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ABSTRACT

Objective: To compare 3 commercial knowledge bases (KBs) used for detection and avoidance of potential

drug-drug interactions (DDIs) in clinical practice.

Methods: Drugs in the DDI tables from First DataBank (FDB), Micromedex, and Multum were mapped to

RxNorm. The KBs were compared at the clinical drug, ingredient, and DDI rule levels. The KBs were evaluated

against a reference list of highly significant DDIs from the Office of the National Coordinator for Health Informa-

tion Technology (ONC). The KBs and the ONC list were applied to a prescription data set to simulate their use in

clinical decision support.

Results: The KBs contained 1.6 million (FDB), 4.5 million (Micromedex), and 4.8 million (Multum) clinical drug

pairs. Altogether, there were 8.6 million unique pairs, of which 79% were found only in 1 KB and 5% in all 3 KBs.

However, there was generally more agreement than disagreement in the severity rankings, especially in the

contraindicated category. The KBs covered 99.8–99.9% of the alerts of the ONC list and would have generated

25 (FDB), 145 (Micromedex), and 84 (Multum) alerts per 1000 prescriptions.

Conclusion: The commercial KBs differ considerably in size and quantity of alerts generated. There is less vari-

ability in severity ranking of DDIs than suggested by previous studies. All KBs provide very good coverage of

the ONC list. More work is needed to standardize the editorial policies and evidence for inclusion of DDIs to re-

duce variation among knowledge sources and improve relevance. Some DDIs considered contraindicated in all

3 KBs might be possible candidates to add to the ONC list.

Key words: drug-drug interaction, commercial knowledge base, clinical decision support, prescription decision support, comput-

erized physician order entry

INTRODUCTION

Medications remain one of the most common modalities of treat-

ment in modern health care, yet they are also an important iatro-

genic cause of morbidity and even mortality. The incidence of

adverse drug events has been estimated to be 6.5 per 100 admis-

sions, 13% of which are fatal or life-threatening.1 Inpatient adverse

drug events alone have been estimated to cost a total of $2 billion

per year.2 Not all adverse events can be avoided, but drug-drug in-

teractions (DDIs) may be among the most preventable and manage-

able because of their potential predictability. A clinically significant

DDI is defined as an unintended modification in the effect of a drug

when administered with another drug. It can be an increase or
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decrease in the action of either drug or an adverse effect not normally

associated with the drugs,3 and is actionable (ie, some action should

be taken or risk management plan considered). One study reported

that DDIs accounted for 17% of adverse drug reactions leading to

hospitalization.4 In another study, 4.4% of elderly patients received

prescriptions with a risk of severe interactions.5

Aging populations, multiple comorbidities, polypharmacy, and

frequent launching of new drugs are cited as factors that contribute

to the frequency and seriousness of DDIs.6–8 In the United States,

29% of adults are taking 5 drugs or more.9 Among those age 65 years

or older, 17–19% take at least 10 drugs.9 A recent study confirmed

that over 5 years (2006–2011), the risk of major DDIs nearly dou-

bled in geriatric patients (8.4–15.1%).10 Polypharmacy directly af-

fects the ability of health care professionals to recognize potential

DDIs. As the numbers of coprescribed drugs increase, the potential

pairwise interactions increase exponentially. Weideman et al. found

that clinician DDI recognition rates decreased significantly as the

number of drugs increased. Even among trained pharmacists, none

detected all interactions when there were 8 or more drugs.11 Fur-

thermore, in a multiprovider situation, the prescribing clinician may

not be familiar with, or even aware of, all of a patient’s medications.

