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ABSTRACT

Objective: We assessed the sensitivity and specificity of 8 electronic health record (EHR)-based phenotypes for

diabetes mellitus against gold-standard American Diabetes Association (ADA) diagnostic criteria via chart

review by clinical experts.

Materials and Methods: We identified EHR-based diabetes phenotype definitions that were developed for vari-

ous purposes by a variety of users, including academic medical centers, Medicare, the New York City Health

Department, and pharmacy benefit managers. We applied these definitions to a sample of 173 503 patients with

records in the Duke Health System Enterprise Data Warehouse and at least 1 visit over a 5-year period

(2007–2011). Of these patients, 22 679 (13%) met the criteria of 1 or more of the selected diabetes phenotype def-

initions. A statistically balanced sample of these patients was selected for chart review by clinical experts to

determine the presence or absence of type 2 diabetes in the sample.

Results: The sensitivity (62–94%) and specificity (95–99%) of EHR-based type 2 diabetes phenotypes (compared

with the gold standard ADA criteria via chart review) varied depending on the component criteria and timing of

observations and measurements.

Discussion and Conclusions: Researchers using EHR-based phenotype definitions should clearly specify the charac-

teristics that comprise the definition, variations of ADA criteria, and how different phenotype definitions and

components impact the patient populations retrieved and the intended application. Careful attention to phenotype def-

initions is critical if the promise of leveraging EHR data to improve individual and population health is to be fulfilled.
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INTRODUCTION

Diabetes mellitus affects 29 million Americans. Costs attributable to

diabetes are $284 billion annually.1–3 The American Diabetes Asso-

ciation (ADA) 2016 guidelines give 4 options as the “gold standard”

for accurate diagnosis of diabetes: (1) fasting plasma glucose of

126 mg/dL, (2) 2-hour plasma glucose >200 mg/dL during an oral

glucose tolerance test, (3) hemoglobin A1c >6.5%, or (4) random

plasma glucose over 200 mg/dL.4 While the ADA has published

standard criteria for diagnosis of types 1 and 2 diabetes, the identifi-

cation of these criteria in electronic health record (EHR) data is

often missing, unclear, or unreliable.5 Historically, self-reported

data1,3,6 have been the norm in assessing population health; more

recently, secondary data analysis of EHR data to create disease

registries has ballooned, in part due to the passage of the Health

Information Technology for Economic and Clinical Health Act.7

The accurate identification of patients with diabetes using secondary

data is challenging; however, use of standardized and reproducible

EHR-based phenotype definitions will support research and quality

improvement by enabling direct comparison of population charac-

teristics, risk factors, and complications. In addition, development

and use of phenotypic standards will allow stakeholders to identify

evidence-based interventions and apply them to appropriate patient

populations.8–23 The purpose of this project was to compare 8 dif-

ferent diabetes phenotypes to gain clear insight into the relative

components of each definition and to better understand, compare,

and design population health projects

Previously, we showed that the prevalence of diabetes in Durham

County, North Carolina, varies (from 7 to 13%) depending on the

specific EHR-based diabetes phenotype definition implemented.5 In

this analysis, we used the same EHR-based diabetes phenotype defini-

tions (International Classification of Diseases, Ninth Revision, code

250.xx [ICD_250]; expanded ICD-9 codes [CCW]; abnormal A1c,

based on New York City Health Department A1c Registry [A1c]; dia-

betes medication, based on pharmacy benefit manager (PBM) data

[Med]; Durham Diabetes Coalition [DDC]; Surveillance, Prevention,

and Management of Diabetes Mellitus [SUPREME DM or Sup-DM];

electronic medical records and genomics [Northwest or eMERGE];

abnormal A1cþdiabetes medication [A1c_Med]) and assessed their

sensitivity and specificity based on comparison to the gold-standard

ADA diagnostic criteria implemented by clinical experts via chart

review of a statistically based sample from the Duke Health System

Enterprise Data Warehouse.

The phenotype definitions we selected for our investigation were

mature and used in active population health programs or research stud-

ies by various groups, such as academic medical centers, health depart-

ments, government agencies, or medication managers (Box 1). While

these different phenotypes used the same components (ICD-9 codes,

laboratory data, and/or medication use), our previous work showed that

the multiple ways in which the components are assembled, included, or

excluded in terms of frequency, clinical context, and time can drastically

change the performance of one phenotype against another.5

As shown in Table 1, 2 of the 8 phenotypes are made up solely

of ICD-9 codes. The first (ICD_250) is based on Healthcare Effec-

tiveness Data and Information Set ICD-9 codes 250.xx for types 1

and 2 diabetes. The second (CCW) is an expanded list of codes that

includes Healthcare Effectiveness Data and Information Set codes

and diagnoses that indicate secondary diabetes and diabetes compli-

cations: ICD-9 codes 249.xx, 362, and 357.

