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ABSTRACT
....................................................................................................................................................

Background Precision cancer medicine (PCM) will require ready access to genomic data within the clinical workflow and tools to assist clinical in-
terpretation and enable decisions. Since most electronic health record (EHR) systems do not yet provide such functionality, we developed an EHR-
agnostic, clinico-genomic mobile app to demonstrate several features that will be needed for point-of-care conversations.
Methods Our prototype, called Substitutable Medical Applications and Reusable Technology (SMART)VR PCM, visualizes genomic information in
real time, comparing a patient’s diagnosis-specific somatic gene mutations detected by PCR-based hotspot testing to a population-level set of
comparable data. The initial prototype works for patient specimens with 0 or 1 detected mutation. Genomics extensions were created for the
Health Level SevenVR Fast Healthcare Interoperability Resources (FHIR)VR standard; otherwise, the prototype is a normal SMART on FHIR app.
Results The PCM prototype can rapidly present a visualization that compares a patient’s somatic genomic alterations against a distribution built
from more than 3000 patients, along with context-specific links to external knowledge bases. Initial evaluation by oncologists provided important
feedback about the prototype’s strengths and weaknesses. We added several requested enhancements and successfully demonstrated the app at
the inaugural American Society of Clinical Oncology Interoperability Demonstration; we have also begun to expand visualization capabilities to in-
clude cancer specimens with multiple mutations.
Discussion PCM is open-source software for clinicians to present the individual patient within the population-level spectrum of cancer somatic
mutations. The app can be implemented on any SMART on FHIR-enabled EHRs, and future versions of PCM should be able to evolve in parallel
with external knowledge bases.

....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
The definition of cancer and the care of cancer patients are increas-
ingly being driven by tumor genomics, aka molecular profiling.1,2 As
the number of clinically relevant findings with prognostic implications
rapidly expands, human cognitive capacity, as predicted in 1989,3 will
no longer be able to keep up. Vanderbilt University Medical Center
(VUMC) was an early adopter of near-universal genotyping of cancer
specimens for a number of disease-specific “actionable” mutations,
through the use of SNaPshot multiplexed PCR mutation panels.4–7

Even with the limited number of genes tested in SNaPshot, it is already
very difficult for an individual clinician to be intimately familiar with the
population distributions of genomic alterations and their implications.8

These difficulties will only grow worse as next-generation sequencing
(NGS) will utilize cancer gene panels approaching 500 genes and po-
tentially thousands of variants per specimen.9–11 Unfortunately, com-
mercially available electronic health records do not provide ready
means to display clinical genomic data, nor additional functionalities
such as links to external knowledge bases including My Cancer
Genome, a curated oncology gene variant knowledge base, among
others. This gap must be addressed for clinicians to achieve the goals
set forth in President Barack Obama’s Precision Medicine Initiative.12

OBJECTIVE
We sought to develop an open-source application based on the
Substitutable Medical Applications and Reusable Technology (SMART)

Health IT platform (www.smarthealthit.org), an open-access applica-
tion programming interface (API) that enables apps to run broadly
across the health care ecosystem.13 We used Health Level Seven
International (HL7VR )’s Fast Healthcare Interoperability Resources
(FHIRVR ) standard and its extension features for native representation
of molecular profile data. The purpose of the resulting SMART
Precision Cancer Medicine (PCM) app is to present population-level
genomic health information to oncologists and their patients in real
time as a component of clinical practice. We also wanted to demon-
strate the ease of including seamless links to external knowledge
bases within the app.

MATERIALS AND METHODS
The SMART API, SMART on FHIR, and genomics extensions
The SMART platform has been previously described.14,15 HL7 is a
standards development organization that has developed several widely
used standards in the health care space. The newest HL7 standard is
FHIR, currently a draft standard for trial use. Similarly to HL7 V3, FHIR
is a constraint on the HL7 Reference Information Model,16 with some
minor modifications. In addition, FHIR is based around the latest Web
technologies, such as representational state transfer APIs, and can be
represented in extensible markup language, Java script object nota-
tion, or the resource description framework.

