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Abstract

Introduction—For the past decade, the focus of complex disease research has been the genotype. 

From technological advancements to the development of analysis methods, great progress has 

been made. However, advances in our definition of the phenotype have remained stagnant. 

Phenotype characterization has recently emerged as an exciting area of informatics and machine 

learning. The copious amounts of diverse biomedical data that have been collected may be 

leveraged with data-driven approaches to elucidate trait-related features and patterns.

Areas covered—In this review, the authors discuss the phenotype in traditional genetic 

associations and the challenges this has imposed. The authors address approaches for phenotype 

refinement that can aid in the more accurate characterization of traits. Further, the authors 

highlight promising machine learning approaches for establishing a phenotype and the challenges 

of electronic health record (EHR) derived data.

Expert Commentary—The authors hypothesize that through unsupervised machine learning, 

data-driven approaches can be used to define phenotypes rather than relying on expert clinician 

knowledge, which may be inaccurate. Through the use of machine learning and an unbiased set of 

features extracted from clinical repositories, researchers will have the potential to further 

understand complex traits and identify patient subgroups. This knowledge may lead to more 

preventative and precise clinical care.
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1. Introduction

The genetic architecture of complex human disease is likely influenced by multiple 

components including both common and rare genetic variants, structural variants, and gene-

gene and gene-environment interactions. Additional confounding variables such as genetic 

locus heterogeneity and phenotypic or trait heterogeneity are also likely at play. A better 

understanding of both the genetic and phenotypic complexities of these traits is required to 

fully elucidate their intricate etiologies and ultimately progress toward more predictive and 

precise clinical care.

Given the technological advances of genetic platforms, many studies have placed a large 

focus on the genotype. Considerable progress has been made in how we are defining and 

handling genetic data in our studies. This includes moving beyond common variants to 

examine the influence of other forms of sequence[1–4] and structural variation[3,5], 

considering the environment, and integrating variousomics data modules such as genomic, 

transcriptomic and metabolomic data so as to identify effective models that predict 

phenotypic outcome[6]. However, advancement in how we are defining and handling the 

phenotype in our studies has largely remained stagnant, and not kept pace with 

developments in studying the genotype. Appropriate phenotype assignment plays a crucial 

role when trying to resolve the genetic architecture of complex human traits. Regardless of 

what statistical method is employed, accurate phenotyping is essential in identifying a true, 

replicable genotype-phenotype association.

2. The phenotype in traditional genetic studies

Traditionally, association analyses have been performed by selecting participants from a 

given cohort, and dichotomizing them into one of two broad categories, cases or controls, 

using some clinical criterion. For example, in an obesity study, researchers may use body 

mass index (BMI) as the main determinant of obesity status. Subjects with a BMI greater 

than 30 kg/m2 will be classified as cases while all other subjects with a BMI below 30 kg/m2 

would be labeled as controls. However, the clinical profile of obesity is extensive, and this 

categorization may be over-simplistic as it fails to account for the intrinsic complexities of 

this trait. Patients may exhibit a wide range of symptoms, including fatigue, polydipsia, 

hyperhidrosis or insulin resistance, and any number of comorbidities, such as arthritis, sleep 

apnea, type II diabetes, and hypertension[7,8], as highlighted in Figure 1a. Not all patients 

present with the same clinical characteristics, and so we must question whether lumping 

together all patients with a BMI above 30 kg/m2, regardless of variability in clinical 

manifestation, is creating too heterogeneous of a phenotype. This implicit phenotypic 

heterogeneity is likely mitigating our ability to detect the genetic effects of obesity. This 

scenario does not only apply to obesity. In fact, many diseases have been shown to exhibit 

phenotypic heterogeneity, including diabetes mellitus[9], autism spectrum disorder[10], and 

obstructive lung disorders like COPD and asthma[11]. While some traits may be more 

multifarious than others, heterogeneity is inherent in the nature of complex polygenic 

disorders, and addressing it may help further illuminate the genetic landscape of these traits.
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The obesity example highlights two types of heterogeneity-related components that muddle 

complex trait analyses, trait heterogeneity and phenotypic variation[12,13]. Phenotype or 

trait heterogeneity exists when a given trait is defined with inadequate specificity such that it 

may actually represent multiple distinct traits[13]. Phenotypic variation describes the 

spectrum of variability in symptoms, severity, and age of onset in subjects who exhibit the 

same trait or disease. These two concepts often coincide and contribute toward creating a 

heterogeneous phenotypic landscape, and hence, this work will simply refer to both as trait/

phenotype heterogeneity. Figure 1 provides an example of such a heterogeneous landscape 

as exemplified by obesity.