The third phenotype (A1c) uses the presence of an abnormal

hemoglobin A1c to identify patients with diabetes. A growing

number of health systems and local health departments rely on labo-

ratory data to help identify patients with diabetes. For example, the

New York City Health Department partnered with all the health

systems and clinics in 5 boroughs to mandate reporting of all hemo-

globin A1c results. They standardized a process to notify patients of

their results, explain A1c goals to patients, and alert both patients

and providers when testing is overdue.18

We constructed a fourth phenotype (Med) that is based solely on

documentation of diabetes-associated medication, as this would be

the data that PBMs use to identify patients with diabetes. PBMs do

not have access to laboratory data or visit diagnoses; they identify

patients based on medications prescribed and dispensed. PBMs cre-

ate disease registries to give employer groups data on gaps in care

(e.g., lack of statin therapy in patients on diabetes medications).

PBM data are limited and cannot identify patients who are undiag-

nosed, untreated, or fail to use benefits to fill prescriptions.

The next 3 phenotypes use inpatient and outpatient diagnosis

codes, laboratory test results, and medication prescription data to

identify patients with diabetes. The combinations of how the com-

ponents are assembled changes the nature of the cohort the pheno-

type identified. These differences are described here as the fifth,

sixth, and seventh phenotypes.

The DDC, the fifth phenotype, aims to identify patients in Dur-

ham County, North Carolina, with type 2 diabetes. In order to reduce

death, disability, and cost in patients, the DDC developed a geo-

graphic health information system based on analysis of secondary

data, including health, census, demographic, social, and environmen-

tal data; the project matches resources to individuals and communities

based on risk with diagnosed and undiagnosed type 2 diabetes.19

The sixth phenotype, Sup-DM, was designed by a consortium of

11 integrated health systems (the Health Care Systems Research

Network [previously the health management organization (HMO)

Research Network]), where diabetes prevalence ranges from 4.6 to

12% (average 6.9%) across sites. The Sup-DM phenotype was

developed for epidemiological study and public health intervention

in types 1 and 2 diabetes patients.20–22

The seventh phenotype, electronic medical records and genomics

(NW), was developed by investigators at Northwestern University

to identify patients with type 2 diabetes for genotype–phenotype

correlation studies, and was designed specifically to exclude type 1

diabetes patients, including those who have ever been coded with

Box 1:Purpose and benefits of disease registries

Quality improvement

• Identifying gaps in care (HbA1c not checked)

• Identifying care goals not obtained (HbA1c> 8%, BP> 140/

90 mmHg, etc.)

• Identifying medications not used (statins, ACEi/ARB)

Understanding the burden of disease and complications

• Comprehending disease disparities

• Finding undiagnosed cases

Identifying patients for research projects

Comparing care quality across sites

Comparing complexity of patients across sites

Comparative effectiveness research

Epidemiologic surveillance, including longitudinal analyses

Population-based care management studies of people with diabetes

ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor

blocker; BP, blood pressure; HbA1c, glycated hemoglobin.
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Table 1. Components and algorithm for 7 EHR phenotypes for diabetes

Abbreviation ICD_250 CCW A1c Med DDC Sup-DM NW A1c_Med

Full name ICD-9 code

250.xx

Expanded

ICD-9 codes

Abnormal A1c

(� 6.5%)

DM Med DDC SUPREME

DM

eMERGE NW Abnormal

A1cþDM

Meda

Based on ICD-9 billing

codes

Other DM

codes HEDIS

misses

NYC A1c h

ealth depart-

ment registry

PBM Population

Health Type 2

DM

Population

Health Any

DM

Exclusively

Type 2 DM

A combination

of abnormal

A1c and PBM

Components

1a ICD-9 250.x0, 250.x2 IP or AMB x1 IP x1 or AMB

x2

(–) (–) IP, AMB, or

ED x 1

IP x1 or AMB

x2

IP, AMB, or

ED x1

(–)

1b ICD-9 250.x1, 250.x3 IP or AMB x1 IP x1 or AMB

x2

(–) (–) (–) IP x1 or AMB

x2

(–) (–)

