distributions are reported in 

Table 1 and show great similarity with the estimated standard deviation values.
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Fig. 5. 
Convergence curve of the MR-STAT reconstruction algorithm for the precision estimation 

test (see also Fig. 4). The relative residual norm (data-model misfit normalized on the norm 

of the data) is reported as a function of the iteration number. Note that the algorithm 

eventually converges to the thermal noise level.
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Fig. 6. 
T1 and T2 maps for the synthetic MR-STAT acquisition and reconstruction. (a) and (c): true 

and reconstructed maps. (b) and (d): standard deviation maps estimated by MR-STAT and 

the error in the reconstructions ∣ T1
true − T1

recon ∣ and ∣ T2
true − T2

recon ∣.
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Fig. 7. 

True and reconstructed maps of proton density, transceive phase, ∣ B1
+ ∣ and ω.
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Fig. 8. 
In-vivo experimental validation of MR-STAT for a sinusoidal RF train sweep. From top to 

bottom: the flip angle train, the recorded signal and the reconstructed parameter maps.
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Fig. 9. 
In-vivo experimental validation of MR-STAT for a piecewise constant tip angle excitation. 

From top to bottom: the flip angle train, the recorded signal and the reconstructed parameter 

maps.
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Table 1

Precision estimation test. Estimated standard deviations per compartment as derived from the covariance 

matrix C versus the true standard deviation calculated after the reconstruction. The estimated precision levels 

are very close to the obtained ones.

T1 T2

Compartment
[C]n, n

Std of recon
[C]n, n

Std of recon

A (CSF) 112.8 [ms] 114.1 [ms] 2.0 [ms] 1.8 [ms]

B (Gray m.) 16.1 [ms] 14.2 [ms] 0.9 [ms] 0.8 [ms]

C (White m.) 6.6 [ms] 5.8 [ms] 0.9 [ms] 0.8 [ms]

Magn Reson Imaging. Author manuscript; available in PMC 2018 August 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sbrizzi et al. Page 25

Ta
b

le
 2

T
ru

e 
an

d 
m

ea
n 

va
lu

es
 o

f 
th

e 
re

co
ns

tr
uc

te
d 

re
la

xa
tio

n 
tim

es
 p

er
 ti

ss
ue

 ty
pe

. T
he

 s
ta

nd
ar

d 
de

vi
at

io
n 

of
 th

e 
re

co
ns

tr
uc

te
d 

va
lu

es
 f

or
 e

ac
h 

tis
su

e 
ty

pe
 is

 

re
po

rt
ed

 in
 b

ra
ck

et
s.

T
1 

[m
s]

T
2 

[m
s]

T
ru

e
R

ec
on

(S
td

)
T

ru
e

R
ec

on
(S

td
)

C
SF

25
69

25
65

.7
(±

 3
8.

9)
32

9
32

9.
1

(±
 2

.8
)

G
ra

y 
m

.
83

3
83

3.
4

(±
 1

8.
9)

83
83

.0
(±

 0
.8

)

W
hi

te
 m

.
50

0
50

0.
9

(±
 1

2.
2)

70
70

.0
(±

 0
.6

)

Fa
t

35
0

35
2.

2
(±

 8
.9

)
70

70
.0

(±
 0

.5
)

M
us

cl
e

10
00

10
00

.6
(±

 3
1.

0)
47

47
.0

(±
 0

.6
)

Sk
in

56
9

57
0.

1
(±

 7
.7

)
32

9
32

8.
3

(±
 4

.0
)

B
lo

od
17

00
16

99
.3

(±
 2

1.
7)

30
0

29
9.

6
(±

 2
.5

)

D
ur

a
20

00
20

01
.1

(±
 4

1.
1)

28
0

27
9.

2
(±

 5
.2

)

Magn Reson Imaging. Author manuscript; available in PMC 2018 August 07.


	Abstract
	1. Introduction
	2. Theory
	2.1. The coupled space-time signal model
	2.1.1. Spatial encoding, identifiability and precision estimates


	3. Methods
	3.1. Implementation
	3.1.1. Computational complexity and parallelization

	3.2. Reconstructions
	3.2.1. In silica low resolution reconstruction
	3.2.2. In-silica high resolution reconstruction
	3.2.3. In-vivo experimental demonstration at 3.0 T


	4. Results
	4.1. In silica low-resolution reconstruction
	4.2. In-silica high resolution reconstruction
	4.3. In-vivo experimental demonstration at 3.0 T

	5. Discussion
	6. Conclusion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Table 1
	Table 2