The role of trait heterogeneity on genetic studies has been known since the dawn of 

association studies, and it was even cited as a potential reason for the limitations of GWAS 

in fully explaining the genetic variance in complex traits[5]. Heterogeneity can lead to 

increased type II error probabilities resulting in substantially decreased statistical power or 

ability to detect a true association between a disease and a locus[14–17]. While the impact 

of phenotype heterogeneity is well chronicled, addressing the issue has proven quite 

difficult. Loss of statistical power may be combatted by one of two approaches, either 

increasing the sample size in the study or increasing the effect size of the association. 

Regarding the former, it is difficult to accurately estimate how much of a sample size 

increase is needed in the presence of trait heterogeneity. However, studies of phenotypic 

misclassification estimate that as much as a 39-fold increase in sample size is required in 

case/control studies when the misclassification rate is 5% and disease prevalence is 1%[17]. 

Although this value is but a rough estimate, and actual measures may not be as stark for 

circumstances of heterogeneity, increasing the sample size in most studies may not be 

feasible as it could necessitate recruitment of additional subjects. Thus, a more practical 

approach may be to focus on elevating the effect size of the association which could be 

accomplished by decreasing noise and redundancy in the data. For example, additional 

phenotypic and clinical information can be used to facilitate stratification of subjects. This 

was often not possible in the early days of GWAS as scarce detailed phenotypic information 

had been collected in conjunction with genetic data. However, with expansions in data 

collection and the establishment of electronic health record (EHR)-linked 

biorepositories[18–22], copious amounts of biomedical data have become available. These 

data may be used for phenotypic refinement in the development of phenotype algorithms or 

they may be leveraged in clustering approaches for the stratification of patients into more 

homogeneous subgroups. Both approaches aid in increasing the effect size and help address 

the influence of trait heterogeneity in association studies.

3. Phenotype Refinement

Large collaborative efforts have focused on the creation of sophisticated algorithms for 

better phenotypic classification in many complex traits. The main goal of these algorithms is 

to develop a robust EHR-based model for improved case definition of a given trait[23]. 

EHRs provide a rich source of both structured and unstructured data that can be integrated 

for research tasks such as cohort development, outcome ascertainment, and clinical 

translation when coupled to a biobank. Structured EHR data is largely made up of diagnosis 

or billing codes, including international classification of disease (ICD) codes and current 
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procedural terminology (CPT) codes, as well as electronic prescriptions, and vital signs. The 

ICD codes most often seen in studies are the 9th and 10th editions of these codes, ICD-9 and 

ICD-10 codes, respectively. Unstructured EHR data is in the form of notes and reports. This 

includes clinician notes (e.g. family history, signs and symptoms, social history), and reports 

(e.g. radiology reports, discharge reports, and others), which are often in form of free 

text[24]. Most models to define a disease have focused on the use of diagnosis codes as this 

data is structured, readily available, and does not require sophisticated curation methods. 

Diagnosis codes provide a rich source of information and have been very useful in further 

elucidating the architecture of many traits[25–27] and characterizing comorbidity 

profiles[28,29], to name a few applications. Unfortunately, the accuracy of these models is 

limited by coding practice variations, use of multiple diagnosis codes, and the fact that these 

codes were developed for billing purposes often by administrative non-clinical staff[23].

Advanced phenotype algorithms use both structured and unstructured data to pull all 

informative components from the EHR and more accurately define a disease. To date, 

phenotype algorithms with high positive predictive values have been developed for many 

conditions, including diabetes mellitus[30], depression[31], Crohn’s disease and ulcerative 

colitis[23], and rheumatoid arthritis[32]. Further, databases like PheKB[33], accessible at 

https://phekb.org/, which contains over 60 finalized and multiple in-development publicly 

available algorithms, provide a catalog of phenotype models across a wide range of complex 

traits. Phenotype algorithms provide an efficient approach for addressing heterogeneity in 

our data. But while significant progress has been made in this area, phenotype algorithm 

development is a challenging task. It is time intensive, requires the use of natural language 

processing (NLP) techniques, as well as a multidisciplinary team with collaborative efforts 

from clinicians, bioinformaticians, EHR informaticians, and genomics researchers. The use 

of data-driven approaches to leverage EHR data and elucidate trait-related features and 

patterns may provide a more high-throughput and generalizable means of addressing 

heterogeneity in the phenotype. Furthermore, knowledge gained in this process can be 

integrated into the phenotype algorithm development pipeline to aid in more precise 

phenotyping.