1c ICD-9 249.xx (–) IP x1 or AMB

x2

(–) (–) IP, AMB, or

ED x1

(–) (–) (–)

1d ICD-9 other codes (–) IP x1 or AMB

x2

(–) (–) IP, AMB, or

ED x1

IP x1 or AMB

x2

(–) (–)

2a Diabetes Med Group

1: insulin

(–) (–) (–) 1 or more DM

med on

AMB med

rec

1þAMB med

rec

1þ AMB med

rec

Excludes any

patient on

insulin or

amylin

1 or more DM

med on

AMB med

rec

2b Diabetes Med Group

2: insulin secreta-

gogues and

incretins

(–) (–) (–) 1þ AMB med

rec

1þ AMB med

rec

Must have

type 2 code

2c Diabetes Med Group

3: thiazolidine-

diones and

metformin

(–) (–) (–) 1þ AMB med

rec

Excludes if

this is the

only criteria

met

3 Abnormal glucose lab (–) (–) (–) 2 abnormal

labs in past

365 d

2 abnormal

labs in past

720 d

(–)

3a A1c� 6.5% once (–) (–) 1þ abnormal (–) 1þ abnormal

3b A1c� 6.5 % twice (–) (–) 1þ abnormal (–) 1þ abnormal

3c Fasting

glucose� 126� 2

(–) (–) (–) (–) (–)

3d Random

glucose� 200� 2

(–) (–) (–) (–) (–)

3e Abnormal OGTT (–) (–) (–) (–) (–)

3f Two of above (–) (–) (–) (–) (–)

Simplified algorithm 1a or 1b 1a or 1b or 1c

or 1d

3a 2a or 2b or 2c 1a or 1c or 1d

or 2a or 2b

or 2c or 3b

or 3c or 3d

or 3e or 3f

1a or 1b or 1d

or 2a or 2b

or 3a or 3b

or 3c or 3d

or 3e or 3f

1a but never

1b and

never 2a

unless con-

trolled on

oral agents

3a or 2

No. patients identified

by phenotype

18 893 16 320 12 182 11 800 22 050 18 958 11 620 15 478

Extrapolated no.

patients with type 2

DM knowing sensi-

tivity/specificity

that phenotype

would identify

13 906 12 804 10 507 9481 14 414 13 422 10 073 12 480

Extrapolated no.

patients with any

DM knowing sensi-

tivity/specificity

that phenotype

would identify

15 833 14 521 11 741 10 668 16 387 15 281 10 408 13 904

PPV type 2 DM 0.74 0.78 0.87 0.80 0.66 0.71 0.86 0.81

PPV any DM 0.84 0.89 0.97 0.91 0.75 0.81 0.89 0.90

aThe eighth phenotype, A1c_Med, was a combination of phenotypes 3 (A1c) and 4 (Med) and was devised and studied after the sampling strategy.

AMB, ambulatory; DDC, Durham Diabetes Coalition; DM, diabetes mellitus; ED, emergency department; eMERGE NW, Electronic Medical Records and

Genomics Network, Northwestern University; HEDIS, Healthcare Effectiveness Data and Information Set; ICD-9, International Classification of Diseases, Ninth

Revision; IP, inpatient; med, medication; NYC, New York City; PBM, pharmacy benefit manager; OGTT, oral glucose tolerance test; PPV, positive predictive

value; rec, reconciliation; SUPREME DM, Surveillance, Prevention, and Management of Diabetes Mellitus Project; T2, type 2.
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any type 1 diabetes code or any patient ever prescribed insulin,

unless the patient is currently well controlled on oral agents

alone.23,24

The eighth phenotype (A1c_Med) was designed after the data

were pulled and is a combination of the A1c phenotype and the Med

phenotype. Thus, this phenotype included patients meeting either

the A1c phenotype (A1c over 6.5% twice) or being prescribed a dia-

betes medication (including metformin).

Our aim for this study is to measure the sensitivity and specificity

of these 8 different diabetes phenotypes by querying the data from

our clinical data warehouse so that researchers, policy makers, and

health advocates can better understand, compare, and design popu-

lation health projects.