SMART on FHIR provides an app platform for health applications
that integrates with EHRs, patient portals, personal health records,
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and data warehouses. There are 3 key aspects of SMART on FHIR: (1)
a data access layer based on FHIR, combined with a set of constrain-
ing profiles that lock down optionality and align vocabularies with
Meaningful Use requirements,17,18 (2) a security layer that provides
narrowly scoped authorization to specific portions of a patient’s record
via OAuth 2.0,19 and (3) a single-sign-on layer using OpenID
Connect.20 SMART on FHIR apps can be integrated into the context of
an existing EHR or patient portal session, conveying the current pa-
tient, encounter, and other details of the host environment, or they can
launch independently, such as on a mobile phone or device.

The SMART on FHIR Genomics API provides additional functionality
to SMART on FHIR by extending the FHIR Observation resource to sup-
port clinical genomic data.21 These extensions are the basis of the
FHIR Standard Profile for Genetics, which was published on
September 23, 2015 (http://www.hl7.org/FHIR/observation-genetics-
cg-prf-1a.html).

Translating local data into FHIR-compliant data
We were interested in displaying the following information for clinical
consumption: (1) demographics including name, medical record num-
ber, gender, and age, (2) primary cancer diagnosis, and (3) molecular
profile results. Comorbidities were not displayed at this pilot stage.
Solid tumor oncology patients with certain histologies (eg, lung cancer,
melanoma) seen at VUMC have, since July 2010, routinely undergone
molecular profiling with SNaPshot, a fast, high-throughput, multiplex
mutational profiling method based on the Applied Biosystems
SNaPshot platform.5,7 SNaPshot assays for common somatic muta-
tions across multiple cancer-associated genes, as defined in the
Catalogue of Somatic Mutations in Cancer (COSMIC). 22 SNaPshot pan-
els have been performed on more than 4500 cancer specimens at
VUMC (as of August 2015).

SNaPshot data are stored in the VUMC EHR and related data ware-
houses using an internally developed local code set. We transformed
these data into unambiguous codable concepts after reviewing various
terminology options for diseases, genes, gene alterations, and protein
alterations (see Supplementary Table 1). This candidate list was gen-
erated by searching for codes for a representative disease (melan-
oma), gene (BRAF), and variant (BRAF p.V600E) in the National Cancer
Institute Thesaurus, a comprehensive terminology that is used by the
US Food and Drug Administration, the Clinical Data Interchange
Standards Consortium, and genomic projects such as the Cancer
Genome Atlas. We then reviewed all mappings through the

NCImetathesaurus to find additional terminologies. We also Web-
crawled the external links on Gene Wiki, as well as links on the linked
pages, to identify additional terminologies. Finally, we utilized a cura-
ted list created by HL7 membership (courtesy of Dr Clem McDonald).
With this terminology identification complete, we arrived at a consen-
sus through internal discussions as well as discussions with the HL7
Clinical Genomics work group as follows: diseases were mapped from
ICD-9-CM to the Systematized Nomenclature of Medicine, Clinical
Terms. Gene names were represented in Human Gene Naming
Consortium nomenclature23 and coded using the National Cancer
Institute Thesaurus.24 Gene reference sequence was represented in
Consensus Coding Sequence terminology and coded using the
National Center for Biotechnology Information’s Consensus Coding
Sequence database.25 Gene alterations and predicted protein alter-
ations were represented directly using Human Genome Variant Society
compliant syntax.26 For each gene, we also determined the relevant
URL in the Gene Wiki knowledge base.26 Examples of this mapping
process are shown in Table 1. Once mapping was complete, we cre-
ated permanent FHIR instances for all patients who underwent
SNaPshot testing by making extensions on the FHIR Observation and
Specimen resources to support the required gene, reference se-
quence, and variant data, and stored these instances on a SMART on
FHIR server. To keep our prototype requirements manageable, data
from the minority of patients with multiple detected mutations were
omitted. An example of the Java script object notation FHIR represen-
tation used to communicate with the app is shown in Figure 1 and
Supplementary Table 2.