All these factors suggest that clinical information systems that can

retrieve all medications a patient is using and can detect and remind

providers about DDIs (by displaying warning messages or interrup-

tive alerts) are becoming more necessary for patient safety. Indeed,

computerized physician order entry with clinical decision support

(CDS) capabilities has been mandated by national programs such as

the Electronic Health Records (EHR) Meaningful Use incentive pro-

gram, and strongly recommended by patient safety advocacy organi-

zations such as the Leapfrog Group.12,13

Background and significance
A comprehensive, accurate, and evidence-based knowledge base

(KB) is a prerequisite for effective deployment of a CDS capable of

preventing and managing DDIs. Since the resources and expertise

needed to develop and implement a home-grown DDI KB are avail-

able to only a few large academic centers, most organizations choose

to purchase KBs from commercial vendors.3 The editorial policies

for DDI evidence inclusion and timeliness of KB updates, as well as

unique EHR vendor implementation choices, directly affect a sys-

tem’s alerting capabilities and CDS advice that is offered to clini-

cians. Previous studies have highlighted the variability between

various sources of DDI knowledge, whether they are proprietary or

in the public domain.14–24 Vitry14 found that 14–44% of major

DDIs listed in 1 compendium were not listed in other compendia.

Hazlet et al.19 tested 9 DDI software programs and found that they

failed to detect clinically relevant DDIs one-third of the time, with

sensitivity and specificity ranging from 0.44–0.88 and 0.71–1.0, re-

spectively. The variability was explained by both KB content and

software implementation differences. In view of this variation,

Smithburger et al.20 suggested that more than 1 knowledge source

should be used, and that information in proprietary KBs should be

reviewed by clinical experts.25 While these suggestions seem logical,

financial constraints and availability of expertise could limit their

feasibility. Currently, most health care organizations still rely on a

single proprietary KB.26 Inconsistent evaluation and classification of

interactions have been cited as factors contributing to excessive DDI

alerts.27 As described in a recent publication, methodologies for uni-

fying editorial policy decisions and criteria for evidence inclusion of

DDI have also been pursued as a solution.28 DDI alert customization

capabilities are necessary because of the uniqueness of patient populations

served by systems and local treatment guidelines, and are reported

to help improve provider acceptance rates of interruptive alerts, but

will also introduce more variability across institutions.29

In this study, we performed a comprehensive comparison of

3 commercial DDI KBs widely used by hospitals, clinics, and phar-

macies. First, we did a direct comparison of the KBs’ lists of interact-

ing drug pairs and their severity rankings to assess overlap. Second,

we used a reference list of highly significant DDIs to assess whether

each KB alone would provide sufficient coverage of these high-

priority cases.30 Third, we applied the KBs to a prescription dataset

to see whether the differences observed among them would translate

into different rates and patterns of DDI alert generation. To our

knowledge, such a comprehensive comparison of commercial DDI

KBs has not been performed.

METHODS

Acquiring DDI information from vendors and mapping

to RxNorm
We contacted 5 commercial drug KB vendors that provide prescrip-

tion decision support to clinicians. First Databank (FDB), Microme-

dex, and Multum agreed to participate in our study, while MediSpan

and Gold Standard declined. Our study considered only DDIs ranked

as contraindicated, major/severe, and moderate by the KBs. Minor

DDIs and interactions with herbal remedies were excluded, because

they were less important and tended to be less consistently repre-

sented. We mapped the drugs in the KBs to RxNorm,31 the US inter-

operability standard drug terminology. We used 2 RxNorm clinical

drug term types, semantic clinical drug (SCD, eg, azithromycin

500 mg oral tablet) and generic drug pack (GPCK, eg, 6-pack of

azithromycin 500 mg oral tablet), which specified the ingredients,

dose form, route, and strength. FDB and Multum provided their own

RxNorm mapping tables. For Micromedex, we mapped first to

RxNorm ingredients by lexical matching, supplemented by manual

review, and then navigated to all corresponding SCDs and GPCKs, re-

stricted to the dose form and route specified in Micromedex. We used

the latest version of RxNorm when we acquired the KBs (May 2014).