MATERIALS AND METHODS

Population of interest and endpoints
The population of interest was the subset of 173 503 adult patients (18

years old or older) living in Durham County, North Carolina, who

had electronic health data in the Duke Enterprise Data Warehouse and

who met 1 or more of the 7 phenotype definitions for diabetes. Two

definitions were specifically designed to identify type 2 diabetes, while

the others were designed to identify diabetes more broadly. Some

included type 1 and some included secondary causes of diabetes. Clini-

cal expert chart review was conducted using an algorithmic approach

(supplemental figures 1 and 2) based on ADA diagnostic criteria (the

established gold standard). This approach was conducted to determine

whether the patient had diabetes, and, if so, what type. Reviewers

were asked to specify whether the patient had type 1, type 2, unspeci-

fied/could not determine type, or steroid-induced diabetes.

Methods

This project required several sequential steps. Each of the pheno-

types was translated into an algorithm that could be applied to the

data in the Duke Enterprise Data Warehouse. These algorithms

were developed by a Duke data analyst and verified by another as

described in our previous work.5 The algorithms for each phenotype

were then applied to a 5-year extract (between January 1, 2007, and

December 31, 2011) from the data warehouse representing 173 503

unique adult patients 18 years or older and residing in Durham

County, North Carolina. Each patient was classified as meeting or

not meeting the criteria for each phenotype; patients were grouped

based on how many phenotype definitions were met: none, 1–4,

5–6, or all 7 phenotype algorithms. (The eighth phenotype was a

combination of phenotypes 3 and 4 and was devised and studied

after the sampling strategy.) Once a cohort of patients was identified

for each different phenotype, a sampling strategy for chart review

was designed and implemented based on the literature.24,25 This

strategy was designed to reduce the burden on clinical expert

reviewers by targeting their review to a statistically and strategically

selected set of patients records, which is described in detail in a later

section. We established a protocol for chart review to validate

whether phenotype-identified patients truly had type 2 diabetes,

type 1 diabetes, unspecified diabetes, or had been falsely identified

and did not actually have diabetes. These expert assessments were

used as gold-standard diagnoses for diabetes for the calculation of

the sensitivity and specificity of each phenotype.

In order to determine which charts should be reviewed for vali-

dation, we extracted data from the Duke Enterprise Data Ware-

house, which integrates EHRs that contain clinical data (laboratory,

diagnostic, clinical notes, tests, etc.) as well as administrative and

financial data from clinical encounters across the health system. The

7 diabetes phenotypes were applied to the Duke Enterprise Data

Warehouse records (Table 1). An eighth phenotype (A1c_Med),

based on combining 2 existing phenotypes, was used in the sensitiv-

ity and specificity analysis. A detailed algorithm for how each phe-

notype was applied is outlined in the supplemental material and in

our previous work.13 Of note, diagnosis codes for gestational diabe-

tes were not included in any of the phenotypes; diagnosis codes for

secondary causes of diabetes were included in some of the pheno-

types but not the DDC. Some implementers prefer to specifically

remove patients with a code of gestational diabetes within 12

months in a cohort of patients with diabetes. There is no specific

code for Maturity Onset Diabetes of Youth (MODY) except for

type 2 diabetes or secondary diabetes codes; however, if a MODY

diagnosis was found in chart review, the patient was coded as other

diabetes for purposes of this study.

Sample size design, sampling strategy, and data analysis plan

The phenotype algorithms, once programmed, are applied to the

EHR data at a low cost with minimal time. However, obtaining a

gold standard based on diagnostic criteria applied by expert clini-

cians via chart review for assessment purposes is time-consuming

and expensive. Due to the large number of records (173 503), we

were unable to review all of them. Therefore, to reduce the bur-

den of expert review, we used statistical sampling methods to

identify a representative sample of charts for review, as outlined

below. Sampling was performed with the goal of a precision of

0.05 around our sensitivity and specificity estimates. To produce

robust estimates for all phenotypes, a stratified random sample

was necessary; this allowed us to sample more heavily where we

believed there to be a higher probability of finding positives or

negatives. Sample size calculations were derived from Begg and

Greenes estimates for verification bias, and the number of sam-

ples per strata was proportional to the strata’s variance. Using

this approach, we stratify observations based on having similar

operating characteristics.

