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ABSTRACT

Objective: Biomedical science is driven by datasets that are being accumulated at an unprecedented rate, with

ever-growing volume and richness. There are various initiatives to make these datasets more widely available

to recipients who sign Data Use Certificate agreements, whereby penalties are levied for violations. A particu-

larly popular penalty is the temporary revocation, often for several months, of the recipient’s data usage rights.

This policy is based on the assumption that the value of biomedical research data depreciates significantly over

time; however, no studies have been performed to substantiate this belief. This study investigates whether this

assumption holds true and the data science policy implications.

Methods: This study tests the hypothesis that the value of data for scientific investigators, in terms of the impact

of the publications based on the data, decreases over time. The hypothesis is tested formally through a mixed

linear effects model using approximately 1200 publications between 2007 and 2013 that used datasets from the

Database of Genotypes and Phenotypes, a data-sharing initiative of the National Institutes of Health.

Results: The analysis shows that the impact factors for publications based on Database of Genotypes and

Phenotypes datasets depreciate in a statistically significant manner. However, we further discover that the

depreciation rate is slow, only �10% per year, on average.

Conclusion: The enduring value of data for subsequent studies implies that revoking usage for short periods of

time may not sufficiently deter those who would violate Data Use Certificate agreements and that alternative

penalty mechanisms may need to be invoked.
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INTRODUCTION

Biomedical research is increasingly data-driven.1 This phenomenon

is facilitated by advances in technologies that enable the collection,

storage, and processing of information in a finely detailed and high-

throughput manner.2 These technologies are being adopted in tradi-

tional clinical domains (eg, electronic medical record systems3) and

research settings (eg, whole-genome sequencing4), but are also
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expanding into nontraditional environments (eg, sensors in mobile

phones5 and social media6). We are creating new datasets at an un-

precedented rate, with growing volume and richness.

While these datasets are valuable for the primary scientific inves-

tigations for which they are created, many believe they should be

shared and reused for multiple purposes, including verification of re-

search findings, new scientific inquiries, and formation of larger

data compendiums to enable more powerful statistical claims. Given

the public resources devoted to their creation, funding agencies,

including the National Institutes of Health (NIH),7 the National Sci-

ence Foundation,8 and the Patient-Centered Outcomes Research In-

stitute,9 have adopted policies to promote data-sharing activities.

For instance, the NIH issued its Genomic Data Sharing Policy in

2014, which requires all genome-based studies that receive NIH

funding to have a data-sharing plan.10 To support sharing, the NIH

constructed various repositories that are accessible to investigators

across the globe, such as the Database of Genotypes and Phenotypes

(dbGaP).11 This is a publicly accessible central repository created to

host individual-level phenotype, exposure, genotype, and sequence

datasets, as well as the associations among such factors. dbGaP has

provided data to a number of investigators with highly varied port-

folios.12 The overarching goal of this study is to promote the devel-

opment of effective policies to accelerate biomedical research data

sharing while mitigating the concerns and protecting the public’s

trust by analyzing the efficacy of current enforcement.

There are 2 distinct concerns raised from data sharing: (1) that

those who initially collect the data will not have adequate time to pub-

lish their findings, and (2) that uses that are discordant with the condi-

tions placed on the data may undermine public acceptance of data

sharing.13 To mitigate concerns, laws and policies of funding agencies

often require data recipients to sign a contract, such as a Data Use Cer-

tificate (DUC) agreement, that indicates responsibilities and liabilities.

While there are concerns over blatant abuse of data (eg, reidentification

of deidentified records14), the majority of violations to date have arisen

from a failure to comply with policy (eg, reuse of data without ap-

proval and insufficient documentation of security procedures). Thus,

policymakers, as well as the authorities managing access to data, need

to design and enforce penalties that induce sufficient, but reasonable,

losses to the data recipients to deter them from undesirable actions.