Comparing interactions across KBs
A DDI could be represented in 3 ways: first, as a pair of clinical drugs,

specifying the active ingredients, strength, and dose form (eg, trimipr-

amine 100 mg capsule and albuterol 2 mg tablet); second, as a pair of

ingredients (eg, trimipramine and albuterol); and third, as a pair of

drug classes (eg, tricyclic antidepressants and sympathomimetics). In

a KB, the DDIs were typically grouped into rules at the drug class

level to facilitate content management and display of alert messages.

Each DDI rule was associated with a textual description, known as a

monograph (eg, “Concurrent use of tricyclic antidepressants and sym-

pathomimetics may result in hypertension, cardiac arrhythmias, and

tachycardia”). In this study, we analyzed DDIs at all 3 levels. Unless

otherwise stated, drug pairs refer to drugs at the clinical drug level.

A master table was created for each KB, with all DDIs repre-

sented as pairs of RxNorm concept unique identifiers (RxCUIs) at

the clinical drug level, together with their severity rankings. Each

pair of drugs was listed only once, ie, (A, B) and (B, A) were considered

equivalent. If a pair of drugs was assigned more than 1 severity ranking

in a KB (eg, multi-ingredient formulation with several interactants), we

kept only the highest-ranking entry. We assessed the overlap across

KBs by matching the RxCUI pairs.
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Clinical drugs were rolled up to their ingredients using the rela-

tionships in RxNorm. Multi-ingredient drugs were excluded in this

analysis because it was not possible to pinpoint the interacting ingre-

dient, and the ingredient-level interaction would be captured by the

single ingredient formulations anyway. We rolled up clinical drug

pairs to their corresponding rules (monographs in a KB), excluding

those that were grouped under multiple rules (eg, multi-ingredient

drugs). We considered DDI rules from 2 KBs to be overlapping if

they shared at least 1 clinical drug pair.

Comparing interactions from KBs against a

reference source
In order to address the challenges of alert burden and its impact on

EHR adoption, the Office of the National Coordinator for Health

Information Technology (ONC) commissioned a consensus-based ef-

fort to identify a subset of highly significant DDIs for which interrup-

tive warnings should be generated in all EHRs.30 The ONC high-

priority list (ONC list) was developed from candidate interactions iden-

tified by Partners Healthcare that were then vetted by a stakeholder

panel including medication KB vendors, EHR vendors, clinical experts,

and representatives from federal and private agencies involved in the

regulation of medication use. The panel attained consensus on 15 DDI

rules at 3 levels of specification: drug class–drug class, ingredient–drug

class, and ingredient-ingredient. The ONC list enumerates class mem-

bers for all drug classes except QT-prolonging drugs and tricyclic anti-

depressants. We expanded all the ONC DDI rules to the ingredient

level. For QT-prolonging drugs, we used the web resource Credible-

Meds as recommended, limited to drugs associated with the highest

risk of torsades de pointes (known as List 1).32 For tricyclic antidepres-

sants, class members were determined by consulting pharmacology

textbooks. To align with the KB master tables, we mapped the ONC

list first to RxNorm ingredients, then propagated to SCD/GPCKs, re-

stricting to systemic dose forms (eg, oral tablets, injections).

We analyzed the coverage of the ONC list by the KBs at the ingre-

dient level. We considered that an ONC ingredient-level DDI was

covered if at least 1 of the clinical drug pairs for that DDI was found

in a KB. Since the ONC list was supposed to be highly significant and

recommended to be used in all EHRs, any ONC DDI missing from a

KB was reviewed by a KB expert to ascertain the reason for the ab-

sence. Conversely, we selectively reviewed DDIs that were ranked as

contraindicated in all 3 KBs but not in the ONC list, as they could po-

tentially reflect important DDIs missing from the ONC list.

Generating potential DDI alerts from actual

prescription data
We used a dataset from Symphony Health Solutions with 1 year of

prescription-filling data (from July 1, 2011, to June 30, 2012) for pa-

tients from Washington, DC, Maryland, Virginia, and West Virginia.