As previously mentioned based on an initial descriptive analysis

of the full sample, we divided the population into 4 strata: those

who were positive for all 7 phenotype definitions (All 7 Group or

Stratum); those who were positive for 5 or 6 of the definitions (5–6

Group or Stratum); those who were positive for 1, 2, 3, or 4 defini-

tions (1–4 Group or Stratum); and those who were negative for all 7

phenotypes (All Negative Group or Stratum). A patient identified as

having type 2 diabetes by 5 or 6 different phenotypes should have a

higher chance of accuracy than a patient who is positive for only 1

to 4 phenotypes. Additionally, we chose our strata with the goal of

ensuring that they contained similar types and numbers of patients

(with the exception of the All Negative Stratum).23 By stratifying

our population in this way, we improve our sample design. We

expect a different variance around our estimates for each stratum; to

minimize our sample size, we can sample differently among the

strata. We expect that the sensitivity estimate in the All 7 Stratum

would have a smaller variance than the estimate within the 1–4 Stra-

tum. Thus, fewer charts were required for the All 7 Stratum as com-

pared to the 1–4 Stratum. Our final sampling plan is provided in

Table 2. As shown: (1) 50 charts in the All Negative stratum, (2) 30

charts in the All 7 Stratum, (3) 160 charts in the 1–4 Stratum, and (4)

160 charts in the 5–6 Stratum (Table 2 and Supplemental Table 1).
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Chart review, validation, and the adjudication process

Chart review by clinical experts was used as the gold standard to

determine whether the electronic algorithm using an EHR pheno-

type correctly identified patients as having diabetes. Informatics

experts designed a data-collection system with feedback from 8 dia-

betes providers (physicians and nurse practitioners) to support the

review of sampled EHRs.24 Two independent clinical reviewers

were assigned to review each sampled record and were instructed to

review all available data, including encounter notes and scanned

documents that contained handwritten information, from the EHR

that was recorded during the selected 5-year observation period

(January 1, 2007, to December 31, 2011). All electronic, legacy, and

scanned paper documents were reviewed to answer 3 main ques-

tions: Is there a diagnosis of diabetes in the chart? Is the patient on a

diabetes medication (for diabetes), and is there evidence for abnor-

mal labs? The last question asked each reviewer to determine by

clinical acumen whether the patient had diabetes, and what type.25

We used the adjudicated answer to the final question to calculate

the sensitivity and specificity of each phenotype for identifying diabe-

tes. A subset of the final question was what type of diabetes the

patient had; the answer to this subset question was used to calculate

the sensitivity and specificity of each phenotype in identifying type 2

diabetes. A schema (supplementary figures 1 and 2) was developed to

aid the practitioner in applying the gold-standard ADA criteria to the

EHR data for determining whether a patient had diabetes. Each

expert chart reviewer used the gold standard to assess whether the

patient did indeed have diabetes and what type—type 1 or type 2 dia-

betes mellitus (DM). In many cases, this involved relying on lab data.

However, in some cases, this meant relying on the medical notes of

providers caring for the patient who had already used the American

Diabetes Association (ADA) gold standard to diagnose the patient in

the past and there was mention of diabetes or diabetes medications in

problem lists, impressions, diagnoses, or in the treatment plan to the

extent that it was obvious the patient had diabetes. This schema was

used by each reviewer and any discordant determinations between

reviewers were ultimately decided by the senior endocrinologist.

Four hundred records were sampled and reviewed separately by

20 experts (15 physicians and 5 nurse practitioners) with an average

of 9.6 years of postdegree endocrinology experience (range 1–15

years). There were 150 discordant records; these were subsequently

reviewed and adjudicated by a senior endocrinologist (SS) with 16

years of experience in diabetes care.

Within the appointed time period, there were 173 503 adult

patients living in Durham County with available data in the Duke

Enterprise Data Warehouse (Table 1). Of those, 22 679 met at least

1 of the phenotype criteria for diabetes. The number of patients

identified using each phenotype algorithm ranged from 11 620 to

22 050.

In an individual patient, diabetes is diagnosed based on labora-

tory criteria (fasting glucose �126 mg/dL, random glucose

�200 mg/dL, or a HgbA1c �6.5%). However, secondary data anal-

ysis can also leverage diagnosis codes and prescriptions to identify

patients with diabetes. Each chart reviewer was instructed to look

for a diabetes diagnosis on problem lists or within notes, the pres-

ence of diabetes medication(s), and abnormal laboratory values (glu-

cose and HgbA1c) and make a clinical decision about whether the

identification of diabetes was correct; if so, reviewers were asked to

further characterize diabetes by type (1, 2, or unspecified). They

were also asked to identify whether the patient had any disease that

could lead to a false association with diabetes (e.g., obesity, predia-

betes, polycystic ovary syndrome, nonalcoholic fatty liver disease, or

steroid-induced hyperglycemia). The final endpoint was whether the

patient actually had diabetes, along with diabetes type (Supplemen

tal Figures 1 and 2).

