
Targeting the HGF/MET Axis 
Counters Primary Resistance to KIT 
Inhibition in KIT-Mutant Melanoma

INTRODUCTION

Activating mutations in KIT are present in up 
to 20% of acral melanomas (AMs) or mucosal 
melanomas, and 5% of melanoma associated 
with chronic sun-damaged skin.1-5 In GI stroma 
tumor (GIST), small-molecule tyrosine kinase 
inhibitors (TKIs) that target aberrant KIT have 
revolutionized treatment, demonstrating mark-
edly durable tumor responses.6,7 Early in vitro 
studies demonstrated TKI KIT inhibitors to be 
efficacious in KIT-mutant melanoma cell lines.8-10 
However, KIT-mutant melanoma tumors tend 
to show a de novo resistance in most cases and 
a limited duration of response when response is 
achieved,10-13 suggesting that coactivated path-
way(s) may drive resistance in the primary treat-
ment setting of KIT-mutant melanoma.

We report a case of metastatic KIT-mutant AM 
that had a long-term clinical response to treat-
ment with the combination of TKIs targeting 
KIT and MET. We show that KIT inhibition 
markedly decreased cell viability in melanoma 
cell lines with distinct KIT mutations; how-
ever, this effect was countered in the presence 
of hepatocyte growth factor (HGF), the ligand 
for MET. Addition of a MET-inhibiting TKI 
reversed the HGF-driven resistance for all KIT 
mutants.

CASE REPORT

In 2010, a 47-year-old white woman was referred 
with the diagnosis of metastatic melanoma to the 
breast and left inguinal lymph nodes of unknown 
primary origin, with no evidence of brain metas-
tasis. A physical examination revealed a raised, 
erythematous, and well-circumscribed cutane-
ous lesion on her left great toe, which the patient 
attributed to trauma that occurred several months 
earlier. Histopathologic analysis revealed the left 
toe lesion to be AM (Data Supplement). Stag-
ing computed tomography (CT) and positron 

emission tomography scans revealed left ingui-
nal and left external iliac lymphadenopathy; two 
soft-tissue densities in the left breast (one biopsy 
proven to be melanoma); numerous subcentime-
ter, hypodense liver lesions; and multiple sub-
centimeter, subcutaneous nodules, suggestive 
of metastatic disease. The patient underwent a 
left-breast segmental mastectomy and concom-
itant left great toe amputation. Tumor-infiltrating  
lymphocytes and melanoma cells from the tumor 
in the breast were collected. Gene mutation 
analysis of the metastatic melanoma tissue did 
not reveal mutations in BRAF or NRAS.

After two cycles of biochemotherapy (Data Sup-
plement), restaging CT scans revealed overall 
stable disease and a mixed tumor response in 
the lymph nodes. However, the restaging brain 
magnetic resonance imaging showed three new 
punctate lesions consistent with brain metasta-
ses. The patient received whole-brain radiation 
therapy (30 Gy in 10 fractions), then stereotactic 
radiosurgery, followed by combination treat-
ment with temozolomide, cisplatin, and vinblas-
tine.

Subsequent restaging showed new mediastinal 
lymphadenopathy and lung nodules. The patient 
received two cycles of a carboplatin-paclitaxel 
regimen before evidence of disease progression 
in the left inguinal lymph nodes, liver, and brain. 
The patient was then treated with ipilimumab, 
which had just received US Food and Drug 
Administration approval for metastatic mela-
noma, 3 mg/kg for four cycles. There was evi-
dence of stable disease response to ipilimumab, 
with tumor reduction of 30% by immune-related 
response criteria overall with disease response 
in the brain, liver, and lymph nodes. After 19 
months of disease control with ipilimumab 
treatment, a brain magnetic resonance imaging 
demonstrated a left frontal operculum metas-
tasis with perilesional edema (Fig 1A, upper 
panel) and positron emission tomography/CT 
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scanning showed new hypermetabolic activity 
in the mediastinal lymph nodes, which was veri-
fied to be metastatic melanoma by interventional 
radiology-guided fine-needle aspiration (data 
not shown). Molecular profiling of the patient’s 
melanoma tumor revealed an A>T nucleotide 
transition at position 2464 in exon 17 of KIT, 
resulting in an amino acid change (N822Y) within 
the kinase domain (Fig 1B).