One penalty adopted by various funding agencies, including the

NIH’s dbGaP and the Wellcome Trust Case Control Consortium,15

is temporal exclusion from access. In this situation, the violator is

barred from accessing the database, as well as conducting research,

publishing papers, or writing grant proposals using the database for

a period of time. The length of time is influenced by the type and se-

verity of the violation, as well as whether the individual is a repeat

offender. The temporal penalty is based, in part, on the rationale

that data depreciate in value over time for their users. This is rooted

in the assumption that, when data are shared, multiple researchers

may be interested in reusing the data for similar investigations and

will compete to publish their findings first, thereby decreasing the

value for other users. However, it is unknown whether this competi-

tion actually occurs.

In this study, we examine whether or not data decreases in value

over time and provide guidance on how to set temporal penalties in

the event that data value does indeed depreciate. We specifically in-

voke the anticipated impact of a publication that uses a dataset, rep-

resented by the journal impact factor (JIF) and the journal

Eigenfactor score (JES) as a proxy for the value an investigator gains

from the dataset. We test the hypothesis that the value of dbGaP

datasets decreases over time through use of a corpus of>1200

publications based on dbGaP datasets. The results indicate that the

value depreciates in a statistically significant manner, but the rate of

change is small (�10% per year). The remainder of this paper dis-

cusses how this analysis was performed and the implications for bio-

medical data science policymaking.

BACKGROUND

Temporal penalty
One of the major disincentives for investigators to sharing data is

the concern over the loss of a competitive advantage.16 Thus, tempo-

ral penalties have been adopted by several data-sharing initiatives.

For example, the DUC agreement of the Genetic Association Infor-

mation Network International Multi-Center ADHD Genetics Proj-

ect (available through dbGaP: https://dbgap.ncbi.nlm.nih.gov/aa/

wga.cgi?view_pdf&stacc¼phs000016.v2.p2) states that a recipient

who violates the terms may forfeit access to all NIH genomic data-

sets. The period of time for which violators are barred from the re-

pository is documented in the dbGaP DUC agreement compliance

violation report.17 At the time of this study, there were only 27

documented incidents. A brief summary of each incident, the policy

expectations violated, and the action taken and/or preventive meas-

ures implemented are detailed in the report. Our informal review of

this report suggests that users who violated the DUC agreement are

typically suspended from accessing dbGaP data for a period of 3–6

months. An example of such an incident transpired in 2009, when a

user of the Genome-Wide Association Study of Schizophrenia data

(dbGaP accession number phs000021) conducted research that was

not documented in the data access request. This was a violation, be-

cause the DUC agreement requires that users use the data only for

the purpose described in the approved data access request. Once this

incident was detected and reviewed, access to all NIH genomic data-

sets was revoked for 3 months.

The value of sharing and reusing research data
Sharing research data can affect different stakeholders in a variety of

ways. A notable survey of the impact of sharing research data18

reviewed the different rationales and the corresponding beneficiaries

behind the promotion of data sharing. These rationales include (1)

making results available to the public, (2) stewarding the resources

applied to collect and curate data, (3) reproducing and verifying

results, (4) enabling new investigations using one or more data sour-

ces, and (5) advancing research and innovation. The rationales most

relevant to our investigation are (3), (4), and (5) because they are

research-driven and concern the benefits for scientific investigators.

Studies have also assessed the amount of value primary investiga-

tors can gain when they share their data and secondary investigators

can gain when they have access. A representative example is a study

of the association between the increased citation rate of a publica-

tion and whether or not the detailed research data used in the publi-

cation are shared.19 The method used in19 is similar to ours in that it

relied on a cohort of publications and tested a hypothesis about the

value resulting from data sharing. However, it relied on a different

notion of value. Specifically, the analysis focused on the value of a

publication that described a primary investigation that produced a

dataset, while our study focuses on the value of the secondary publi-

cations that reuse a dataset produced by primary investigators. An-

other major difference to note is that in19 the value of the

publication was represented as the number of times a paper was

cited. While citation count is a proxy for the value gained through
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sharing, other proxies could be invoked, such as JIF20 and JES.21 We

focus on an investigator’s perceived valuation at the time of publica-

tion rather than the value realized afterward, as the former is more

in line with our overarching hypothesis.