Display name was chosen to coordinate with clinicians’ expect-
ations of how genetic information is presented. Since SNaPshot is a
DNA mutation assay, amino acid changes are predicted. BRAF: B-Raf
proto-oncogene, serine/threonine kinase; EGFR: epidermal growth fac-
tor receptor; KRAS: Kirsten rat sarcoma viral oncogene homolog.

SMART PCM app overview
A team of software developers within the Vanderbilt-Ingram Cancer
Center (VICC)’s Research Informatics Core developed a native iOS app
optimized for the iPad and iPad Mini tablet devices (Apple Inc.,
Cupertino, CA, USA). Development proceeded in a continuous delivery
build cycle with frequent input from clinical subject matter experts, es-
pecially with respect to how to properly model the clinical genomic
data; the actual implementation of FHIR was straightforward. An inte-
gral component of the development process was implementation and

Table 1: Examples of local code mapping to standardized codable concepts.

Local Code Human Gene
Naming
Consortium ID

National
Cancer
Institute
Thesaurus

Consensus
Coding
Sequence

Human Genome
Variant Society

Display
Name

Gene Wiki URL
(http://en.wikipedia.org/wiki/�)

BV600 HGNC:1097 C18363 5863.1 c.1799_1800TG>AA BRAF V600E �BRAF_(gene)

p.V600E

E790M HGNC:3236 C17757 5514.1 c.2369C>T EGFR T790M �Epidermal_growth_factor_receptor

p.T790M

G12CM HGNC:6407 C25785 8702.1 c.34G>T KRAS G12C �KRAS

p.G12C

G13CM HGNC:6407 C25785 8702.1 c.37G>T KRAS G13C �KRAS

p.G13C
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refinement of the app at the FHIR Connectathon 7 (September 13–14,
2014) and a Connectathon hosted by the American Society of Clinical
Oncology (May 4–5, 2015); details are in Supplementary Materials.

The PCM app is accessed from an icon on the home screen of an
iPad. The user authenticates by using their standard VUMC username
and password. As required by the OAuth 2.0 process, the user must
authorize the app for initial data access. A splash-screen is presented
and followed by a simple query interface, which allows a practitioner
to look up a patient by name or medical record number.

A successful patient query brings up the patient-centric view,
as shown in Figure 2. In the example, the patient has lung cancer
that harbors a KRAS p.G12C mutation. To prevent visual clutter in the ini-
tial series of pie charts, only common occurrences are labeled. The clin-
ician can see the fully labeled information by interacting with the charts,
as shown in Figure 3. The “dive-in” detail includes full labels and exact
patient counts. From that view, the user can link to external Gene Wiki
content by touching the desired gene (Figure 4).

User feedback survey
After completion of the initial development cycle, which included FHIR
Connectathon 7, we performed user testing with oncology clinicians.
The SMART PCM app was evaluated in the VICC medical oncology
clinic, with the data source being �3800 patients who had undergone
SNaPshot testing with 0 or 1 mutation detected. All queries for names,

medical record numbers, and genomic data were performed in real
time from a local SMART on FHIR server, and data was fed to the app
via FHIR bundle and resource objects. This initial evaluation focused
on collecting clinician feedback and was not carried out in the pres-
ence of patients. Similar to other “apps” in the VUMC ecosystem (eg,
WebPACS), the app is launched independently from the EHR and can
be used synchronously or asynchronously per user needs. Two groups
of users were targeted for evaluation of the application: fellows within
the oncology training program and practicing attending oncologists.
Fourteen users (9 fellows and 5 attendings) were approached for user
evaluation, with a goal to ascertain the majority of problems and ex-
periences for each group.27 After they had freely explored the app’s
functionality without a time limit, they were directed to complete a
short online survey. Survey questions were created based on informal
needs assessments and conversations between 2 clinical oncologists.
Questions were created around user concepts and specific potential
improvements. Additionally, users were able to enter open-ended
free-text comments. All users completed the survey, which is
described in the Supplementary Materials.