Although secondary mutations in exon 17 render 
GIST with primary exon 11 or 13 KIT-mutant 
tumors resistant to KIT inhibition, isolated exon 
17 KIT mutations have been shown to be more 

sensitive to KIT inhibition.14,15 Specifically, pre-
clinical studies have shown dasatinib to be a 
potent inhibitor of KIT activation loop mutants 
in exon 17.9,15 The patient was enrolled in a phase 
I clinical trial in which dasatinib (KIT TKI, 140 
mg orally daily) was combined with crizotinib 
(MET/ALK/ROS1 TKI, 200 mg orally daily).16 
Restaging studies showed a decrease in the size 
of the brain metastasis and resolution of the per-
itumoral edema over an approximately 5-month 
interval (Fig 1A, lower panel). Restaging imag-
ing performed every 2 to 3 months continued to 
show disease control in all metastatic sites for a 
total of 34 months.
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Fig 1. Clinical tumor and KIT mutation analysis. (A) Representative brain magnetic resonance images show left frontal operculum metasta-
sis with perilesional edema pretreatment (top panel) and the on-treatment combination dasatinib and crizotinib therapy effect (lower panel). (B) 
Polymerase chain reaction–based DNA sequencing chromatogram showing a KIT nucleotide transition (2464 A>T) at codon 822 (AAT to TAT) 
in exon 17 from the patient’s acral melanoma metastatic tumor. (C) Hematoxylin and eosin (HE) and immunohistochemical staining for total KIT 
and phosphorylated KIT (p936) and total MET in the patient’s primary (upper panel) and metastatic (lower panel) acral melanoma tumors (original 
magnification, ×20).
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Histopathologic examination of the patient’s pri-
mary and metastatic melanoma tumors showed 
widespread expression of phosphorylated/total 
KIT protein in melanoma cells (Fig 1C). Given 
the response to combination dasatinib and crizo-
tinib therapy, we also assessed the expression of 
the MET, for which crizotinib has high binding 
affinity, and observed positive staining in both 
primary and metastatic tumors, with moderately 
higher intensity in the metastatic tumor.

To better understand the mechanism by which 
combination therapy resulted in the observed 
clinical response, we performed a molecular anal-
ysis of the melanoma cell line we established from 
the patient’s metastatic tumor (cell line 2391), as 
well as three other melanoma cell lines shown 
to have endogenous KIT mutations (namely, 
MelMS, Ma-Mel-144, and M230).17-19 Muta-
tion analysis confirmed the presence of the 2464 
A>T nucleotide transition in KIT with a resul-
tant N822Y amino acid change in the activation 
loop within 2391, the patient’s melanoma cell line 
(Data Supplement). We verified the presence of 
each specific KIT mutation within each cell line 
using targeted next-generation DNA sequencing 
(Table 1; Data Supplement).20 No BRAF or NRAS 
mutations, or secondary mutations in KIT were 
detected in any of the cell lines.

We also determined the global chromosomal 
copy number alteration status within each 
KIT-mutant melanoma cell line (Fig 2A; Table 
1). Cell lines 2391 and Ma-Mel-144 had chro-
mosome 4q copy number elevation, which cor-
responds with the location of the KIT locus, 
consistent with initial observations that KIT 
mutations co-occur with KIT amplifications.1,2 
Three of the four cell lines also had chromosome 
11q copy number elevation, which corresponds 
with the location of the CCND1 locus, also well 
described to be amplified in AM tumors.21,22 
Thus, the patient’s cell line 2391 and others in 
our panel had characteristic genetic features 
observed in AM tumors.

To determine the endogenous constitutive activ-
ity of each KIT mutation, we assessed the total 
and phosphorylated levels of KIT in each mel-
anoma cell line. Western blot analysis showed 
phosphorylated KIT to be present in all the 
KIT-mutant melanoma cell lines in the pres-
ence or absence of serum (Fig 2B); this was not 
observed in those without a KIT mutation (Data 
Supplement). Each of the cell lines showed sen-
sitivity to gene-specific KIT knockdown and to 
multiple TKIs that share KIT as a target but 
have many nonoverlapping targets (eg, dasatinib 
targets Src-family kinases), whereas imatinib 
does not (data not shown). Thus, KIT mutations 
in melanoma, as observed in the patient’s 2391 
cell line, were specific and sufficient to drive 
robust activation of the protein.

We next used the four KIT-mutant cell lines to 
better understand the mechanism of resistance 
to single-agent TKI KIT inhibition. Preclin-
ical studies have shown isolated exon 17 KIT 
mutations (including codon 822) in nonmela-
noma cells are sensitive to TKI KIT inhibitors 
(eg, imatinib or dasatinib) in vitro.14,15 However, 
clinical reports have shown only rare responses 
in exon 17 KIT-mutant melanoma tumors (none 
with codon N822 mutations) to any of the front-
line TKI KIT inhibitors.10,11,13,23-26 This discrep-
ancy suggests that KIT-targeting TKIs may be 
sufficient to extinguish that activation state of 
the KIT protein, but their ultimate effect on 
the tumor may be insufficient given coactivated  
pathways.27,28