Our focus on impact factor, as opposed to actual citations, is fur-

ther motivated by the fact that the citation count can be affected by

the date of the publication to a large extent. An older publication,

for instance, is more likely to receive a larger citation count than one

that is more recent. And normalizing for the number of years a pa-

per has existed will not account for the different citation rate trajec-

tories that papers generate. By contrast, JIF and JES can be relied on

to compare the values of 2 publications, regardless of when the pub-

lication was accepted, based on the commonly held belief that a pa-

per with more scientific contributions is more likely to be accepted

by a high-impact journal. Thus, in our study, we rely on JIF and JES

as proxies of the value that both the primary and secondary investi-

gators obtain by analyzing a dataset and publishing the results.

Another related examination of the value of sharing data is the

analysis conducted by Paltoo and colleagues12 on the value that sec-

ondary investigators gain from initiatives of the 2007 NIH Policy

for Sharing of Data Obtained in NIH Supported or Conducted

Genome-Wide Association Studies22 and dbGaP.12 This work con-

structed a corpus of the publications resulting from investigations

using the data deposited in dbGaP from 2007, the year when it came

online, to 2013, the year when the study was completed. Using this

publication corpus, this study assessed the impact of the secondary

use of the dbGaP data. In particular, this study reported on the annual

increase in secondary publications based on dbGaP data. It further

reported case studies of novel scientific discoveries and the increased

strength of association made from individual or combined dbGaP

datasets. Our study is based on this publication corpus, but our focus

is on the value of each publication for a scientific investigator instead

of the total scientific return the funding agency receives.

Finally, Piwowar and colleagues23 constructed a corpus of sec-

ondary publications that use data from the Gene Expression Omni-

bus database (also maintained by the National Center for

Biotechnology Information). The focus of this study was on the

overall scientific return of initiative, which was substantiated by

showing that the total number of secondary publications yielded

from all the datasets was 1150 by the end of 2010. This study is no-

table in that it shows that valuation based on publications over time

will not be limited to the dbGaP initiative.

MATERIALS AND METHODS

Materials
The data for this investigation were derived from a corpus of 1205

publications involving the analysis of dbGaP datasets that were

authored by approved recipients as of 2013.12 Each instance in our

data corresponds to a hpublication, dbGaP dataseti pair. Multiple

instances were derived from a publication if it used more than one

dbGaP dataset. For each instance, we collected information on the

following variables:

1. dateembargo expire: dbGaP dataset embargo expiration date

2. PHSID: dbGaP dataset phs id (ie, the accession number)

3. datereceived: Received date of the manuscript

4. datepublish: Published print date of the manuscript

5. datee publish: Published online date of the manuscript

6. JIF: Journal impact factor for the publication

7. JES: Journal Eigenfactor score for the publication

The dbGaP embargo expiration dates were provided by the team who

published.12 Notably, there is a release date and an embargo expiration

date for each version (.v#) and participant set (.p#) of a study (phs#).

The release date is when the data are made accessible by dbGaP. The

embargo expiration date corresponds to when the secondary investiga-

tors are permitted to publish. We use the embargo expiration date of

the first version and first participant set (phs#.v1.p1).

We downloaded the Journal Citation Reports of the involved jour-

nals from 2006 and 2015. For each paper in the dataset, we assigned

JIF and JES in the year prior to when the paper was published.

The received date, the published online date, and the published

print date were obtained from the PubMed and PMC databases via the

National Center for Biotechnology Information Entrez system.24

Received date is not reported for a large proportion of publications,

including high-impact journals such as Science, Nature, and Nature

Genetics. Additionally, a subset of journals are published in print form

only, such that their papers lack a published online date. Thus, we

designed an imputation process (details in Supplementary Appendix) to

avoid having to triage a large number of instances. For publications

missing a received date, if the publication is online, we impute this

value using a linear regression model of the received date versus the

published online date. Otherwise, we impute the received date using a

linear regression model of the received date versus the published print

date. We consider both models to be valid, because they indicate a

strong linear relationship between the 2 variables involved. Specifically,

the R2 for the models of received date as a function of published online

date and published print date were 0.971 and 0.953, respectively.