Statistical Analysis
Survey responses were exported from Research Electronic Data
Capture into the R statistical package for analysis. Free-text comments
were coded by 2 independent raters (J.L.W., M.J.R.) for content, with

Figure 1: A snippet of the JSON FHIR code for a patient with lung cancer and a p.T790M mutation detected in the epidermal growth factor
receptor gene. Three extensions to the FHIR Observation Resource are shown: (1) assessed.gene, which uses the NCI Thesaurus to repre-
sent the gene name in HGNC-compliant format; (2) assessed.referenceSeq, which uses the CCDS database to represent the gene refer-
ence sequence; (3) assessed.variant, which represents the observed gene mutation (c.2369C>T) and predicted protein alteration
(p.T790M) directly in Human Genome Variant Society syntax. The full code for this patient is available in Supplementary Table 2.
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discrepancies adjudicated by joint consultation; interrater reliability
was calculated using Cohen’s kappa (j). Hypothesis testing was per-
formed using Fisher’s exact test and Mann-Whitney U; all statistical
tests were 2-sided.

Ethics and software availability
The described tool is a quality improvement initiative with the intent to
implement a practice to improve the quality of patient care, and was
thus determined by the Vanderbilt Institutional Review Board to be
non-research per section 45 CFR 46.102(d) of the Health Insurance
Portability and Accountability Act.

The source code for the app has been made openly available on
GitHub (GitHub Inc., San Francisco, CA, USA): https://github.com/dcar-
bone/smart-precision-cancer-medicine. The source code for the
branched SMART on FHIR server is also available: https://github.com/
ross-oreto/api-server. Further information is available on the SMART
App Gallery (https://gallery.smarthealthit.org/vanderbilt-university-
medical-center/smart-precision-cancer-medicine).

RESULTS
Implementing SMART on FHIR Genomics at VUMC
VUMC’s extensive research data warehouse is a relational database
containing detailed information on over 3 million patients, dating back
to 1992.28 This includes most data from the EHR, such as clinical pro-
gress notes and provider-patient communications, as well as data
feeds directly from laboratory and billing systems. Our app was built
to interface with a local SMART on FHIR server, using data directly
from the research data warehouse, analogous to previous work with
i2b2.29 The local server was similar to the SMART on FHIR prototype

described above, except that OAuth 2.0 was linked to a custom in-
ternal authentication and role-based authorization service, which util-
izes lightweight directory access protocol for access to client
applications. Access to the server was only enabled within the VUMC
firewall and was audited.

User feedback
User evaluations were highly variable across all nominal domains
tested, with no correlation among variables (eg, users who found the
system quick and easy to use would not necessarily use it clinically;
see Supplementary Figure 1). There was no statistical difference be-
tween fellows and attendings in their responses to any of the ques-
tions (P> 0.05).

Table 2 shows how clinicians responded to the survey’s list of 8
categories of potential functional additions. The top request was for
assistance with selecting the right targeted drug for a given mutation,
followed by a request for more links to external knowledge bases,
population-level outcome information, and treatment cost information.

The survey results included 35 free-text comments about the app.
These comments were coded to 5 categories (navigation, annotation,
clinical utility, speed, general) with good interrater agreement (j¼ 0.84).
The most common categories were technical aspects of navigation and
general comments (Table 3). Several representative responses to the
question of “What features could be improved?” are as follows:

“I think this could be a useful clinical tool if additional features
were built in. I would not show this to the average patient that I
see, because I generally feel that too much information is con-
fusing to the average pt.”

Figure 2: Example output of the SMART PCM app, showing a lung cancer patient with KRAS p.G12C mutation in the context of other lung
cancer patients tested at VUMC. Further information is available to the user through interaction with the pie charts, all pieces of which are
activated by touch. On the left, a pie chart shows the population distribution of gene mutations. In this example, it is evident that slightly
more than half the patients have no mutation detected, whereas KRAS is the most commonly mutated gene. On the right, the distribution
of variants of the mutated gene is shown, where it is evident that p.G12C is the most common KRAS mutation. In a case where a patient
has no mutation detected, the variant pie chart is suppressed. Patient details (name, age, gender) are redacted to preserve PHI.
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“Can include more information such as access to my cancer
genome. Link to available targeted agents, cost, survival etc.”
“More clear deliniation [sic] of the patient’s findings. All to be
legible. Speed may deteriorate when dataset increases. There
needs to be a demo to show you how it works. All in all great
though!”