The drugs in the dataset were mapped to RxNorm SCD and GPCK

through the NDC codes included in the source data, supplemented by

string matching and manual review. Drugs that were not administered

systemically (eg, topical ointments) were excluded because they sel-

dom caused significant interactions. The period that a patient was ex-

posed to a drug was estimated based on the fill date and days of

supply. Two drugs that might not be prescribed at the same time were

considered to be co-administered if their period of exposure over-

lapped. The co-administered drug pairs were checked against the 3 KB

and ONC tables to see if DDI alerts would have been generated. We

reported the alert rates as a proportion of total prescriptions. We esti-

mated the number of prescriptions by assuming that the drugs with

the same fill date and physician ID belonged to the same prescription.

RESULTS

Comparing interactions across KBs
The number of unique clinical drugs (at the SCD/GPCK level) involved

in any DDI ranged from 7427 to 13133, among which 5754 drugs

were common to all 3 KBs (Table 1). The size of the KBs varied consid-

erably in terms of drug pairs. FDB had the least drug pairs (1.6 million),

followed by Micromedex (4.5 million) and Multum (4.8 million). In all

KBs, contraindicated was the smallest category and moderate the larg-

est. Overall, the number of drug pairs that were commonly configured

to generate interruptive alerts (contraindicated and major/severe cate-

gories together) was 490 260 (30.8%), 2 311 324 (51.9%), and

468822 (9.8%) for FDB, Micromedex, and Multum, respectively.

Altogether, the 3 KBs contained 8.6 million unique drug pairs, of which

6.8 million (79.4%) were unique to 1 KB, 1.3 million (15.5%) were

found in 2 KBs, and 0.4 million (5%) were in all 3 KBs (Figure 1). The

percentage of unique drug pairs (ie, not found in any other KB) was

35.6, 65, and 70.9% for FDB, Micromedex, and Multum, respectively.

In Table 2, the pairwise comparisons are shown as 6 grids of 3�4

boxes. The number in each box is the number of common drug pairs,

and the percentage is based on the total in KB1. For example, compar-

ing FDB to Micromedex (top middle grid), there are 48 673 shared

contraindicated (sev1) DDI drug pairs, corresponding to 48% of all

contraindicated DDIs (N¼100 697) in FDB. For better visualization,

the boxes in which the severity rankings are the same for both KBs are

shaded. The highest percentage of shared drug pairs within a severity

category (ignoring those not found) is highlighted in bold type. So if

the highlighted percentage falls within a shaded box, the severity rank-

ings of the 2 KBs agree more often than disagree for that severity cate-

gory. For example, between FDB and Micromedex (top middle and

middle left grids), the rankings generally agree in most severity catego-

ries (5 out of 6 highlighted numbers are in shaded boxes), except that

more major DDIs in Micromedex are classified in FDB as moderate

(9%) than major (6%) or contraindicated (1%). Overall, 13 out of 18

highlighted percentages are in a shaded box, which is true for all con-

traindicated categories. Among the shared drug pairs between 2 KBs,

58% (FDB and Micromedex), 68% (FDB and Multum), and 57%

(Micromedex and Multum) have the same severity rankings.

Detailed pairwise comparisons at the ingredient and DDI rule lev-

els can be found in Appendix A (Online Supplementary Tables 1 and

2). Generally, the pattern of overlap at the ingredient level is similar

to the clinical drug level. At the rule level, the degree of overlap and

the agreement in severity ranking are considerably higher, with all but

1 of the 18 highlighted percentages in shaded boxes. Overall, 48.5%

of DDI rules are shared by all 3 KBs, much higher than the ingredient

(8.7%) and clinical drug (5%) levels (Supplementary Table 3).