All data have been deposited in the online Dryad repository.25

Data triage pipeline
We relied on instances that satisfied the following conditions: (1) de-

void of missing values, (2) the publication was received after the em-

bargo expiration date of the dbGaP dataset, and (3) the dbGaP

dataset was used in more than one publication. We use the second

condition because an instance in our dataset could correspond to a

publication received before the embargo release date of its dbGaP

dataset. This happens when a primary investigator is among the

group of authors. The third condition is applied because a dbGaP

dataset needs multiple observation points to show a change in value.

Figure 1 depicts the triage pipeline based on the aforementioned

conditions. We began with 1451 instances. In the first step, we re-

moved 166 instances with missing values for the dbGaP dataset em-

bargo expiration date, JIF or JES. In the second step, we removed

281 instances where the publication received date transpired before

the dbGaP dataset embargo expiration date. In the third step, we re-

moved 44 instances where the dbGaP study dataset appears in only

one sample. The final dataset consists of 960 observations.

Data analysis
We test the hypothesis that the value a scientific investigator can

gain from a dbGaP dataset decreases over time. The dataset value is

represented by the JIF and JES of the publication. To reduce the

skew in the distributions, we log transformed the response

variables to log2ðJIFÞ and log2ðJESÞ. We use period ¼ datereceived

�dateembargo expire as the independent variable.

To test our hypothesis, we adopt a linear mixed-effects (LME)

model to capture the relationship between the response variable and

the independent variable period. We use LME instead of a more

conventional linear regression, because each dbGaP dataset is

affiliated with a varying number of publications that are not
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independent. As such, we rely on PHSID as a grouping variable. The

LME model uses a random intercept and slope with one continuous

independent variable period, where both the intercept and slope

vary by PHSID.

Formally, we adopt the LME model implementation of the R

nlme package (version 3.1.126). The model was defined as follows:

E½yijj periodi;j ; ci� ¼ b0 þ b1 � periodi;j þ ci0 þ ci1 � periodi;j

þ ei;j

ðci0; ci1Þ � N 0;Dð Þ

ei � N 0; r2
� �

i ¼ 1; . . . ;m

j ¼ 1; . . . ;nj

where the response variable in the model (which corresponds to log2

ðJIFÞ and log2ðJESÞ) is y, while yij corresponds to the jth publication

in group i. The other variables in the model are defined as follows:

m: Number of groups

ni: Number of instances in group i

periodi;j: Period of the jth publication in group i

eij: Random error

b0: Fixed intercept

b1: Fixed slope of the period

c0i: Random intercept

c1i : Random slope of period

D: Covariance matrix of random effect ci

Given the LME model, we formulate the null hypothesis as

H0 : b1 ¼ 0 and the alternative hypothesis as Ha : b1 6¼ 0. We reject

the null hypothesis at a significance level of 0.05. If the null hypothe-

sis is rejected, we further analyze the value of b1 to determine the

rate at which the value of the dataset is changing.

RESULTS

This section begins with the results from model selection and valida-

tion, including the probability density of the JIF and JES of the pub-

lications and the residual Q-Q plot of the fitted models. We then

present a visualization of log2ðJIFÞ and log2ðJESÞ as a function of pe-

riod to illustrate the relationships between the corresponding varia-

bles and the resulting LME models and the hypothesis test result. It

should be noted that our focus is on the fixed-effect coefficient b1,

which is used in the hypothesis test. Based on the fitted models, we

computed the amount of value depreciation of the dbGaP dataset

for scientific investigators.

The publications involved in this analysis are from 163 different

journals. The journal names, impact factors, and Eigenfactor scores

are listed in the Supplementary Appendix. The impact factors of

these journals range between 51.658 (New England Journal of Med-

icine in 2012) and 0.864 (Chinese Medical Journal in 2011). The

Eigenfactor scores of these journals range between 1.76345 (Nature

in 2008) and 0.0005 (Biodemography and Social Biology in 2012).

The probability densities of JIF and JES are depicted in Figure 2.

