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Abstract

Amyloids are implicated in neurodegenerative diseases. Fibrillar aggregates of the amyloid-β 
protein (Aβ) are the main component of the senile plaques found in brains of Alzheimer’s disease 

patients. We present the structure of an Aβ(1-42) fibril composed of two intertwined 

protofilaments determined by cryo-electron microscopy (cryo-EM) to 4.0 Å resolution, 

complemented by solid-state nuclear magnetic resonance (NMR) experiments. The backbone of 

all 42 residues and nearly all sidechains are well resolved in the EM density map, including the 

entire N-terminus, which is part of the cross-β structure resulting in an overall "LS"-shaped 

topology of individual subunits. The dimer interface protects the hydrophobic C-termini from the 

solvent. The unique staggering of the non-planar subunits results in markedly different fibril ends, 

termed "groove" and "ridge", leading to different binding pathways on both fibril ends, which has 

implications for fibril growth.

Amyloids are involved in various diseases, most prominently in many neurodegenerative 

diseases (1–3). The amyloid-β protein (Aβ) forms fibrils that further aggregate into plaques 

that are found in the brains of Alzheimer’s disease patients (4). These fibrils are structurally 

highly heterogeneous (1, 5–8), which makes the production of highly ordered samples and 

structure determination difficult. Aβ fibrils have been described as protofilaments 

intertwined in a helical geometry, existing in several polymorphs, with varying width and 

helical pitch, different cross-section profiles and different interactions between the 

protofilaments (5–7, 9, 10). The local arrangement of Aβ molecules within the fibril can 

vary drastically between different isomorphs, with potential implications for biological 

activity (3). Data from solid-state NMR experiments has allowed for building models of Aβ 
fibrils at atomic resolution (6, 7, 11–15). Here we present the atomic structure of Aβ(1-42) 
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fibrils by cryo-EM (Figs. 1 and 2, table S1). To facilitate structure determination, we 

identified conditions (aqueous solution at low pH containing organic co-solvent, see (16)) 

that yielded a highly homogeneous sample of fibrils as shown by EM and atomic-force 

microscopy (AFM) (figs. S1 and S2, see (16)). The toxicity of these fibrils was 

indistinguishable from fibrils grown at neutral pH (fig. S3). Micrographs revealed 

micrometer-long unbranched fibrils, where about 90 % of the fibrils had a rather invariable 

diameter of about 7 nm (fig. S1). These fibrils were used in a helical reconstruction 

procedure to compute a three-dimensional density to 4.0 Å resolution (Figs. 1 and 2, fig. S4, 

see (16)). The EM data were augmented by solid-state NMR and X-ray diffraction 

experiments, which were performed on identically produced fibril samples of recombinant 

uniformly labeled [15N/13C]-Aβ(1-42) and show that the EM structure is representative of 

the sample. Full site-specific resonance assignments from 2D and 3D homo- and 

heteronuclear correlation spectra could be obtained by solid-state NMR for all 42 residues 

(Fig. 3A and B, figs. S5 – S7, and tables S2 and S3). For most amino acid residues only one 

set of resonances was observed, indicative of high structural homogeneity and order.

The reconstructed fibril density and the atomic model (Fig. 1) show two twisted 

protofilaments composed of Aβ(1-42) molecules stacked in a parallel, in-register cross-β 
structure. The separation between the parallel β-strands is well visible in the density (Fig. 

1A and fig. S8A). The peripheral β-sheets (residues 1–9 and 11–21) are tilted with respect to 

the fibril axis by ~10° (Fig. 2C). Remarkably, the fibril does not show a C2 symmetry but 

instead an approximate 21 screw symmetry with a rise of 4.67 Å, which is in excellent 

agreement with the strongest peak in the X-ray diffraction profile of 4.65 Å (Fig. 3C and fig. 

S9). Owing to this helical symmetry, the subunits are arranged in a staggered fashion (Fig. 

4A). The interaction between the protofilaments is thus not true dimeric, but the subunits are 

stepwise shifted along the fibril axis (fig. S10). Such an arrangement has also been described 

recently for dimeric tau fibril structures (17).