Implementing SMART PCM at the ASCO interoperability
demonstration
Based upon several of the themes that emerged from the survey re-
sults, we implemented additional functionalities. The variant pie visu-
alization was activated so that a user interacting with this data
would be brought to the disease- and variant-specific page of My
Cancer Genome.30 Additional icons were added to bring the user to
disease- or genotype-specific treatment options on HemOnc.org, a
collaborative chemotherapy regimen wiki.31

The enhanced app was competitively reviewed for inclusion in the
American Society of Clinical Oncology (ASCO)’s inaugural interoperability
demonstration, and was accepted along with 11 other vendor products.32

SMART PCM received a FHIR-compliant message containing genomic in-
formation about a synthetic patient with BRAF-mutated colon cancer in
real time from a third-party clinical genomics laboratory, GenoSpace LLC
(Cambridge, MA, USA). For the demonstration, the synthetic patient was
compared to a locally cached synthetic colon cancer patient population
(N¼ 415); visualization construction was performed in real time.

Feasibility of expanding to NGS
Further modifications to the app realized the function of showing
data from NGS test results, using synthetic patient data (N¼ 150,
see Supplemental Methods). A pie chart was used to stand out gene
mutations detected in 1 patient from all gene mutations observed in

similar patients. Further analysis of the distribution of gene mutations
was also performed by local outlier factor (LOF) analysis. LOF is an ef-
ficient method to identify density-based outliers (see Supplemental
Methods).33 An example is shown in Figure 5 and Figure 6, and
Supplementary Figure 2.

DISCUSSION
Cancer is a set of complex diseases whose treatment calls for highly
individualized diagnosis and rapidly evolving treatments; indeed, the
knowledge base in the genetics of cancer is expanding exponen-
tially.34–36 This complexity has been recognized by the broad research
and patient care community, and cancer is the first area to be tackled
through the Precision Medicine Initiative.12 As knowledge of the gen-
omic drivers of cancer grows along with the increasing number of
druggable targets, matching patients to treatments has become in-
creasingly important.2,4 Many oncologists treat a wide variety of can-
cers, and the potential to move from the existing paradigm of more
than 100 distinct types of cancer to thousands or more distinct subtypes
is daunting. Given the pace of knowledge generation and the transition
to large cancer gene panels and routine whole-exome or whole-genome
sequencing, it will be a challenge to incorporate genomic cancer data
into existing EHR platforms on a near–real time basis.

We decided that an appropriate initial scope for our clinico-
genomic prototype would be to provide information to the clinician for
situating a patient relative to other patients in the clinical genomics
space. Providing contextually useful patient population comparisons
may be a “nice to have” for traditional clinical tests. However, for the
complex and highly differentiating results associated with genomic
testing, such information is essential for any type of diagnostic/prog-
nostic support, since more active clinical decision rules may depend
entirely upon the particular evidence base for the clinical condition of
the patient. The informational support provided by the PCM prototype

Figure 3: The SMART PCM app allows for user interaction, in order to obtain a quantitative view of the mutation spectrum. In the contin-
ued example of a KRAS-mutated lung cancer patient, the user can see that KRAS is the most frequent mutation, and can also see the dis-
tribution of other mutations quantified. This information is not displayed in the first visualization (Figure 2) because of the visual clutter.
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immediately informs the clinician about the patient in a cancer popula-
tion context and it allows the physician to share—show and tell—this
information with the patient.