Both JIF and JES are highly skewed to the right, such that a log

transformation is applied to JIF and JES before being fitted to the

LME model. The residual normal Q-Q plot of log2ðJIFÞ and

log2ðJESÞ are shown in Figures 3 and 4, respectively. The JIF density

plot also shows that there are 2 coarse groups of journals: those

with values above 20 and those below 20. We recognized that the 2

groups could affect the validity of our LME model. Thus, instead of

fitting a separate model to each group of journals, which runs coun-

ter to the hypothesis we were testing, we assessed the hypothesis

that the probability of publishing in a high-impact journal using a

dataset decreases over time. The results of this analysis are omitted

due to the length limitation; instead, they are reported in the Supple-

mentary Appendix. In short, the results suggest that this hypothesis

holds true in a statistically significant manner as well.

The scatterplots with a LOESS curve of period vs log2ðJIFÞ and

period vs log2ðJESÞ are shown in Figures 5 and 6, respectively. These

plots show that log2ðJESÞ exhibits a decreasing pattern along with

an increase in period, while log2ðJIFÞ exhibits the same pattern dur-

ing the first 4 years.

The fixed-effects parameter estimates of the models are shown in

Tables 1 and 2. The slope b1 of the 2 fitted models suggests that both

log2ðJIFÞ and log2ðJESÞ decrease as the period increases. In particular,

the b1 of the log2ðJIFÞ model is�0.1348 with a P-value of .0028, and

b1 of the log2ðJESÞ model is�0.1422 with a P-value of .0479. There-

fore, in both models the null hypothesis, that the value of data does

not decrease over time, can be rejected. Since the response variable of

each model is the log2 transformation of the original JIF and JES, the

average actual JIF and JES of the current year is 2b1 times the average

value of the previous year. In particular, the average JIF and JES of

the current year is 2�0:1348¼0.91 and 2�0:1422 ¼ 0:91 times, respec-

tively, that of the previous year. The results indicate that there is con-

sistency in the JIF and JES valuations of the dataset, both of which

drop at a relatively small rate, �10% annually.

In Table 3, we show the predicted value depreciation of a dbGaP

dataset for scientific investigators subjected to a temporal penalty of

a period ranging from 3 months to 3 years using our model. The de-

preciation quantities in Table 3 do not rely on the particular mea-

sure used, because the rates of JIF and JES are consistent. The results

show that the amount of value depreciation caused by a temporal

penalty of 3 or 6 months, which is typical for existing incidences

where the temporal penalty is imposed, is small at 2–4.6%.

Figure 1. The triage process for the data used in this study.
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−8

−4

0

60 2 4

period (year)

lo
g(

JE
S

)

Figure 6. A scatterplot, with a LOESS smoothing curve, of log transformation

of the journal Eigenfactor score (log2 (JES)) vs the period.

Journal of the American Medical Informatics Association, 2018, Vol. 25, No. 1 29



DISCUSSION

In summary, the primary finding of this study is that the value of

dbGaP datasets, as assessed by the journal impact and Eigenfactor

scores of the publications in which they are included, depreciates at

an annual rate of �10%. Here, we take a moment to reflect on the

benefits and drawbacks of this discovery for biomedical data science

policymaking, and to consider several limitations regarding this

result.

Implications of our findings
There are several notable aspects of our findings that should be

highlighted. First, the slow depreciation rate is good news, in that

our findings support the hypothesis that storing and sharing data are

valuable for the scientific enterprise, contributing to new discover-

ies, and that value endures over time.

At the same time, the enduring value of these data does suggest

that excluding embargo violators for 3–6 months may not be an ef-

fective deterrent, as the value of the data will still be significant after

the penalty ends. It may be that other strategies need to be imple-

mented as alternatives, or addendums, to sufficiently deter viola-

tions of DUC agreements. One such approach would be to prevent

investigators from accessing other resources, such as being unable to

compete for new grant funding over a certain number of review

cycles. Another approach to consider would be to shift from tempo-

ral holdouts, which depend on a particular view of data value, to ex-

plicit financial penalties, whereby violators are fined for violations.

