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Seeing the forest through the trees:
uncovering phenomic complexity through
interactive network visualization

Jeremy L Warner1,2, Joshua C Denny2,3, David A Kreda4, Gil Alterovitz4,5,6

ABSTRACT
....................................................................................................................................................

Our aim was to uncover unrecognized phenomic relationships using force-based network visualization methods, based
on observed electronic medical record data.
A primary phenotype was defined from actual patient profiles in the Multiparameter Intelligent Monitoring in Intensive
Care II database. Network visualizations depicting primary relationships were compared to those incorporating secon-
dary adjacencies. Interactivity was enabled through a phenotype visualization software concept: the Phenomics Advisor.
Subendocardial infarction with cardiac arrest was demonstrated as a sample phenotype; there were 332 primarily adja-
cent diagnoses, with 5423 relationships. Primary network visualization suggested a treatment-related complication phe-
notype and several rare diagnoses; re-clustering by secondary relationships revealed an emergent cluster of smokers
with the metabolic syndrome.
Network visualization reveals phenotypic patterns that may have remained occult in pairwise correlation analysis.
Visualization of complex data, potentially offered as point-of-care tools on mobile devices, may allow clinicians and
researchers to quickly generate hypotheses and gain deeper understanding of patient subpopulations.
....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
Clinical phenomics is the measurement of the diversity of dis-
ease states across human subjects. The massive accumulation
of clinical data accrued automatically inside electronic medical
records (EMRs) with each episode of patient care through clini-
cal, laboratory, and billing systems has enabled a new type of
phenomic research using clinical data.1–3 When such pheno-
type data are extracted, these large data sets, called phe-
nomes, can provide useful snapshots of disease prevalence,
distribution, and correlation. Correlation, especially through the
employment of phenome-wide association study (PheWAS),
may yield valuable insights, including the linking of genome to
phenome, as has been successfully demonstrated by our group
and others.4–7

Although tabular reports may convey adequate analytic infor-
mation for limited exercises in phenomic association,
the phenotype space is dauntingly large. For example, the
International Classification of Diseases, Clinical Modification
(ICD-9-CM) diagnosis code set has roughly 14 000 codes;
ICD-10-CM has about 68 000 codes, a scale that begins to
approach the lower end of ‘-omics’ studies. Not surprisingly,
therefore, the Manhattan Plot, the visualization tool widely

adopted in genome-wide association studies, has emerged as
the best-known visualization tool for phenome exploration.
These plots can be generated using the R PheWAS package8 or
via tools such as PheWAS-View9; the latter also allows for con-
struction of pairwise correlation heat maps. We have also intro-
duced a two-dimensional variant of the Manhattan Plot that
presents a ‘view from above’ for visual analytics of clinical fea-
tures with continuous values, for example, most laboratory tests
and time intervals.10,11 This approach allows for the identifica-
tion of ‘microphenotypes’ that may only apply within certain
contexts and over specific intervals; for example, the microphe-
notype of hospital-acquired complication is most evident for the
longest decile of hospitalization in a critically ill cohort.11

However, none of the aforementioned approaches except
for pairwise correlation takes into account the interaction of
phenotype features. As in the underlying biologic systems, dis-
parate phenotypes can be directly related, induced, or inhibited
by other phenotypes. For example, type II diabetes mellitus
(T2DM) may simultaneously induce a phenotype of neuropathy
and inhibit a phenotype of foot pain (since the neuropathy can
mask the pain due to numbness). As another example, the
seemingly unrelated phenotypes of rash, arthralgia, and
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abnormal blood counts may be the manifestation of underlying
autoimmunity (e.g., systemic lupus erythematosus).
Furthermore, the action of one phenotype upon another may be
through one or more intermediaries. For these reasons, we
propose that network visualization of a primary phenotype and
its immediate neighborhood may present patterns, upon
inspection, that yield clinical insight and hypothesis generation.

OBJECTIVE
To assist clinical phenomics research, we propose a clinical
software package for networked phenotype visualization, a
‘Phenomics Advisor.’12 This software would provide a patient-
centered view into a phenomic database, with interactive visu-
alization tools for clinician use. This paper presents the concept
and illustrates it with a real-world example from EMR data.

MATERIALS AND METHODS
For the purposes of this pilot, we have used the Multiparameter
Intelligent Monitoring in Intensive Care II (MIMIC II) database as
a source of phenotype information.13 MIMIC II contains exten-
sive information on more than 25 000 hospitalized patients
with critical illness, including laboratory values, medication
exposures, and demographics. For simplicity, we use ICD-9-
CM codes to represent phenotype. All investigators completed
appropriate human subjects training prior to accessing MIMIC
II, which is completely de-identified and classified as
Institutional Review Board exempt.