Reviewers’ assessments of particular data points were recorded

on a 15-item electronic review form. The Research Electronic Data

Capture platform26—a secure, web-based application for building

and managing online databases—was used to manage the random

assignment of charts to reviewers and the collection of data for each

review. Experts (physicians and nurse practitioners) were recruited

from the Duke University Health System and were trained on chart

review in Maestro Care (Duke Medicine’s EHR, powered by Epic of

Verona, WI, USA) as well as Research Electronic Data Capture in 1-

hour training sessions. A manual of operations was developed as a

reference to supplement training. The reviewers examined electronic

charts for a defined time range (2007–2011) to match the time

period of the phenotype queries. In the event that reviewing clini-

cians disagreed on a diagnosis, the chart was sent to a senior adjudi-

cator for final determination. We also sampled 5% of records about

which the clinicians agreed on diagnosis. Discordant records were

defined by differences in the final diagnosis designation: diabetes

type 1, diabetes type 2, unspecified diabetes, or no diabetes.

Statistical analysis

The sensitivity and specificity of each phenotype was calculated

with chart review being treated as the gold standard. Our sampling

approach—designed to optimize estimation of sensitivity and

specificity—naturally induces verification bias,27 which we

accounted for when estimating the operating characteristics of each

phenotype.

We used methods from Begg and Greenes24 to generate point

estimates and 95% confidence intervals around the sensitivity and

specificity of each phenotype for type 2 diabetes and any diabetes

(type 1, type 2, or unspecified). Since the size of the All Negative

Stratum (n¼150 824) is so much larger than the others, unnormal-

ized estimates of sensitivity are somewhat unstable. A single false

positive in the largest symptom has a small impact on the false posi-

tive rate for that class, but it dramatically changes the estimate of

the total number of patients with disease. Therefore, we use a Baye-

sian prior to stabilize our estimates.28 The Bayesian priors were

chosen to be uniform in all strata except in the All Negative Stratum.

In this stratum, we placed an informative Bayesian prior on the false

Table 2. Patients identified as having diabetes and sampling

strategy

Patients identified as having diabetes and

sampling strategy

Identified Sampled

No. of adult patients in Durham County

from 2007 to 2011

173 503 400

No. of patients not identified by any of

the phenotypes

(All Negative Stratum)

150 824 50

No. of patients identified by at least

1 phenotype

22 679 350

No. of patients identified by 1, 2, 3, or 4

phenotypes

(1–4 Definitions Stratum)

8033 160

No. of patients identified by 5 or 6 phenotypes

(5–6 Definitions Stratum)

9392 160

No. of patients identified by all phenotypes

(All 7 Stratum)

5254 30
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negative cells that approximates the estimated prevalence of diabetes

in Durham County. We note that this is an overestimate of the prev-

alence of type 2 diabetes (because many patients with disease will be

identified by 1 of the computable phenotypes); this leads to the like-

lihood of underestimating sensitivity.24 These Bayesian priors will

normalize the false-negative rate to more closely reflect the preva-

lence of diabetes. Note that because all definitions share the same

false-negative rate in the All Negative Stratum, comparison between

the sensitivity of definitions is quite accurate even if confidence

bands around sensitivity estimates are somewhat large.

RESULTS

Figure 1 shows the sensitivity and specificity of the 7 EHR phenotypes

described plus the combined phenotype (A1c_Med) in identifying type

2 diabetes. Against the gold standard for identifying type 2 diabetes,

the DDC phenotype had a sensitivity of 0.942 (0.672–0.992) and spe-

cificity of 0.952 (0.946–0.957). The A1c, NW, and Med phenotypes

had sensitivities of 0.687 (0.593–0.767), 0.658 (0.567–0.739), and

0.62 (0.536–0.697), respectively, and specificities of 0.99 (0.986–

0.993), 0.99 (0.986–0.993), and 0.985 (0.981–0.988).

Knowing the true rate of type 2 diabetes (derived from clinical

expert chart review), we extrapolated the number of patients with

true type 2 diabetes out of those identified by phenotype: in the

range 9481 to 14 414 (Table 1).

Of those patients who were false positive for any diabetes, many

had conditions or criteria that were associated with other forms of

abnormal glucose metabolism or prediabetes (Supplemental Table

2). Forty-five percent of patients identified as having diabetes who

did not have diabetes upon chart review actually had inpatient

hyperglycemia as defined by random glucose over 200 mg/dL with

no abnormal glucose outside the inpatient admission. In other cases

it was difficult to determine if the patient had type 1 or type 2 diabe-

tes, for instance in an obese patient on insulin therapy.

