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Abstract

An ISES (In Situ Enzymatic Screening) lead pointed to conditions (PMP N-protecting group, 

Ni(cod)2 catalyst precursor) under which chiral, bidentate phosphines could promote Ni(0)-

mediated allylic amination. Therefore, bidentate phosphines bearing central, axial and planar 

chirality were examined with two model substrates of interest for PLP-enzyme inhibitor synthesis. 

In the best case, with (R)-MeO-BIPHEP, vinylglycinol derivative 2 was obtained in 75% ee (97% 

ee, one recrystallization) from 1. Further manipulation provided a Ni(0)-mediated entry into L-

vinylglycine.

Graphical Abstract

α-Vinyl amino acids are potential inactivators of pyridoxal phosphate (PLP) enzymes.1 

‘Suicide substrates’ bearing this vinylic trigger include the natural product, L-vinylglycine,2 

and the anti-epileptic drug, (S)-vigabatrin (γ-vinyl-GABA),3 that may also have potential to 

treat substance abuse.4 This has led to considerable synthetic activity toward these targets.
5,6,7 Among the most efficient and stereocontrolled approaches to appear are transition 

metal-mediated allylic amination routes by Hayashi,8 Alper,9 Trost10 and Overman.11 

Heretofore, such ventures have been focused on palladium.

In developing an In Situ Enzymatic Screening (ISES) method for evaluating catalysts, we 

chose an intramolecular allylic amination route to a protected vinylglycinol (1→2) as a 

model reaction. Our initial findings demonstrated that, among non-Pd metals screened, Ni(0) 

showed particular promise for this transformation.12 Furthermore, the PMP nitrogen-

protecting group and bidentate phosphine ligands were found to promote this chemistry.
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As can be seen in Figure 1, ISES reveals that the combination of Ni(cod)2 with chiral, 
bidentate phosphines also gives this chemistry. As before, relative ISES rates track well with 

relative rates of product formation under standard reaction conditions, as judged by NMR at 

short times (Table 1).

In our earlier studies, dppb had shown the fastest initial rates by ISES, and so it was retained 

as a standard here. Similarly, SKEWPHOS, a chiral, acyclic 3-carbon bridged bidentate P,P-

ligand gives relatively rapid formation of 2. The initial ISES screen also pointed to slower, 

yet potentially useful conversions with chiral P,P-ligands of the DUPHOS and BINAP 

variety (Figure 1). On the contrary, neither QUINAP (P,N-BINAP analog) nor a prototypical 

bis(oxazoline) (N,N-ligand) gave significant ISES rates. Next, it was noted that although 

unconstrained ligands such as SKEWPHOS gave both very good rates and conversions, 

better ee’s could be obtained with BINAP or DUPHOS. Clearly, we were not seeing a direct 

correlation between rate and ee here. On the basis of these observations, it was decided to 

explore broadly relatively electron-rich chiral bidentate phosphines. The ligand array chosen 

includes elements of central, planar and axial chirality (Figure 2).

The results for the transformation 1→2 are collected in Table 2. A few patterns emerge. 

Indeed, all bis(diphenylphosphino) L’s with 2–4 sp3-carbon spacers (4, 5a, 5b, 7, 8) give 

excellent conversions, but low ee’s. The phospholane-based DUPHOS ligands all give 

excellent conversion, but only the methyl substituted ones (10a, 10c) lead to ee’s of some 

note, approaching 50%. The JOSIPHOS ligand family incorporates both central chirality and 

planar chirality. Best results, in terms of both catalysis and enantioselection, are seen with 

ligands bearing a (diarylphosphino)ferrocene in tandem with a (dialkylphosphino)ethyl 

moiety (i.e. 12a, 12b, & 12f). A similar structure/activity observation has been made with 

JOSIPHOS ligands in a model Pd-mediated allylic alkylation reaction.13 Interestingly, in 

comparing 12a & 12b, one sees that subtle changes in sterics can have significant 

consequences in ee and rate (Tables 2 & 3). Thus, 12a (R′ = cy), gives higher yields (55–

65% vs. 17–23%) with both substrates 1 and 19 (vide infra), but 12b (R′ = tBu) gives higher 

ee’s (74–82%), indeed among the highest seen here.

The most practical results were obtained with ligands possessing axial chirality. 

Enantioselection steadily increases from BINAP (15a, 46% ee) to tol-BINAP (15b, 59% ee) 

to MeO-BIPHEP (16a, 72–75% ee),14,15,16 while yields are outstanding (86–94%) across 

the series. More sterically hindered BIPHEP ligands (16b–d) provided less satisfactory 

results.