Comparing interactions from KBs against a

reference source
The 15 DDI rules in the ONC list expanded to 1027 pairs of ingredi-

ents. Overall, FDB, Micromedex, and Multum did not cover 10.3,

Table 1. Composition of the 3 knowledge bases

Component FDB Micromedex Multum

Unique drugs 10 279 13 133 7427

Drug pairs� 1000 (% of total)

Contraindicated 101 (6.3) 192 (4.3) 100 (2.1)

Major/severe 390 (24.5) 2120 (47.6) 368 (7.7)

Moderate 1102 (69.2) 2139 (48.1) 4302 (90.2)

Total 1592 (100) 4450 (100) 4771 (100)
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11.9, and 10.2% of the ONC ingredient pairs, respectively (Table 3).

Versioning (ie, when the missing DDI was available in a newer ver-

sion of the KB) accounted for many of the omissions. This shows

that the KBs are updated quite frequently as new drug interaction in-

formation becomes available. Some drugs in the ONC list (eg, aste-

mizole, terfenadine) were no longer available on the US market and

were not in the KBs. The ONC list included every pair of QT-

prolonging agents considered high risk for causing torsades de

pointes. By editorial policy, some KBs only included QT-prolonger

pairs corroborated by specific evidence (eg, specific warning on the

drug label, clinical reports). Some KBs disagreed with the ONC list

of CYP-450 inhibitors. For example, cimetidine and diltiazem were

considered as strong CYP3A4 inhibitors in the ONC list, but only

moderate inhibitors by 2 KBs. Some drugs were missed by RxNorm

mapping. Some antiretroviral agents were given only as combina-

tions (eg, tipranavir and ritonavir). For such cases, some KBs flagged

DDI for only 1 component to avoid duplicate alerts. Some drug pairs

were flagged as a different category of alert (eg, erythromycin and

azithromycin were considered as duplicate therapy) and not as

DDIs. Overall, if we adjust for the unintentional differences (ver-

sioning, not on market, mapping, combination therapy, and differ-

ent category), the coverage of the ONC list becomes 98.7, 98.83,

and 99.9% for FDB, Micromedex, and Multum, respectively.

Generating potential DDI alerts from actual

prescription data
Our prescription dataset covered 1.9 million patients with 14 mil-

lion prescriptions and 19 million drug items. Considering all severity

levels, the alerts generated by FDB, Micromedex, and Multum

would be 163, 329, and 751 per 1000 prescriptions, respectively.

Counting only contraindicated and major/severe DDIs (usually trig-

gering interruptive alerts), 25, 145, and 84 alerts per 1000 prescrip-

tions would be generated by FDB, Micromedex, and Multum,

respectively (Supplementary Table 4).

Applying the ONC list to the prescription dataset would gen-

erate 43 047 alerts (3 alerts per 1000 prescriptions). The over-

whelming majority (97.6%) were generated by 2 DDI rules:

statins with protease inhibitors and 2 QT-prolonging drugs

(Table 4). The remaining 13 ONC rules together accounted for

only 2.4% of alerts. Overall, FDB, Micromedex, and Multum

covered 97.9, 85.9, and 99.8% of the ONC list alerts, respec-

tively. Adjusting for the unintentional differences (versioning,

mapping issues, etc.), the overall coverage of ONC alerts became

99.8, 99.9, and 99.9% for FDB, Micromedex, and Multum, re-

spectively. In FDB, most of the DDIs involving 2 QT prolongers

were considered moderate, while they were generally ranked

higher in the other 2 KBs.

There were 28 410 clinical drug pairs considered contraindicated

in all 3 KBs, corresponding to 1213 ingredient pairs, of which 865

pairs (71%) were not in the ONC list. Among them, 160 pairs were

actually coprescribed in our dataset (9 pairs coprescribed over 100

times). Had the 160 ingredient pairs been included in the ONC list,

the total number of ONC alerts would have increased by 7,633

(17.7%). Some examples of these interacting ingredient pairs are as

follows (frequency of coprescription in parenthesis):