4. Machine learning approaches for establishing a phenotype

Various classes of unsupervised, data-driven, machine learning algorithms have been 

implicated in undertaking the issue of trait heterogeneity. In this review, we will specifically 

focus on clustering approaches, topological methods, and dimensionality reduction 

techniques, as they all show promise in addressing this issue. It should be noted that these 

three categories are not mutually exclusive, and several algorithms often fall into multiple 

classes.

Clustering approaches are unsupervised machine learning algorithms that aim to produce 

homogeneous subsets of data when subgroup labels are unknown. Clustering is an effective 

method for grouping objects with similar attributes using a measure of distance or 

similarity[34]. There are over 100 different clustering techniques which may fall into a 

number of broad algorithmic categories. The most common distinction among clustering 

methods is hierarchical, or nested, versus partitional, or un-nested, approaches. Partitional 
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methods, such as k-means, divide the data into non-overlapping subsets so that each subject 

falls into exactly one subgroup. Hierarchical approaches, like agglomerative clustering, 

allow clusters to have nested subclusters, which are often organized as a tree model and 

shown as a dendrogram[11]. Despite the differences, these methods aim to produce subsets 

which have high intra-group similarities (objects within a group are similar), and low inter-

group similarities (objects between groups are more dissimilar). Cluster analysis has widely 

been used to assess microarray data[35] and has seen success in EHR applications[11,36–

41]. Additionally, hierarchical clustering has been used to assess the contribution of obesity 

(a trait with known heterogeneity, as seen in Figure 1) to respiratory conditions[42,43]. 

Unfortunately, many clustering algorithms are often not robust to high dimensional data, and 

thus most EHR applications have been restricted to smaller or more homogenous 

datasets[34].

Dimensionality reduction algorithms are another set of unsupervised techniques that can be 

used to find patterns and structure in the data. These methods facilitate the embedding of 

data in a lower dimension and aim to maximize the variance with the goal of removing noise 

and elucidating features[44,45]. Dimensionality reduction techniques are often classified as 

linear, such as principal component analysis (PCA), or non-linear, such as multi-dimensional 

scaling (MDS). These methods have the advantage of handling high dimensional, noisy data 

sets; and they have shown success in sub-phenotyping applications[37,46,47]. One of the 

properties that can be used to divide dimensionality reduction approaches is the parametric 

nature of the mapping between high-dimensional and low-dimensional space. Many 

dimensionality reduction techniques (including isomap, LLE, and Laplacian Eigenmaps) are 

non-parametric in nature, meaning that they do not specify a mapping from high to low 

dimension. This can make it impossible to obtain insight into how much high dimensional 

information was retained in a lower dimensional embedding. Conversely, parametric 

techniques also present certain challenges. These algorithms include the presence of free 

parameters that influence the cost function and need to be tuned for algorithm 

performance[45]. While these parameters provide flexibility in the method, optimization can 

often be challenging. Further, techniques that have non-convex functions, such as t-

distributed stochastic neighbor embedding (t-SNE)[48], have additional parameters that are 

imposed including iterations, and learning rate.

Topology-based methods hold a lot of promise for addressing challenges imposed by 

phenotype heterogeneity. These methods provide a geometric approach to perform pattern 

recognition within large, multidimensional datasets[49,50]. They aim to extract the “shape” 

and “connectivity” of complex data in order to find existing structures. Overall, topological 

data analysis (TDA) is a very broad collection of methods which include the aforementioned 

nonlinear dimensionality reduction, but also ridge estimation, manifold learning, and 

persistent homology[51]. Some have even categorized clustering as a TDA method as 

density-based clustering approaches rely on the connection of data objects to elucidate 

patterns. Application of TDA to phenotype subgrouping is an exciting and growing area of 

research, and multiple studies highlight its promise[9,52,53]. However, given its infancy in 

EHR applications, there are likely many factors that still need to be considered. This 

includes the challenge of choosing appropriate tuning parameters for topological algorithms. 

This choice often requires its own set of methods, such as using bootstrap approaches to 
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assess the number of significant topological features[51]. Further, some TDA applications to 

biomedical data have been made used professional, non-open source software, which is 

often financially infeasible for many researchers.

Clustering, nonlinear dimensionality reduction, and TDA are promising approaches with 

demonstrated successes in addressing phenotypic heterogeneity. However, they each have 

strengths and weaknesses, and will need to be thoroughly evaluated for the application of 

elucidating subgroups in EHR data. These approaches, along with strengths, limitations, and 

examples of successful biomedical applications are described in Table 1.