Given the importance of vigabatrin,4,6 we next set out to examine the Ni(0)-mediated 

transformation 19→20, which would serve as a formal synthesis of the drug. Note that 

substitution of a CH2 for the bridging O means that an N-PMP amidate replaces the N-PMP 

carbamate as the formal nitrogen nucleophile.

Pleasingly, it was found that the requisite substrate 19 could be efficiently assembled via C-

alkylation of the dianion derived from N-PMP-acetamide (Scheme 1). The ligand survey 

(Table 3) revealed decreased enantioselection for the axially chiral ligands, with the 

exception of 16b. But, these ligands were eclipsed by DUPHOS ligand 10a (66% ee) and the 
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PtBu2-bearing JOSIPHOS ligand 12b (74% ee), again, albeit with low conversion for 12b. 

Interestingly, one of the WALPHOS ligands (13b, 60%, 53% ee) also appears to show 

promise.

While isolated examples of Ni(0)-mediated allylic amination have been reported,17 to our 
knowledge, these represent the first asymmetric examples. At this juncture, we chose to 

examine the best case more closely, namely the (R)-MeO-BIPHEP-Ni(0)-promoted 

synthesis of 2 (Table 2, entry no. 21). Unfortunately, additives found to be beneficial in other 

late transition metal-mediated allylic substitutions18 such as NEt3,18a HOAc,18a NBu4OAc,
17a LiCl18b (<5% conv.), LiF18c (60%, 73% ee), NBu4F18d (60%, 57% ee), NBu4PF6

17b 

(83%, 70% ee) and NBu4BH4
18d (51%, 26% ee-R) were deleterious here. Changing the N-

protecting group from PMP to OMP19 (46%, 64% ee) or TMP19 (83%, 67% ee) was not 

beneficial. The (E)-isomer of 1 gave the same sense of induction, though at lower ee (65%) 

and yield (69%). This result is reminiscent of Hayashi’s observations with Pd8 and may be 

evidence of rapidly equilibrating π-allyl metal intermediates.

However, whereas all of the initial screens had employed 10 mol% Ni(cod)2, 20 mol% L and 

a full equivalent of base (LiHMDS), it was found that, at least in this case, base could be 
completely eliminated and MeO-BIPHEP reduced to 10 mol% with essentially no 
consequence (83%, 75% ee). Gratifyingly, we also found that with a single recrystallization, 
the ee of the product could be increased from 75% to 97% @ 64% overall yield. This 

refinement then allowed for a practical entry into L-vinylglycine, centered around this new 

asymmetric Ni(0)-mediated intramolecular allylic amination (Scheme 2). Studies to further 

delineate the scope and limitations of this asymmetric Ni(0)-chemistry are in progress and 

will be described in due course.
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19. OMP = o-methoxyphenyl. TMP = 3,4,5-trimethoxyphenyl.
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Figure 1. 
UV/vis Traces for the ISES Data in Table 1.

Berkowitz and Maiti Page 6

Org Lett. Author manuscript; available in PMC 2018 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Array of Chiral Bidentate Phosphine Ligands Examined
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Scheme 1. 
Synthesis of the Vigabatrin Precursor
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Scheme 2. 
A Ni(0)-Mediated Synthesis of L-Vinylglycine
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Table 1

ISES Evaluation of Bidentate Ligands for Ni(0)-Mediated Allylic Substitution.

a no. bidentate ligand bΔO.D.340/time (mAbs/min) c% conv

1 DPPB (6) 132 ± 16 71

2 (S,S)-SKEWPHOS (5b) 64 ± 12 39

3 (R)-BINAP (15a) 45 ± 10 28

4 (R,R)-Me-DUPHOS (10a) 30 ± 1 22

5 (S)-QUINAPd 18 f

6 (S,S)-Di-t-Bu-boxe 15 ± 2 f

a
Conditions for the biphasic ISES screen (YADH = yeast alcohol dehydrogenase and YAlDH = yeast aldehyde dehydrogenase) as described in the 

Supporting Information.

b
Obs’d rates (10 min) of NADH formation in units of ΔO.D.340 min−1. Unless otherwise indicated, ISES slopes are reported as mean ± SD 

(duplicate runs).

c
Reaction conditions: 200 mM 1, 10 mol% Ni(cod)2, 20 mol% ligand, LiHMDS (1 eq.), THF, rt, 15 min. Product:educt ratio estimated by NMR 

following work-up.