Using dasatinib, the same TKI KIT inhibitor 
used to treat our patient, we observed that all 
four melanoma cell lines with distinct KIT muta-
tions displayed growth inhibition at low nano-
molar concentrations (1 to 5 nM; Fig 2C). Given 
the high levels of MET receptor expression in 
our patient’s tumor (Fig 1C) and the marked 
and durable clinical response observed when the 
MET-targeting TKI crizotinib was coadminis-
tered, we posited that the concurrent inhibition 
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Table 1. KIT Mutations and Copy Number Alterations in 4q (KIT) and 11q (CCND1) for the Melanoma Cell Lines

Cell Line Name

KIT Mutation Copy Number Increase

AA Change Exon 4q (KIT) 11q (CCND1)

M230 L576P 11 (−) (−)

MelMS W556-K558∆ 11 (−) (+)

2391 N822Y 17 (+) (+)

Ma-Mel-144 S476I 9 (+) (+)
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of MET may enhance the effect of single-agent 
dasatinib in the tumor setting. Thus, we tested 
if the presence of HGF, the only known ligand 
for MET, in the extracellular environment can 
modulate the reduction in cell viability observed 
with dasatinib treatment (Fig 2C). The effect of 
dasatinib was significantly reduced in all four 
KIT-mutant cell lines in the presence of HGF. 

Importantly, the addition of crizotinib reversed 
the HGF-mediated resistance to dasatinib in 
each cell line, whereas no effect was observed 
with crizotinib alone.

DISCUSSION

In this report, we describe a patient with met-
astatic AM who achieved a marked tumor 
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Fig 2. Characterization and HGF-driven resistance in KIT-mutant melanoma cell lines. (A) Copy number alteration status in the four KIT-mutant 
cell lines. Cell lines 2391 (KITN822Y) and Ma-Mel-144 (KITS476I) show copy number increase at chromosome 4q (location of KIT allele). Cell lines 
2391 (KITN822Y), MelMS (KIT556-558del), and Ma-Mel-144 (KITS476I) show amplification at 11q (location of CCND1 allele). (B) Western blot analysis for 
phospho-KIT, total KIT, and cyclin D1 in the KIT-mutant melanoma cell lines. Highest expression of phospho-KIT protein is observed in the 2391 
(KITN822Y) cell line. The level of total KIT protein corresponds with 4q amplification status. (C) KIT-mutant cell lines exhibit resistance to KIT 
inhibition in the presence of HGF, reversed by MET inhibition. Cell viability assay of M230 (KITL576P), MelMS (KIT556-558del), 2391 (KITN822Y), and 
Ma-Mel-144 (KITS476I) melanoma cell lines: no treatment, dasatinib (50 nM), dasatinib plus HGF (100 ng/mL), dasatinib plus HGF plus crizotinib 
(5 μM), and crizotinib alone.
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response and disease control after treatment 
with the combination of dasatinib (a KIT inhib-
itor) and crizotinib (a MET inhibitor). Analysis 
of the patient’s tumor and cell line (and three 
other KIT-mutant cell lines) suggests that the 
HGF-MET axis may be a mechanism of de novo 
resistance in KIT-mutant melanomas.

The emergence of secondary mutations in 
KIT is a common mechanism of clinical resis-
tance to KIT inhibition in KIT-mutant GIST.29 
However, nearly all resistance observed in KIT- 
mutant melanoma occurs in the initial treatment 
setting, before the clonal evolution of secondary 
mutations can emerge,10-13,23-26 suggesting that 
the presence of coactivating pathways may play a 
role in this primary resistance.

The observed efficacy of the combination dasat-
inib and crizotinib could, in part, be due to the 
inhibition of multiple kinases; however, the 
melanoma cell line studies indicate the primacy 
of the KIT and MET receptors to explain the 
observed results. Furthermore, crizotinib alone 
was only effective in the presence of extracellular 
HGF, the only known MET ligand, indicating 
crizotinib’s modulation of the well-described 
HGF-MET axis, for which it was initially 
designed.30 These data are consistent with those 

from preclinical studies showing that MET inhi-
bition increases the effect of imatinib in KIT-mutant 
GIST models.31

It is intriguing to speculate that the response 
to combination dasatinib and crizotinib may 
have been immunologically enhanced, given 
the patient’s prior tumor response to ipilim-
umab therapy. We have shown that the ability of 
dasatinib to markedly decrease tumor volumes 
and prolong survival in a syngeneic KIT-mutant 
mastocytosis mouse model is mediated by a 
selective decrease in regulatory CD4+ T cells 
and an enhanced antigen-specific CD8+ T-cell 
response.9

Despite the clear capacity of small-molecule 
TKIs to target and deactivate mutant KIT in 
melanoma cells in vitro,8-10 only infrequent tumor 
responses of typically minimal durability have 
been observed in clinical trials treating patients 
with KIT-mutant melanoma.10-13,23-26 The studies 
in this report indicate that the combined inhibi-
tion of KIT and MET may be a next-step effec-
tive clinical strategy in KIT-mutant melanoma.
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