A single Aβ(1-42) subunit forms an LS-shaped structure, in which the N-terminus is L-

shaped and the C-terminus S-shaped (cf. Fig. 1D). The C-terminus (Fig. 2 and fig. S11, A 

and B) roughly resembles structures of a different polymorph of Aβ(1-42) determined 

recently by solid-state NMR (11, 13, 14) alone (fig. S12, tables S4 to S6), while the dimer 

interface is completely different (discussed below). In contrast to those NMR structures, the 

current structure shows the N-terminal part of Aβ(1-42) to be fully visible and part of the 

cross-β structure of the fibril. Secondary chemical shifts from our NMR experiments and the 

corresponding secondary structure calculation correlate well with the EM structure (cf. Fig. 

3B). Although we could not assign the long-range contacts unambiguously, all NMR cross-

peaks, which are not due to sequential contacts, are in agreement with the cryo-EM structure 

(figs. S6 and S7). Recently reported chemical shift assignments of two brain seed-derived 

Aβ(1–42) fibril preparations (18) differ from our chemical shifts (table S7) suggesting 

different polymorphs.

Three hydrophobic clusters stabilize the subunit conformation: 1) Ala2, Val36, Phe4, Leu34, 

2) Leu17, Ile31, Phe19, and 3) Ala30, Ile32, Met35, Val40. Because the hydrophobic 

clusters expand in the stacked subunits along the fibril axis, they essentially contribute to 

fibril structure stability (Fig. 4B).
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Combined analysis of NMR and cryo-EM data suggests salt-bridges between Asp1 with 

Lys28, Asp7 with Arg5, and Glu11 with His6 and His13 (16). The salt-bridges of Glu11 

stabilize the kink in the N-terminal part of the β-sheet around Tyr10 (fig. S8D). This 

structural feature has also been reported for fibrils of the Osaka mutant E22Δ of Aβ(1-40) 

(12). In rat and mouse, which are animal species that are known not to develop Alzheimer's 

disease, His13 is replaced by arginine, which possibly prevents the formation of the kink 

around Tyr10.

Compared with previous Aβ42 fibril structures (11, 13, 14), significant structural differences 

are observed in the turn region of residues 20 to 25, for example here only Phe19 but not 

Phe20 is facing the hydrophobic core (Fig. 2 and fig. S12). This region, which forms two of 

the four edges of the Aβ(1-42) fibril, contains the sites of pathogenic familial mutations of 

Aβ: Flemish (A21G), Arctic (E22G), Dutch (E22Q), Italian (E22K), and Iowa (D23N). 

Furthermore, the effect of two mutants in the N-terminus at Ala2 can now be rationalized 

based on the fibril structure: A2T (Icelandic) might be protective against Alzheimer's 

disease, because threonine is more polar than alanine and could destabilize the fibril by 

disrupting the hydrophobic cluster Ala2, Val36, Phe4, Leu34 (Fig. 2). In contrast, A2V is 

pathogenic, which could be related to the fact that valine is more hydrophobic than alanine 

and would strengthen the hydrophobic interaction leading to increased fibril stability.

The staggered arrangement of the subunits has direct implications for fibril growth. Each 

monomer that binds to a certain fibril end sees the same interface, in contrast to a true 

dimeric interface (in the case of a C2 symmetry), where added monomers would 

alternatingly see either two identical binding sites or a curb preformed by the preceding 

subunit. The binding sites presented by the two fibril ends are different from each other 

(Figs. 4 C and D), which leads to different binding pathways with possibly different energy 

barriers, and likely results in polarity of amyloid fibril growth (19, 20). The binding energy 

however has to be identical on both ends. The subunits are not planar but instead the chain 

rises along the fibril axis from the N- to the C-terminus, forming grooves and curbs at the 

binding interface (Figs. 4 C and D). We refer to the fibril ends as "groove" and "ridge", 

because β-strand 27–33 forms a ridge on the surface of one end of the protofilament, and a 

groove on the other end. The β-strands are staggered with relation to one another in a zipper-

like fashion (Fig. 4A, fig. S11C). For example, Phe4 of subunit i is in contact with Leu34 

and Val36 from the subunit i-2 directly below. At both fibril ends, the binding site for 

addition of subunit i contains contributions of subunits i-1, i-2, i-3, i-4, and i-5, or i+1, i+2, i
+3, i+4, and i+5, respectively, and very small, likely insignificant contributions from i-7 and 

i+7 (fig. S11D). Therefore five Aβ(1-42) subunits are required to provide the full interface 

for monomer addition. For a fragment of six subunits, the capping subunits would have the 

same full contact interface as those in an extended fibril. We define this structural element of 

six subunits as the minimal fibril unit (fig. S11D).