• Gemfibrozil and simvastatin (2561)
• Duloxetine and rasagiline (223)
• Cyclosporine and simvastatin (163)
• Chlorpromazine and ziprasidone (110)
• Nitroglycerin and sildenafil (83)
• Azithromycin and dronedarone (64)
• Nitroglycerin and tadalafil (56)
• Alprazolam and ketoconazole (53)
• Bupropion and rasagiline (51)
• Bromocriptine and sumatriptan (50)

DISCUSSION

Differences among the KBs
The 3 commercial DDI KBs differ significantly in their numbers of

clinical drug pairs and have limited overlap. About two-thirds of the

clinical drug pairs in FDB can be found in the other 2 KBs. The con-

verse is true for Micromedex and Multum, with two-thirds of the

drug pairs being unique to the KB. Contrary to earlier studies, how-

ever, we find that there is generally more agreement than disagree-

ment on severity ranking, especially for the most severe interactions.

Not surprisingly, the degree of overlap and agreement in severity

ranking are considerably higher at the DDI rule level.

Impact on clinical decision support
While it is interesting to compare the KB tables, it is more important

to see what the differences mean when they are actually applied in a

clinical context. After all, if the differences involve only rarely pre-

scribed drugs, the impact would be small. We find that the number

of drug pairs in a KB only has a weak correlation with the number

of alerts generated. Multum and Micromedex are 3 times bigger

than FDB, but Multum generates 5 times and Micromedex 2 times

more alerts. Notably, the amount of alerts in the contraindicated

category is disproportionately small for all KBs. Contraindicated

DDIs constitute 6.3, 4.3, and 2.1% of drug pairs in FDB, Microme-

dex, and Multum, respectively, but account for only 3.2, 1, and

0.5% of the alerts. One possible explanation is that drugs with the

most severe interactions are actively avoided by prescribers. It is also

possible that prescribers are already using some DDI alerting soft-

ware that avert contraindicated drug combinations.

All KBs cover over 99% of the alerts generated by the ONC list,

which is supposed to be used in all EHRs. However, if the KBs are

customized to alert only at the contraindicated and major/severe lev-

els, 2.8–50.6% of the ONC alerts will not be fired. Users of KBs

need to consider these cases carefully to see if suppression of these

alerts is appropriate, otherwise some important DDIs could be

566

211
381

434

3382

744 2892

FDB

Multum

Micromedex

Figure 1. Overlap of clinical drug pairs (numbers in 1000) between the knowl-

edge bases.
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missed. It is also worth noting that 2 statins (lovastatin and simva-

statin) accounted for almost 60% of the ONC alerts. Replacing these

statins with atorvastatin would reduce the number of DDI alerts con-

siderably, as its magnitude of interaction is less than the other statins

on the ONC list and it became available as a generic in 2011.

Discrepancies due to QT-prolonging drugs and CYP-450

metabolism
After adjusting for unintentional differences, there is very high cover-

age of the ONC list ingredient pairs by all 3 KBs (98–99.9%). The

discrepancies that can be attributed to editorial policies are related to

2 classes of drugs: QT prolongers and CYP-450 inhibitors. The ONC

list includes all combinations of a list of QT-prolonging drugs with

high risk for torsades de pointes. This represents the single largest

source of ONC ingredient pairs (61%) and 38% of alerts generated.

It seems that this “broad-brush” approach of using CredibleMeds

List 1 to determine DDI risk has not been substantiated with evi-

dence. The CredibleMeds website also states, “Because these actions

[QT prolongation and torsades de pointes] are highly dependent on

the circumstances of each drug’s use AND each patient’s clinical

characteristics, we do not attempt to rank-order the drugs within

each category. Therefore, we do not recommend that these lists be

used to rank-order the drugs for their relative toxicity.”32 The KB ed-

itors usually look for additional evidence before alerting against a

specific combination of QT-prolonging drugs. Different QT prolon-

ger combinations can be assigned different severity levels in a KB, de-

pending on the supporting evidence. Among the 630 QT prolonger

combinations in the ONC list, 33–44% are considered contraindi-

cated, 25–50% major/severe, and 0.3–22% moderate by the KBs.