The PCM app prototype demonstrates how the “app ecosystem”
path can keep pace with the underlying medical science.13 Our proto-
type demonstrates how to achieve end-to-end integration with a data

warehouse operating in near–real time with the accompanying EHR
system. The SMART on FHIR components enable role-based authenti-
cation and authorization for obtaining patient context and population-
level data within a firewalled and audited environment. Given the
security concerns surrounding PHI, this is a critical aspect. The infor-
mation required by SMART PCM demonstrates the convenience of the
FHIR data model: to satisfy the clinical data requirement, we only had
to stand up 4 FHIR Resources: Patient, DiagnosticReport, Specimen,
and Observation. Although FHIR had no off-the-shelf way to package
the gene and variant data requirements, existing FHIR Resources were
readily extended to capture the required information.21

By writing the prototype app as a SMART app, we have made it de-
ployable on different EHR systems that have exposed the same FHIR
Resources and Extensions. The SMART design also allows accessing
patient-specific gene and variant data from a secondary source, such as
a commercial DNA sequencing data service. Indeed, a key way in which
SMART on FHIR Genomics could stimulate innovation is to offer the right
combination of predictable data payloads and secure architectures to
simplify “mashing up” of data originating in differing locations, so that
capabilities such as those displayed in SMART PCM are no longer exotic.

Figure 4: The SMART PCM app allows for access to external knowledge sources that would otherwise be unavailable to the user through
their native EHR system. Shown here is the Gene Wiki page for the gene KRAS, embedded within the app.

Table 2: Features clinical users would like to see in future
PCM designs.

Additional feature Percent of
fellows
requesting
feature
(n¼ 9) (%)

Percent of
attendings
requesting
feature
(n¼ 5) (%)

Decision support (eg, what drugs will
work for my patient?)

67 60

More external knowledge content (eg,
links to My Cancer Genome, COSMIC)

44 40

Outcome information (eg, survival) 44 40

Cost information (eg, how much will the
drugs cost that could work based on
observed mutation?)

33 40

Larger populations (eg, state- or country-
level statistics)

0 20

Stratify by criteria such as age, gender,
treatment exposure, stage

11 0

Additional visualizations 0 0

All of the above 11 20

Table 3: User comments by category.

Coded user comment category Comments count

Navigation 8

Annotation 6

Clinical utility 2

Speed 1

General 8
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This technical solution does not obviate the need for appropriate data
governance policies to ensure that the appropriate level of trust, privacy,
and security persists throughout the health care ecosystem. With the
growing impetus for post–Meaningful Use interoperability such as The
Office of the National Coordinator of Health Information Technology
(ONC)’s Federal Health IT Strategic Plan 2015–2020 and embracing of
the app concept by some EHR vendors, the time for interoperable stand-
ards-based apps is nigh. Through the Argonaut Project (https://hl7-fhir.
github.io/argonauts.html), an industry-academic consortium, the SMART
on FHIR API is being incorporated into 5 major EHR vendor products.
The Health Services Platform Consortium, a nonprofit organization with
multiple vendor participants, is also promoting the use of apps with a
FHIR service layer and EHR integration using SMART. The uptake of
SMART by vendors leads to a “win-win” situation where innovation can
freely occur and vendors are also free to reuse and adapt open-source
app contents into their own products.13

Feedback from testers revealed several themes. Foremost is
the heterogeneous expectations of clinical oncology users for tech-
nology in delivering information. Ranges for the continuous vari-
ables in Supplementary Figure 1 averaged 82.75 points out of
100. Additionally, users who rated the app highly with regard to
speed or ease of use were not more or less likely to say they
would use it clinically. This illustrates a second theme among
users: that speed and ease of use must be present, but it is con-
tent that will drive the ultimate utility of a clinical app. As demon-
strated in Table 2, features such as enhanced decision support
and more links to external knowledge bases were the most desired
features, whereas additional visualizations and the ability to display
data by demographics were less desired. Somewhat surprisingly,
only 1 user (out of 14) requested inclusion of larger databases
such as COSMIC into the population-level displays. This may reflect
the large size of the institutional VUMC database and it is likely

Figure 5: An example of a synthesized NGS panel result with many detected alterations and 200þ genes with detected alterations in the
population.
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that implementers with a smaller local database might want exter-
nal data included to some degree.

As we found in our assessment of coding terminologies
(Supplementary Table 1), there are at least 26 structured vocabularies,
syntaxes, or Web resources for diseases, 24 for genes, 9 for gene al-
terations, and 7 for protein alterations. There are also additional
vocabularies that have terms explicitly linking 1 or more of these cate-
gories (eg, Orphanet links genes to proteins). Although this list may
not be comprehensive, choosing from among these was still by no
means straightforward. Issues such as version control, provenance,
and compatibility must all be considered when selecting terminolo-
gies, and for this project we found that the consensus approach was
best to reconcile these challenges. However, this process can be
time-consuming and does not always guarantee optimal results.