A simple interface is provided to the user for access the
Phenomics Advisor (figure 1). Because the application is
intended for use at the point-of-care, the initial view is of an indi-
vidual patient (‘John Smith’). At the top, a table lists the patient’s
diagnostic codes and the number of patients in the cohort with
one or more identical codes. Underneath the table is a radio
button to switch association to one of the following: (1) un-
aggregated ICD-9-CM codes; (2) minor aggregation using
PheWAS codes (http://phewas.mc.vanderbilt.edu/); or (3) major
aggregation using the single-level Agency for Healthcare Research
and Quality (AHRQ) Clinical Classifications Software (CCS) codes
(http://www.hcup-us.ahrq.gov/).14 The bottom radio button set
switches between network visualization of the ‘Phenotype
Neighborhood’ and conventional Manhattan Plot visualization.

In Phenotype Neighborhood visualization mode, the focus of
this paper, a user-selected phenotype is displayed as the
Primary Phenotype. For custom phenotype aggregations, the
software allows the user to select one or more diagnosis codes
(heretofore, ICD-9-CM) to define the Primary Phenotype. The
default view is a polar plot visualization15 with first-degree
adjacencies only, where the Primary Phenotype is the central
vertex and the distance between the center and the first-
degree vertices is determined by a weighted Fruchterman-
Reingold model.16 Edge weight is defined as the ratio of two
components: (1) the number of co-occurrences of the Primary
Phenotype and an adjacent vertex, and (2) a ‘counterweight’ of
the number of co-occurrences of the adjacent vertex with any
out-of-neighborhood vertex. By definition, out-of-neighborhood
vertices will only occur in patients not having the Primary

Phenotype. Alternatively, the user may choose to display both
primary and secondary adjacencies using a layout determined
by the edge weights as described above, as well as additional
edge weights applied to the secondary adjacencies, here
defined as the ratio of co-occurrences in cases to the total
number of co-occurrences in the database.

For clarity, by default only edges representing two or more
co-occurrences in the database are applied to the layout
model; singly connected vertices are hidden. Users can choose
to reveal these hidden vertices or to alter the co-occurrence
threshold parameter. Primary edges are colored faintly and can
be hidden by the user, if their presence introduces unwanted
visual clutter; secondary edges (when displayed) are colored
darkly so as to emphasize their presence. Vertices are colored
by their respective ICD-9-CM chapter and sized proportionate
to the distinct number of patients in the database with at least
one occurrence of the ICD-9-CM code. In order to reduce label-
ing clutter, only vertices representing more than 2500 patients
are labeled numerically, in descending order of size.

R V.3.0.2 (R Foundation for Statistical Computing) was used
for the calculations.17 Networks were displayed using the igraph
R package,18 with coloration based on RColorBrewer qualitative
palettes.19 Preliminary R code is available upon request.

The Phenomics Advisor could be readily implemented as a
SMART (Substitutable Medical Applications & Reusable
Technology) app20 for use on a variety of EMR and data ware-
house architectures, such as i2b2.21 The Phenomics Advisor
requires a patient identifier and linked access to a patient’s
diagnosis codes (ICD-9-CM or others) to represent phenotype.

RESULTS
For the pilot, an adult subject ‘John Smith’ was randomly
chosen from the MIMIC II database. As shown in figure 1, Mr.
Smith has been coded as having had a relatively mild form of
myocardial infarction (subendocardial MI, 410.7122) but also
cardiac arrest (427.5). This phenotype pair is designated the
Primary Phenotype, to further explore this somewhat unusual
combination. Indeed, as shown in figure 2, only 88 patients
(4.4% of the 2009 patients with subendocardial MI) have the
co-occurrence of cardiac arrest. In this view, there are 138 pri-
mary edges in the network (excluding 194 singly connected
nodes). We observe that ICD-9-CM codes in the Circulatory
system chapter are generally enriched, although many are not
in close proximity to the Primary Phenotype, suggesting that
these are commonly observed ICD-9-CM codes with high coun-
terweights; an exception is coronary atherosclerosis, both pri-
mary (414.01) and of grafts (414.02). Through interaction with
the network visualization (not shown), we find that several rare
phenotypes are in very close proximity to the Primary
Phenotype, including Moyamoya disease (437.5), iliac artery
dissection (443.22), and, quite interestingly, complications of
cardiac catheterization (E879.0). This visualization therefore
suggests that the Primary Phenotype may actually be a compli-
cation related to treatment for MI.

When secondary adjacencies are introduced, there are 616
edges (excluding 4807 singly occurring co-occurrences) and
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the network configuration changes significantly (figure 3). The
network collapses towards a centroid to the left of the Primary
Phenotype, and the common Circulation codes are now in close
proximity. This suggests that the Primary Phenotype may occur
in the context of a particular pattern of underlying disease.
Inspection of loose clustering close to the Primary Phenotype
vertex and investigation into some of the underlying clustered
codes suggested apparent coordination of the vertices repre-
senting unspecified essential hypertension (#1), coronary athe-
rosclerosis (#2), T2DM (#5), and tobacco use disorder (the
medium-sized pink vertex between #3 and #11). This coordi-
nation, which raised the suspicion of a particularly unhealthy
underlying phenotype, was not at all evident until the secon-
dary connections were introduced. Several other interesting
effects also surfaced. Of note, the rare phenotypes that were in
close proximity to the Primary Phenotype do not move much,
even after the introduction of the secondary connections, sug-
gesting a true relationship not subject to confounding. Also
notably, there are vertices that remain peripheral, indicating a
looser connection with the phenotype cluster as a whole. One
example is atrial fibrillation (#4). Indeed, atrial fibrillation is a
very uncommon cause of MI or cardiac arrest.