The protofilament interface is formed by the C-termini, in contrast to previously determined 

solid-state NMR structures (11, 13), where the C-termini are solvent exposed (fig. S12). The 

interface is hydrophobic in the core and is formed by interactions between residues Val39 

and Ile41 in subunit i with Val39 and Ile41 in subunits i+1 and i-1 (Fig. 4B). Moreover, the 

N-terminus of subunit i is close to the C-terminus of subunit i-3, and the salt bridge between 
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Asp1 (subunit i), and Lys28 (subunit i-5) also stabilizes the interaction between the 

protofilaments (Figs. 2 and 4). Our structure agrees with a previously reported low-

resolution cryo-EM structure of Aβ(1-42) fibrils (21), which was prepared under similar low 

pH conditions, but clearly differs from the polymorph observed in (9) (fig. S13A).

Our 4.0 Å structure provides detailed insight into the architecture of Aβ(1–42) amyloid 

fibrils and reveals a complete model with the backbone of all 42 residues and almost all 

sidechains visible and highly ordered. An in-depth illustration of a protofilament interface is 

achieved. The regular helical symmetry has direct implications for the mechanism of fibril 

elongation and results in distinct binding sites for monomeric Aβ, including contacts across 

different subunit layers. This high-resolution structure will help to understand differences in 

pathogenic familial mutations, the molecular mechanism underlying fibril growth and 

potentially suggest ways to interfere with fibril formation and growth.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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One Sentence Summary

A complete cryo-EM structure of an Aβ(1-42) fibril reveals a protofilament interface and 

a defined N-terminal region.
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Fig. 1. Aβ(1-42) fibril structure.
(A) 3D reconstruction from cryo-EM images showing density of two protofilaments (brown 

and blue) and the clear separation of the β-strands. (B) Atomic model of the fibril with 

parallel cross-β structure. (C) and (D) Tilted views of the cross-section of the EM density 

and the backbone model.
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Fig. 2. Atomic model and superimposed EM density of the fibril cross-section.
(A) Two subunits, one from each protofilament, are shown (blue and brown) together with 

the masked EM density map (at contour level of 1.5 σ, additional contour levels of 1 σ and 2 

σ are shown in fig. S4). (B) Detailed view of the interactions between the N- and C-terminus 

and the sidechain of Lys28 (at contour level of 1 σ). (C) Side view of the same two opposing 

subunits showing the relative orientation of the non-planar subunits. The large peripheral 

cross-β sheet is tilted by 10º with respect to the plane perpendicular to the fibril axis.
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Fig. 3. NMR and X-ray diffraction experiments.
(A) 2D Proton-Driven Spin Diffusion (PDSD) spectrum of fibrillar Aβ(1-42). The spectrum 

was recorded at a magnetic field strength of 18.8 T corresponding to a proton Larmor 

frequency of 800 MHz, a sample temperature of T = 0 ± 5 °C and a spinning speed of 12.5 

kHz. For homonuclear 13C/13C mixing, PDSD with a mixing time of 20 ms was employed. 

A squared and shifted sine bell function was used for apodization (shift of 0.3·π). (B) 

Secondary chemical shifts calculated from assigned resonance shifts and random coil values 

predicting β-strand regions (difference exceeds -2 ppm) (dark blue). For Gly residues, only 
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the Cα secondary chemical shifts are plotted. Additionally, β-strands calculated by TALOS-

N and β-sheets from the cryo-EM derived atomic model are displayed (assigned by DSSP 

and Stride). (C) X-ray diffraction image of un-oriented Aβ(1-42) fibrils.
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Fig. 4. Details of the Aβ(1-42) fibril architecture.
(A) Side view of the atomic model showing the staggered arrangement of the non-planar 

subunits. (B) Surface representation of a fragment of the atomic fibril model. Surface is 

colored according to hydrophobicity (Kyte-Doolittle scale) (gradient from brown 

(hydrophobic, 4.5) to white (neutral, 0.0)). View of the "ridge" (C) and "groove" (D) fibril 

ends. Only the contact surfaces of the subunits with the respective capping monomer (i+3 in 

(C) and i-4 in (D), shown as ribbon) are colored (color coding according to layer number, 

see (A)).
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