While Figure 1 showed the sensitivity and specificity of the algo-

rithms for identifying type 2 diabetes, many of these phenotypes

were not originally designed to identify only type 2 diabetes. Thus,

analysis for the sensitivity of finding any diabetes was also deter-

mined: ICD_250 0.916 (0.748–0.976), CCW 0.84 (0.724–0.914),

A1c 0.68 (0.598–0.751), DDC 0.949 (0.7–0.993), Sup-DM 0.884

(0.747–0.952), NW 0.602 (0.532–0.669), and A1c_Med 0.805

(0.7–0.879). Specificity was as follows: ICD_250 0.981 (0.976–

0.984), CCW 0.988 (0.984–0.992), A1c 0.998 (0.994–0.999), DDC

0.964 (0.959–0.969), Sup-DM 0.976 (0.972–0.98), and NW 0.992

(0.988–0.994; Supplemental Tables 3 and 4).

DISCUSSION

We used a targeted sampling technique to measure the sensitivity

and specificity of 7 different phenotype definitions. We conducted

this analysis using only 400 sampled charts. By extrapolating our

results, we found 15 303 of 22 679 patients (67.5%) were accurately

identified as having type 2 diabetes. For any given phenotype defini-

tion, the number of patients that had to be extrapolated for accurate

identification ranged from 9481 to 14 414 patients. Although our

analysis shows variation in sensitivity and specificity across many

different diabetes definitions, some phenotypes had comparable sen-

sitivity estimates (DDC, ICD_250, and Sup-DM). As expected, these

were the definitions with the broadest criteria, including the widest

range of diagnoses codes and multiple classification criteria. The

phenotype definitions that were least sensitive (A1c, Med, and NW)

were more specific, with only 1 data source (e.g., HbA1c test result)

or very specific inclusion and exclusion criteria. In an ideal world, a

phenotype definition would be highly sensitive and highly specific,

but one measurement often comes at the expense of the other.

There are situations where one might prefer sensitivity over spe-

cificity. Less specific but more sensitive phenotypes included those

using inpatient glucose data or diabetes medications that can be

used to treat conditions other than diabetes, like polycystic ovary

syndrome, prediabetes, obesity, and nonalcoholic fatty liver disease.

Of those patients identified as having diabetes who did not actually

have diabetes, 10% were on metformin. Thiazolidinediones and

alpha-glucosidase were not identified as posing a risk for falsely

identifying patients, likely because they are not used often. Of those

patients identified as having diabetes, 30% had stress hyperglycemia

and 15% had steroid-induced hyperglycemia rather than diabetes.

Broadening a phenotype definition to make it more sensitive can

come at the expense of including patients with prediabetes or dis-

Figure 1. Sensitivity and specificity of diabetes phenotypes. ICD_250, International Classification of Diseases, Ninth Revision, code 250.xx; CCW, expanded ICD-9

codes; A1c, abnormal A1c, based on New York City Health Department A1c Registry; Med, DM medication, based on pharmacy benefit manager data; DDC, Dur-

ham Diabetes Coalition; SUPREME DM or Sup-DM, Surveillance, Prevention, and Management of Diabetes Mellitus; eMERGE NW or NW, electronic medical

records and genomics; A1c_Med, abnormal A1cþDM medication.
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eases associated with insulin resistance. Thirty-seven percent of

phenotype-identified patients our reviewers decided actually did not

have type 2 diabetes did have a diagnosis of something related to

abnormal glucose metabolism, either prediabetes, type 1 diabetes, or

other types of diabetes (pancreatic disease), or were cases for which

there were not enough data in the medical record to make a determi-

nation. In addition, allowing a diagnosis code to occur just once as

an inclusion rule increased the risk of producing a false positive.

There are scenarios in which a more specific phenotype defini-

tion is warranted (e.g., identifying a cohort for a drug-effectiveness

study). Qualities of more specific but less sensitive phenotypes

include excluding patients with any type 1 diabetes code, excluding

patients who have not been seen for a diabetes office visit within 1

year, requiring more than 1 diagnostic code, and excluding patients

on certain diabetes medications, particularly insulin.

In the case of the NW phenotype, it is not surprising that it was

more specific than it was sensitive because it was designed to specifi-

cally identify a cohort of patients who definitely had type 2 diabetes.