5. Challenges

For a machine learning algorithm to be appropriate in undertaking trait heterogeneity and 

elucidating homogeneous patient subgroups, it must address key challenges associated with 

EHR-derived data and analyses. These include the handling of heterogeneous data types, 

robustness to missing data and high dimensionality, as well as computational feasibility, to 

name a few[56]. Data extracted from the EHR is heterogeneous in data type as variables 

may be continuous, such as clinical lab measures and BMI, or categorical, such as 

comorbidities and race. Ideal methods would be robust to handling mixed data types as each 

value may contain meaningful information. Alternatively, data may be altered to a single 

type by using methods such as the categorization of continuous variables, and dummy or 

one-hot encoding[57] of continuous variables. However, the drawback of this approach is 

that the type of variable encoding used has been shown to affect results[11].

Another challenge is the amount of missing data in the EHR. To date, many approaches 

require exclusion of subjects with missing values, and thus the majority of studies have been 

conducted on complete datasets. This tactic, however, may be biasing results by restricting 

analysis to patients who for some reason have complete data. It could be that these patients 

are the sickest which would bias analyses towards more extreme phenotype subsets. Or, 

there may be socioeconomic reasons for patients being complete across their data attributes, 

which would again impose a bias. Regardless of the reason, missingness in the EHR is 

meaningful, but appropriately accounting for this missingness is a challenge. As an 

alternative to using complete datasets, imputation strategies may be employed to aid in 

estimating missing values. There is large debate whether imputation of phenotype data is 

suitable[58], and careful considerations need to be made when choosing to impute. First, 

characterization of the type of missingness is needed. Knowledge of whether missing data is 

at random (MAR) or missing not at random (MNAR) is important as each imputation 

method assumes a specific model of missingness, and a violation of these assumptions may 

impose downstream analytical biases[59]. Accurate characterization of missingness may 

prove difficult, especially in the EHR, as data are rarely entirely MAR or MNAR. Instead, 

they likely fall somewhere in the middle, with variable components of missingness. Second, 

considerations for the choice of imputation strategy need to be made. While there is no such 

thing as best imputation method, comparisons of error, bias, and implementation difficulty 

can be leveraged in making a knowledgeable choice[60]. This, however, comes with the 

caveat that such conclusions may not be generalizable between different datasets. Although 

efforts can be made to minimize its occurrence, missing data in the EHR is unavoidable. 
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Promising machine learning methods would ideally be robust to handling missing data. If 

not, then researchers must choose if imputation or restriction to complete data is most 

appropriate, with an understanding of the limitations and biases that are imposed by this 

decision.

A further challenge facing researchers is the presence of inaccurate or incorrect data in the 

EHR. There are multiple reasons for data inaccuracies in the EHR; some of these include 

incorrect entry or miskeying of information (incorrect data is mistakenly entered), 

miscommunication with a patient (inaccurate information is provided by the patient or there 

is a miscommunication between patient and clinician), and timeliness of data entry (medical 

professional may chart data much later than it was originally observed due to time 

constraints)[61]. Incorrect data in the EHR is a very difficult challenge to address as it may 

not be clear which data elements are correct and which are inaccurate. Currently, the most 

common means of limiting data inaccuracy is the use of various quality control assessments. 

According to Weiskopf et al.[62], comparison of EHR data to a “gold standard” is the most 

frequently used method for assessing data accuracy. These gold standards are often of 

various types including physical paper records[63,64], contact with treating clinician[65], 

and patient interviews[66]. However, the use of such gold standards may not be feasible due 

to limited access to patients and/or clinicians, and the time-consuming nature of these tasks. 

Alternatively, data verification within the EHR can be used as a “gold standard”, in which 

agreement between data elements within the EHR can be used to assess data accuracy. This 

can be performed computationally, and it may involve diagnosis verification by examining 

associated laboratory tests, medications, and procedures[67–69]. Additionally, NLP has also 

been used to analyze written or unstructured texts in the EHR, and compared with structured 

elements for agreement[23,71]. Inaccurate data is a concern for all researchers working with 

EHRs, and computation approaches can be leveraged to limit the inaccuracies.