In the ONC list, CYP3A4 inhibitors are involved in 4 rules, 177

(17%) ingredient pairs, and 60% of alerts, while CYP1A2 inhibitors

are involved in 2 rules, 11 (1%) ingredient pairs, and 1% of alerts.

While the ONC list cites the Food and Drug Administration published

list33 and the Flockhart table from the University of Indiana34 as au-

thoritative sources for CYP-450 inhibitors, the enumerated lists of

CYP3A4 and CYP1A2 strong inhibitors include agents not ranked as

strong by these sources. Some KBs also use other reference sources35

to determine the classification of CYP-450 inhibition, which can lead

to different recommendations. Overall, CYP-450 inhibitor class mem-

bership causes 14 ingredient pairs to be excluded from at least 1 KB.

Table 2. Pairwise comparison showing number of overlapping clinical drug pairs (numbers in thousands) between KBs

KB2

KB1

FDB Micromedex Multum

Total 

(KB1)

(%)

Sev1

(%)

Sev2

(%)

Sev3

(%)

Not 

found

(%)

Sev1

(%)

Sev2

(%)

Sev3

(%)

Not 

found

(%)

Sev1

(%)

Sev2

(%)

Sev3

(%)

Not 

found

(%)

FDB Sev1 101 

(100)

49

(48)

20

(20)

4

(4)

28

(28)

35

(34)

11

(11)

6

(6)

49

(48)

Sev2 390 

(100)

22

(6)

129

(33)

92

(24)

147 

(38)

19

(5)

73

(19)

78

(20)

219

(56)

Sev3 1102 

(100)

3

(<1)

201

(18)

297 

(27)

602 

(55)

2

(<1)

90

(8)

331 

(30)

680

(62)

Micromedex Sev1 191 

(100)

49

(25)

22

(11)

3

(1)

119 

(62)

49

(25)

4

(2)

10

(5)

129

(67)

Sev2 2119 

(100)

20

(1)

129

(6)

201

(9)

1770 

(84)

8

(<1)

176

(8)

454 

(21)

1481 

(70)

Sev3 2139 

(100)

4

(<1)

92

(4)

297

(14)

1747

(82)

0.9

(<1)

30

(1)

446 

(21)

1663 

(78)

Multum Sev1 100 

(100)

35

(34)

19

(19)

2

(2)

45

(45)

49

(48)

8

(8)

0.9

(<1)

43

(42)

Sev2 368 

(100)

11

(3)

73

(20)

90

(24)

195 

(53)

4

(1)

176

(48)

30

(8)

159 

(43)

Sev3 4302 

(100)

6

(<1)

78

(2)

331

(8)

3887 

(90)

10

(<1)

454

(11)

446 

(10)

3392 

(79)

Each pairwise comparison is outlined by thick borders. The percentages are based on row totals (KB1). The highest percentage (excluding “not found”) in each severity

category is highlighted in bold type. Shaded boxes are those in which the severity rankings in 2 KBs agree (sev1¼ contraindicated, sev2¼major/severe, sev3¼moderate).
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Refinement in identifying significant QT prolonger combinations

and better agreement on the classification of CYP-450 inhibitors will

improve the concordance between various DDI knowledge sources.

The potential clinical impact of these discrepancies is big, as over

98% of alerts generated by the ONC list involve these 2 drug classes.

Completeness of the reference list and other limitations

of our study
Since the ONC list was developed based on the knowledge source of a

single health care institute and designed to be a minimum starter set of

alerts, one would be justified in questioning its completeness as a refer-

ence list. We did find 865 ingredient pairs that were classified as con-

traindicated in all KBs but not in the ONC list; some of them were also

in our prescription dataset. We reviewed a small sample and confirmed

that some should be considered for addition to the ONC list. In addi-

tion, we recognize the following limitations. Our study is based on the

3 commercial DDI KBs that agreed to participate. The KBs were ob-

tained at the beginning of the study and subsequent updates were not

considered. Mapping to RxNorm may be incomplete. The extent of

unintentional differences (eg, those caused by versioning and mapping)

was assessed in the context of missing ONC DDIs from the KBs, but

not for the entire KB. The prescription dataset we used was a regional

dataset over a limited period, and the results may not be generalizable.