DISCUSSION
The human clinical phenome is highly complex, as evidenced
by the fact that even master clinicians can have trouble

synthesizing an unusual constellation of signs and symptoms
into a pathophysiologically robust diagnosis.23 As we have
demonstrated, a user of the Phenomics Advisor can quickly
appreciate that the combined phenotype of subendocardial MI
and cardiac arrest is unusual, occurring in <5% of patients in
the MIMIC II database who had subendocardial MI, and in
�12% of those having cardiac arrest. Inspection of primary
adjacencies suggests that this phenotype may be a treatment-
related complication, or possibly associated with a rare diagno-
sis, Moyamoya disease.24 When secondary adjacencies are
introduced, two further ‘findings’ surface: (1) the ‘Primary’ phe-
notype is probably not primary at all, since the mass of the sec-
ondarily clustered graph appears to be well to the left of
center; and (2) a cluster of smokers with the metabolic syn-
drome appears to emerge. While it is not surprising that this
particularly unhealthy population will tend to experience grave
cardiac outcomes,25,26 this relationship was not clearly evident
(after the application of some specific clinical domain knowl-
edge) until the secondary adjacencies were introduced and the
graph layout was recalculated. Less evident but essential for
hypothesis generation are the movements of individual vertices
with the change in network configuration, which could trigger
further, but still rapid, investigation.

Irrespective of the value of broader phenotype definitions
than ICD-9-CM-based claims data (which will only get more
challenging with ICD-10-CM), our study shows that claims data

Figure 1: Initial view of the Phenomic Advisor. In panel A, the default view shows International Classification of Diseases,
Clinical Modification (ICD-9-CM) codes by chapter, along with their counts in the cohort (Multiparameter Intelligent
Monitoring in Intensive Care II in this example). In the middle panel B, the user has selected to display phenome-wide asso-
ciation study (PheWAS) codes and the aggregate counts are recalculated accordingly. On the right, the user has selected a
combined phenotype as well as the Phenotype Neighborhood view to drill further into phenotypic relationships.
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can yield considerable insights, especially when approached as
a network of relationships. Within the context of genetic associ-
ation data, we have previously shown that billing codes can
replicate 66% of known associations with an area under the
receiver operator curve of 0.83.6 It may be possible that a net-
worked phenotype approach could improve upon this accuracy,
for example through the use of imputation.

To be accessible to clinicians, we chose force-based net-
work layout visualization, as it does not require expertise in
the interpretation of data structures.27 Other visualization
methods, such as chord diagrams,28 adjacency matrices,29

and hive plots,30 may however offer other insights, so we
intend to explore them in the future. We also plan to enhance
the Phenomics Advisor with: (1) Bayesian weighting; (2) visu-
alization of higher order (tertiary or greater) vertices with
dimensionality reduction and filtering; (3) visual and algorith-
mic ‘knock out’ of the Primary Phenotype to reveal adjacen-
cies that otherwise are concealed or confounded; and (4)
temporal elements. Finally, we plan to conduct usability evalu-
ations of the planned interactive software product, so as to
ascertain usefulness and improve usability in actual clinical
settings.

CONCLUSION
We have introduced the Phenomics Advisor, a set of visual ana-
lytic techniques, software, and phenomics database, which
together permit detection and study of the complex relation-
ships that characterize the human phenome. The example we
used in our pilot demonstrates the potential for rapid research
investigation or even point-of-care usage (i.e., within clinical
workflow) to allow a physician to rapidly explore for ‘patients
like this one.’ Such a data-driven approach, built into clinical or
research systems, for example, i2b231 or the Vanderbilt
University Synthetic Derivative,32 could enable prompt consid-
erations of alternative diagnoses. A means to visually explore a
patient’s diagnosis against the backdrop of a large population
of patient phenotype data could aid clinicians facing difficult or
rare diagnostic situations. The same tool could also help
researchers characterize the human phenome further, which
will be necessary to achieve the ‘human phenome project.’33,34
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Figure 2: The Phenotype Neighborhood view. On the left, a polar plot is displayed with the Primary Phenotype in the center,
since it is by definition the most connected vertex. Phenotypes linked by first-degree adjacency are displayed. The ‘largest’
phenotypes are labeled by descending order of frequency; the underlying International Classification of Diseases, Clinical
Modification (ICD-9-CM) code is available as a pop-up when the user scrolls over the vertex of interest (not shown). Vertex
color is by ICD-9-CM chapter, and size is proportionate to the number of occurrences of the particular phenotype in the
overall database. On the upper right, vertices are listed in tabular format in descending order by number of co-occurrences.
The Primary Phenotype, with the number of patients represented, is shown in the lower right.
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