Additional considerations that need to be made include the computational attractiveness of 

the chosen method. Data extracted from the EHR are often highly dimensional and 

longitudinal; they may include hundreds to thousands of features measured across thousands 

of subjects. Potential algorithms should be computationally sophisticated for handling such 

large data. Additionally, advanced platforms, such as Hadoop, Spark, and MongoDB or 

cloud-computing services, like Amazon Web Services (AWS), and Google Cloud Platform, 

which make the analysis and storage of large-scale data feasible, should be considered[72]. 

While they provide significant aid in computational performance, these platforms are often 

quite costly and may not be financially feasible for many research groups, therefore, 

computational robustness within a given algorithm is a key advantage. Even if computational 

needs are met, dimensionality can pose an analytical challenge. As EHR data are high 

dimensional, successful methods will either need to be coupled to or contain internal feature 

selection techniques to help ensure that resultant clusters are meaningful. Clustering on all 

data attributes may lead to subsets that contain redundant information and are clinically 

irrelevant[73]. The EHR contains a wealth of valuable data that can be leveraged for patient 

subgrouping, however, for an analytical approach to be successful in this setting, it must 

address a host of challenges imposed by the nature of EHR data.
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6. Conclusion

Unsupervised machine learning approaches can be applied to rich phenotypic data from the 

EHR to create homogeneous patient subsets with more consistent underlying factors 

contributing to disease. These new homogeneous subgroups can then be examined for 

genetic, environmental, as well as other contributing factors that may associate and predict 

disease susceptibility. This may help uncover important biological insights, identify 

biomarkers, as well as inform clinical care and drug treatment. However, given their 

incomplete, inaccurate, highly complex, dimensional and biased nature, EHR data present 

analytical difficulties[56]. Thus, many studies have been restricted to using data that is 

complete (i.e. not accounting for missingness), of a single data type (e.g. categorical or 

continuous), and limited to a small sample size. To successfully mine and extract meaningful 

information from the EHR, machine learning approaches must overcome the challenges 

imposed by these data. Overall, the EHR provides an invaluable resource of information that 

can be leveraged to better understand the phenotypic complexity of many traits and may aid 

in progressing to a more precise treatment of disease.

7. Expert Commentary

Phenotype characterization is emerging as one of the most exciting areas of informatics and 

machine learning. For the past decade, the primary focus of genetic research has been on the 

development of methods and technologies for theomics component of the research. Many 

new high-throughput, cost-effective molecular technologies have been developed and made 

available to the community. This has led to a wealth of data and an enormous number of 

genome-wide studies exploring the genetic architecture of common, complex traits. 

However, the definition of the trait or phenotype has largely been overly simplistic. Now that 

we have dense, comprehensive molecular data to characterize the genomic aspect of the 

equation, the future is defining the phenotypic component of the equation.

Rich, dense, clinical data are becoming increasingly more available for research through 

large EHR databases, clinical data repositories, and clinical trials data sources. With these 

longitudinal clinical data, accurate and specific phenotypes can be defined for participant 

groups in genomics projects. For decades, we have relied on expert knowledge from the 

clinical community to guide our development of phenotype algorithms. A key weakness of 

this strategy is that clinical experts and our current knowledgebase of what constitutes a 

disease or trait could be inaccurate. Perhaps there are other clinical features or symptoms 

that comprise the true definition of the trait. By using our current state of knowledge, we 

could be missing important features and incorrectly defining traits.

Our hypothesis is that through the use of machine learning algorithms, we will be able to 

rely on data-driven approaches to define phenotypes, rather than assuming our expert 

knowledge about traits is accurate. It is conceivable that there are features that are important 

to define more precise and accurate phenotypes, that are not yet known to clinicians. Thus, 

through machine learning in unsupervised approaches, we can identify relevant and 

important features not yet known. The ultimate goal is to make use of all relevant clinical 

data to define accurate, specific, phenotypes for research purposes.
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These machine learning approaches will also enable the community to identify research 

participant subgroups of specific traits – identifying participants who share clinical features 

and who present differently from other participants. Clustering of participant groups to 

handle trait heterogeneity has been done in the past, however, this was mostly based on 

known clinical features[12,13,36,37]. We propose that through the use of unsupervised 

machine learning, and an unbiased set of clinical features, we will have the potential to learn 

more about complex traits and identify patient subgroups simultaneously. The promise of 

these approaches is based on how well these methods have done in other areas of 

research[49,74–76]. If these methods work well for financial data, sports predictions, 

oceanography, and cosmology, we believe they will work well for clinical data.