Of course, we recognize that federal agencies like the NIH may not

be able to impose such fines without additional authority. Still, this

could be a solution worth pursuing if the concern for violation

grows, which is likely to occur as the quantity and quality of such

data-sharing resources escalate. The National Academies of Scien-

ces, Engineering, and Medicine recently urged in its report

“Fostering Integrity in Research” that research institutions must as-

sume greater responsibility to ensure the appropriate behavior of

researchers.26 Failing to exercise appropriate oversight to ensure

compliance with data use agreements, then, could open an institu-

tion to criticism and perhaps additional financial penalties. More-

over, financial penalties could be a readily useable solution for

organizations or consortia that can draw up use agreements that em-

bed liquid damages for violation of the agreed-upon terms.

As an alternative to direct monetary penalties, it might be worth

identifying violators publicly, a policy that has been adopted by the

Office for Civil Rights at the US Department of Health and Human

Services in support of the Security Rule of the Health Insurance Por-

tability and Accountability Act (HIPAA) of 1996. Specifically, the

Office for Civil Rights publicly publishes both the name of the orga-

nization and the amount of fine levied on a public “Wall of Shame”

website for those who have had more than 500 patients’ records

breached.27

Limitations of the study
This study has limitations that suggest several future research direc-

tions. First, our analysis involves datasets only from dbGaP, which

may introduce a bias, as it neglects other resources available in the

United States and abroad. While we anticipate that our findings will

generalize, we do not have evidence at present to confirm this claim.

Second, the value of each dataset was treated independently.

This may inflate the value of a specific dataset, because multiple

datasets are, at times, brought together for more powerful analyses.

This may help to explain such a slow depreciation rate. Still, this

would not detract from our conclusions, as it simply shows that

value can be gained through data aggregation.

Third, our LME models consider the random effects caused only

by the dbGaP dataset used in a publication. Other variables could

induce effects, such as the type of study (eg, methodological devel-

opment vs biomedical discovery) and the specific biological phe-

nomenon investigated.

Fourth, we used the embargo expiration date of the first version

and participant set of a dbGaP study. This neglects the particular

version that was actually used in a publication. This decision was

motivated by 2 reasons: (1) the version and participant set are not

available for all publications, and (2) the difference between versions

was anticipated to be small. Nonetheless, the latter assumption may

not hold for certain dbGaP datasets.

Finally, we recognize that there may be other undesirable conse-

quences for researchers who are subjected to a temporal penalty, in-

cluding the inconvenience caused by the forced delay in work or the

loss of opportunities to compete for grant funding due to a forced

delay in applications. In this paper, however, we believe that the

value of data over time is a good starting point to study the effects

of the temporal penalty, because (1) the notion that value of data

decreases over time is an important motivation for temporal penal-

ties, and (2) to the best of our knowledge, there are no data readily

available to study the effects of the delay in research work and fund-

ing applications.

CONCLUSION

This is the first study demonstrating that datasets in a large biomedi-

cal data research repository, dbGaP, retain substantial value over

time when used in additional research. These findings provide pow-

erful support for data sharing, but they also suggest that short-term

exclusion from data access, the most common penalty currently im-

posed for violations of DUCs, is a weak deterrent in its own right.

Thus, other mechanisms will need to be developed to ensure the ap-

propriate use of these datasets in order to recognize the efforts of

data collectors and, more importantly, ensure the public’s trust in

biomedical data science.

Table 1. Fixed-effects parameter estimates of the JIF model

Coefficient Value Std. Error DF t-value P-value

b0 3.0245 0.0993 879 30.4725 .0000

b1 �0.1348 0.0449 879 �2.9985 .0028

Table 2. Fixed-effects parameter estimates of the JES model

Coefficient Value Std. Error DF t-value P-value

b0 �3.3484 0.1653 879 �20.2573 .0000

b1 �0.1422 0.0718 879 �1.9812 .0479

Table 3. The predicted value depreciation of a dbGaP dataset as a

function of the temporal penalty period length

Period (months) 3 6 12 18 24 30 36

Value depreciation (%) 2.0 4.6 8.9 13.0 17.0 21.0 24.0
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