The purpose of the NW phenotype was not to create an all-inclusive

list of patients with diabetes. This particular phenotype has been used

for a wide range of purposes: genetic studies, research projects, and to

prompt providers to add diabetes to the problem list in EHRs.23

The availability of data is also critical to selecting a phenotype

definition. PBMs only have access to medication data, health depart-

ments only have access to laboratory data, and insurance companies

only have access to claims data. The Med phenotype (our attempt to

mimic a PBM database) and A1c phenotype (our attempt to mimic

the New York City Health Department registry) are examples of

using the data that are available.

The characteristics of the data themselves, such as timing of data

or the number of patient visits, can impact the performance of a phe-

notype definition. We identified nearly 4000 patients with diabetes

who did not have a coded diagnosis of diabetes in the EHR and had

not been prescribed diabetes medication. Concerned that we had an

abundance of undiagnosed diabetes, we reviewed charts and found

that 45% of those patients had inpatient hyperglycemia (as defined by

random glucose over 200 mg/dL). On the other hand, patients with

well-controlled diabetes may have normal glucose readings, or fasting

glucose data could be labeled as random.7 Patients who regularly

attend medical appointments have more “opportunity” for diabetes

codes (observation bias), and consequently are more likely to be identi-

fied using any phenotype definition that includes diagnosis codes.

Errors can also occur when using diagnosis codes in identifying

diabetes cohorts. Patients can be accidentally coded as having the

wrong type of diabetes (type 1 vs type 2) or patients can be coded as

having chronic diabetes when they in fact have prediabetes or acute

steroid-induced hyperglycemia.29,30 Phenotype definitions based

purely on automated searches by visit diagnosis codes miss those

patients with undiagnosed diabetes or those seen for a different

problem. Using ICD-9 criteria alone can fail to detect patients who

are undiagnosed or who are admitted for problems unrelated to the

disease in question.15–17 Diagnosis codes can be inaccurate, identify-

ing patients as type 2 when they have type 1. Strategies that use the

ratio of type 1 vs type 2 codes or use laboratory data such as C-pep-

tide levels can be employed to refine a phenotype.16

For the purposes of the DDC, creating a sensitive phenotype that

identified the most patients with diabetes allowed us to implement a

broad range of projects to reduce complications, death, and disabil-

ity from diabetes in our community. With our goal of finding all

patients with diabetes and our concern that many of the patients at

the highest risk for diabetes might be less connected to health care,

we designed a very broad phenotype. The DDC phenotype was the

most sensitive, likely due to having the broadest inclusion criteria,

such as use of metformin, diagnostic codes generated from emer-

gency department visits, and allowing only 1 outpatient (ambula-

tory) code to count. However, these broad inclusion criteria affect

specificity, which was lowest. Many patients identified by the phe-

notype did not have type 2 diabetes; many had only stress- or

steroid-induced hyperglycemia or prediabetes states. The Sup-DM

phenotype did not allow secondary diabetes codes, which limited its

ability to find all patients with diabetes but avoided the pitfall of

tracking those with steroid- or stress-induced hyperglycemia. As the

DDC expands its goal to reduce death and disability in patients with

all types of diabetes, we recommend editing our current phenotype

to include type 1 diabetes, require 2 instances of a diagnosis code,

and eliminate metformin alone as a criterion to identify diabetes.

CONCLUSIONS

Phenotypes used to identify patients with diabetes can be created from

a variety of components. The way in which these components are

assembled and applied affects the number of patients identified. Analysis

of electronic health data presents many opportunities for generating

hypotheses, validating exploratory and predictive models, and testing

new types of statistical approaches; however, these opportunities can be

adversely affected by the challenges of unstandardized cohort definitions

and the complexity of defining diseases. One of the greatest challenges is

that phenotypic definition encompasses all of the possible data elements.

The most important step in mitigating this challenge is to understand

how the chosen phenotype performs when comparing projects to use

the same phenotype. Accurately identifying all patients with diabetes is

essential to assessing risk, developing interventions, and preventing com-

plications and disability attributable to diabetes. Choosing a phenotype

depends on the intended use for the cohort and the availability of the

components of each phenotype definition. This study establishes impor-

tant groundwork for diabetes phenotype definitions, and the approach

used in generating the framework may be generalizable to other condi-

tions. Understanding how phenotype definitions differ informs plan-

ning, assessing, and comparing diabetes research studies, quality-

improvement or community projects, and governmental policies.
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