8. Five-year View

In our opinion, the next three to five years will be a very exciting time for phenotype 

informatics. Large clinical data sets will continue to become publicly available such as UK 

Biobank[21] and the All of Us Cohort Program[77]. These data, along with the data sets 

from health systems and academic medical centers, such as those in the eMERGE 

network[20,78], and government studies like the Million Veterans Program (MVP)[22], will 

lead to an enormous amount of clinical data in the public domain. This will facilitate the 

community of machine learning, computer science, and data science experts the opportunity 

to develop and deploy novel algorithms on these rich, longitudinal data sources to define 

more robust phenotypes, identify patient subgroups, and further our understanding of many 

complex traits. This knowledge has the potential to influence more precise clinical care of 

patients. Phenotype informatics will be emerging as a stimulating, innovative area for years 

to come.
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Key issues

• The primary focus of complex disease research has been the development of 

methods and technologies for studying the genotype. However, advances in 

studying the phenotype have remained stagnant. Appropriate phenotype 

characterization plays a crucial role whe n trying to resolve the genetic 

architecture of complex human traits.

• Phenotype characterization in traditional genetic studies has not accounted for 

trait/phenotype heterogeneity which reduces statistical power and mitigates 

the ability to detect shared genetic effects.

• Electronic Health Records (EHRs) provide an invaluable resource of 

information that can be leveraged to better understand the phenotypic 

complexity of many traits and may aid in progressing to a more precise 

treatment of disease.

• Phenotype informatics has recently emerged as an innovative, and exciting 

area of informatics and machine learning. The copious amounts of diverse 

biomedical data that have been collected in EHRs may be utilized with data-

driven, machine learning approaches to elucidate trait-related features and 

patterns.

• For a machine learning approach to be appropriate in undertaking trait 

heterogeneity and elucidating homogeneous patient subgroups, it must 

address key challenges associated with EHR-derived data and analyses 

including the handling of heterogeneous, robustness to missing data, high 

dimensionality, and computational feasibility.

• The public availability of large clinical data sets along with the data from 

health systems and academic medical centers will lead to an enormous 

amount of clinical data in the public domain. This will facilitate the 

community of machine learning, computer science, and data science experts 

the opportunity to develop novel algorithms on these rich, longitudinal data 

sources, to define more robust phenotypes.

• Data-driven approaches can be used to define phenotypes rather than relying 

on expert clinician knowledge, which may be inaccurate. Through the use of 

machine learning and an unbiased set of features extracted from clinical 

repositories, researchers will have the potential to further understand complex 

traits and identify patient subgroups. This knowledge may lead to more 

preventative and precise clinical care.
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Figure 1. Heterogeneous Landscape of Obesity
a). Illustrates some of the potential comorbidities of obesity. Patients with a BMI > 30 kg/m2 

often exhibit heterogeneity in comorbidities. b). Identifies several factors that are involved in 

creating the spectrum of phenotypic variability in obesity. The dashed arrow indicates 

increased risk of developing obesity in adulthood for individuals who suffer from obesity in 

their childhood. Both a). and b). act in creating a heterogeneous phenotypic landscape.
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Table 1

Summary of machine learning approaches that are promising in addressing issues imposed by trait 

heterogeneity. The Approaches column lists examples of algorithms in the respective method category. 

Strengths and Limitations are described in terms of EHR-derived data applications. The Biomedical 
Applications column lists traits for which subgroups have been identified using the respective method.

Method Category Approaches Strengths Limitations Biomedical Applications

Cluster analysis Hierarchical, k-means Wide range of 
applications; easy 
interpretation

Not robust to highly 
dimensional data or large 
datasets; most approaches 
restricted to one data type; 
some approaches require 
number of clusters

COPD[11,37], 
Fibromyalgia[39], 
Tinnitus[40], Diabetes[41], 
Obesity[42,43]

Topological approaches TDA, manifold learning 
algorithms

Able to handle highly 
dimensional and 
noisy data; does not 
require knowledge of 
number of clusters; 
sensitive to global 
and local structure

Optimization of free 
parameters; computational 
cost; deep knowledge of 
topological methods for 
correct application

T2D[9], Breast cancer [53], 
Attention deficit [52]

Dimensionality Reduction Linear (PCA), Non-
linear (MDS, t-SNE, 
Isomap, LLE)

Able to handle highly 
dimensional, noisy 
data; does not require 
knowledge of number 
of clusters

Optimization of free 
parameters; Many 
methods are non-
parametric and do not 
provide information on 
how dimensionality was 
reduced; projection loss; 
result inconsistency; 
computational cost

COPD[37,46], Changes 
during anesthesia[54], 
temporal lobe epilepsy[55]
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