d
Ligand is (S)-1-(2-diphenylphosphino-1-naphthyl)isoquinoline.

e
Ligand is 2,2′-methylenebis[(4S)-4-t-butyl-2-oxazoline].

f
Trace product (crude NMR).
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Table 2

Cyclizations of Allylic Amination Substrate 1

a no. ligand yieldb eec confd

1 (R,R)-NORPHOS (4) 80% 28% R

2e (S,S)-CHIRAPHOS (5a) 75% 0%

3f (2S,4S)-SKEWPHOS (5b) 94% 13% S

4g (2S,4S)-BPPM (7) 87% 6% R

5 (S,S)-DIOP (8) 79% 0%

6 Trost Ligand (9) 37% 4% S

7h Trost Ligand (9) nr

8g (R,R)-Me-DUPHOS (10a) 89% 48% S

9 (S,S)-i-Pr-DUPHOS (10b) 86% 24% S

10g (S,S)-Me-en-DUPHOS (10c) 78% 46% R

11 (S,S)-Et-FerroTANE (11) 60% 7% R

12 JOSIPHOS-type (12a) 65% 56% S

13 JOSIPHOS-type (12b) 17% 82% S

14 JOSIPHOS-type (12c) 31% 22% S

15 JOSIPHOS-type (12d) 38% 0%

16 JOSIPHOS-type (12f) 79% 43% S

17 WALPHOS-type (13a) nr

18 (Sp)-PHANEPHOS-type (14) nr

19 (R)-BINAP (15a) 90% 46% S

20 (R)-Tol-BINAP (15b) 94% 59% S

21 (R)-MeO-BIPHEP (16a) 86% 72% S

22h (R)-MeO-BIPHEP (16a) 88% 75% S

23 (R)- Me2-OMe-BIPHEP (16b) 32% 38% S

24 (R)- iPr2-OMe-BIPHEP (16c) 74% 44% S

25 (R)- tBu2-OMe-BIPHEP (16d) nr

a
Reaction conditions: 10 mol% Ni(cod)2, 20 mol% ligand, LiHMDS (1 eq.), THF, rt, overnight (unless otherwise indicated).

b
All yields are isolated yields of pure products. nr = no reaction observed.

c
ee’s were determined by chiral HPLC (Chiralcel OD: hexane/i-PrOH 80/20).

d
Configuration assigned by correlation with L-vinylglycine (Scheme 2).

e
t = 8 h,

f
t = 4 h,

g
t = 6 h,

h
Reaction carried out without exogenous base (i.e. no LiHMDS); t = 6 h.
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Table 3

Allylic Aminations to Vigabatrin Derivative 20

a no. ligand yieldb eec confd

1 (R,R)-Me-DUPHOS (10a) 93% 66% R

2 (S,S)-iPr-DUPHOS (10b) 90% 47% R

3 (S,S)-Et-FerroTANE (11) 28% 8% S

4 JOSIPHOS-type (12a) 55% 31% R

5 JOSIPHOS-type (12b) 28% 74% R

6 JOSIPHOS-type (12c) 23% 22% S

7 JOSIPHOS-type (12d) 73% 5% S

8 JOSIPHOS-type (12e) nr

9 JOSIPHOS-type (12f) 46% 36% R

10 WALPHOS-type (13a) 8% 32% S

11 WALPHOS-type (13b) 60% 53% S

12 (R)-BINAP (15a) 70% 43% R

13 (R)-Tol-BINAP (15b) 84% 44% R

14e (S)-MeO-BIPHEP (16a) 97% 53% S

15 (R)-Me2-OMe-BIPHEP (16b) 65% 54% R

16 (R)-tBu2-OMe-BIPHEP (16d) 60% 23% R

a
Reaction conditions: 67 mM 19, 10 mol% Ni(cod)2, 20 mol% ligand, LiHMDS (1 eq.), THF, rt, overnight.

b
Isolated yields of pure products. nr = no reaction observed.

c
ee’s determined by chiral HPLC (Chiralcel OD: hexane/i-PrOH 73/27).

d
Configuration assigned by correlation with the known γ-lactam, following PMP deprotection (CAN, MeCN, H2O): [α]23D (66% ee-chiral 

HPLC-see SI) –23.7 (EtOH, c 2.0); Lit.: [α]23D {(S)-isomer} +50.4 (EtOH, c 2.2) - ref. 6e.

e
No exogenous base used (i.e. no LiHMDS).
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