The way forward
In view of the variability among different sources of DDI knowl-

edge, it has been suggested that an expert panel with a centralized

organizer or convener should be established to develop and maintain

a standard set of DDIs for CDS in the United States,36 as has been

done elsewhere.37 The intensive logistics and trend toward DDI cus-

tomization at individual institutions makes this effort difficult to im-

plement. The Pharmacy Quality Alliance is convening stakeholder

advisory panels for the purpose of creating and maintaining a

consensus-based minimum DDI dataset.38 The Pharmacy Quality

Alliance develops medication-use measures in areas such as medica-

tion safety, medication adherence, and appropriateness. Future DDI

KBs, though, will most benefit not from bigger or better consensus

panels but from large-scale patient outcomes studies (eg, derived

from EHRs) and population data. Improving the availability of DDI

evidence in order to best capture high-priority drug pairs (or drug

triplets), categorize by severity, or assign risk based on pharmacoge-

nomics or phenotype context or other risk factors (eg, renal impair-

ment) will be the future of not only DDI KB data curation, but other

medication-related CDS as well.

CONCLUSION

The 3 commercial DDI KBs differ considerably in their gross size,

and therefore have limited overlap. However, there was generally

more agreement than disagreement in the severity rankings, espe-

cially in the contraindicated category. Coverage of the ONC high-

priority list is very high for all 3 KBs, in both the number of interact-

ing ingredient pairs and potential alerts generated. Disagreements

involving QT-prolonging drugs and CYP-450 inhibitors account for

most of the omissions of ONC DDIs from the KBs. There is evidence

to suggest that the ONC list may not cover all highly clinically sig-

nificant interactions.
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Table 3. Coverage of the ONC list ingredient pairs by KBs

Coverage FDB (%) Micromedex (%) Multum (%)

Found in KB

Contraindicated 591 (57.5) 496 (48.3) 491 (47.8)

Major/severe 189 (18.4) 398 (38.8) 324 (31.5)

Moderate 141 (13.7) 11 (1.1) 107 (10.4)

Not found 106 (10.3) 122 (11.9) 105 (10.2)

Not found in KB because:

Versioning 38 92 20

Not on market 33 18 70

Editorial exclusion 13 12 1

Mapping problem 15 0 10

Combination therapy 5 0 4

Other 2 0 0

Total ONC ingredient pairs 1027 (100) 1027 (100) 1027 (100)

Table 4. DDI alerts generated by the ONC list and their coverage by KBs (sev1: contraindicated, sev2: major/severe)

DDI rule ONC alerts (% of total alerts) % of ONC alerts covered by KB

FDB Micromedex Multum

sev1 and

sev2 (%)

All severities

(%)

sev1 and

sev2 (%)

All severities

(%)

sev1 and

sev2 (%)

All severities

(%)

Lovastatin and simvastatin with

CYP3A4 inhibitors

25 646 (59.6) 71.9a 100 100 100 100 100

QT-prolonging agents with

QT-prolonging agents

16 362 (38) 11.5 95.1 63.4 63.5 93.5 100

All other ONC DDI rules 1039 (2.4) 90.8 90.8 89.4 90.8 88.1 92.9

Total 43 047 (100) 49.4 97.9 85.9 85.9 97.2 99.8

aIn FDB, interactions between lovastatin/simvastatin and amiodarone, diltiazem, or verapamil are strength-specific; some strengths are contraindicated with

these CYP3A4 inhibitors and some interact at a lower severity level.
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