As we demonstrated after the initial user feedback sessions, the
addition of more external links is straightforward to implement. External
linking capabilities could easily be extended in future work, including
patient-centric resources such as Cancer.net and the National Center
for Biotechnology Information library of cancer information, and shared
decision-making resources such as ClinicalTrials.gov, a clinical trial ag-
gregator. In the absence of an indisputable authoritative knowledge
source, multiple links could be provided.

The function of drawing a pie chart showing multiple gene muta-
tions observed in a single specimen substantiates the feasibility of
expanding to NGS. However, Figure 5 also demonstrates some
significant visualization challenges. First, for the large amount of gene
mutations observed, it is hard to integrate all information in one figure.
If we display all gene names and their occurrence level, the figure
would become too crowded for clinicians to catch things that really
matter, while much information would be omitted if we stand out only
the most important information. Although alternative visualizations
such as bubble plots might overcome some of the weakness of the
pie/donut representation, they still suffer from clutter at this scale.
Some have advocated circular plots that show connections between

objects or between positions, which is an attractive way to display
multidimensional cancer genomics data for scientific publication, but
also tends to be over-cluttered for clinical use.37 Even more challeng-
ing, there is no consensus on auto-identifying the most valuable infor-
mation; sometimes high levels of occurrence do not tie in with high
importance. For example, the most commonly mutated gene in can-
cer, tumor protein p53, does not have a therapeutic target. Second,
inner connections (eg, physical/genetic interactions) may exist among
gene mutations detected; thus, network analysis such as LOF holds
the potential to decode potential relationships of mutations including
variants of undetermined significance. Visualization of clinico-genomic
data is a complex issue that will not be solved for some time. The
National Cancer Institute has recognized this complexity and has re-
cently issued a request for applications for Visualization Genomic Data
Centers.

CONCLUSION
We built and tested a standards-based clinico-genomic app, with im-
mediate applicability to many cancer patients. The ultimate goals of
the SMART PCM app are to (1) provide practitioners with context-
dependent population-level cancer mutation information, (2) act as a
within-workflow intermediary to select external knowledge bases, and
(3) enable a patient-centered and gene-driven shared decision-making
model.38–40 Patients, caregivers, and clinicians do not wish “precision
medicine” to be a mere buzzword, but rather want to know the context
of the disease (eg, untreated BRAF-mutated metastatic colon cancer),
the prognosis of the disease (eg, the median survival for a patient with
untreated BRAF-mutated metastatic colon cancer), and what can be
done about the disease (eg, published efficacious treatment regimens
for untreated BRAF-mutated metastatic colon cancer). At the same
time, personalization does not mean consignment to isolation. If any-
thing, a well-defined niche diagnosis can bring about a sense of soli-
darity with others so afflicted, as evidenced by the numerous and

Figure 6: The local outlier factor (LOF) distribution for the population; x-axis and y-axis represent the LOF distribution and the proportion
of patients of certain LOF interval in all patients, respectively. The further the LOF value is from 1.0, the more possibility that the genetic
mutation observed in that patient is an outlier. The patient represented in Figure 5 (“Mary 1 Smith”) had an LOF of 0.925, suggesting that
she is somewhat similar to the other patients in the population.
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strong rare disease coalitions, and sites such as PatientsLikeMe
(Cambridge, MA, USA). This can especially be the case when member-
ship in such a group brings the option of targeted therapy, which may
also include a unique set of side effects. Apps such as SMART PCM
can evolve quickly and nimbly, and offer a new and innovative re-
source for precision medicine.

Physicians have been described as professional information con-
sumers, and with the increasing power of mobile computing they will
increasingly turn to mobile applications for information. These applica-
tions will have to be built upon robust data standards to ensure accur-
acy, speed, and interoperability; however, it will ultimately be content
that drives clinical utility and adoption.
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