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Abstract

Background—Targeted localized biopsies and treatments for diffuse gliomas rely on accurate 

identification of tissue subregions, for which current MRI techniques lack specificity.

Purpose—To explore the complementary and competitive roles of a variety of conventional and 

quantitative MRI methods for distinguishing subregions of brain gliomas.

Study Type—Prospective.

Population—Fifty-one tissue specimens were collected using image-guided localized biopsy 

surgery from 10 patients with newly diagnosed gliomas.

Field Strength/Sequence—Conventional and quantitative MR images consisting of pre- and 

postcontrast T1w, T2w, T2-FLAIR, T2-relaxometry, DWI, DTI, IVIM, and DSC-MRI were 

acquired preoperatively at 3T.

Assessment—Biopsy specimens were histopathologically attributed to glioma tissue subregion 

categories of active tumor (AT), infiltrative edema (IE), and normal tissue (NT) subregions. For 
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each tissue sample, a feature vector comprising 15 MRI-based parameters was derived from 

preoperative images and assessed by a machine learning algorithm to determine the best 

multiparametric feature combination for characterizing the tissue subregions.

Statistical Tests—For discrimination of AT, IE, and NT subregions, a one-way analysis of 

variance (ANOVA) test and for pairwise tissue subregion differentiation, Tukey honest significant 

difference, and Games-Howell tests were applied (P < 0.05). Cross-validated feature selection and 

classification methods were implemented for identification of accurate multiparametric MRI 

parameter combination.

Results—After exclusion of 17 tissue specimens, 34 samples (AT = 6, IE = 20, and NT = 8) were 

considered for analysis. Highest accuracies and statistically significant differences for 

discrimination of IE from NT and AT from NT were observed for diffusion-based parameters 

(AUCs >90%), and the perfusion-derived parameter as the most accurate feature in distinguishing 

IE from AT. A combination of “CBV, MD, T2_ISO, FLAIR” parameters showed high diagnostic 

performance for identification of the three subregions (AUC ~90%).

Data Conclusion—Integration of a few quantitative along with conventional MRI parameters 

may provide a potential multiparametric imaging biomarker for predicting the histopathologically 

proven glioma tissue subregions.

Level of Evidence—2

Technical Efficacy—Stage 3

Diffuse gliomas manifest extensive diffuse infiltration of tumor cells in adjacent brain 

parenchyma.1 Even when low grade, diffuse gliomas are generally fatal after several years.
1,2 It is widely known that characteristic spatial intratumor variability within the 

microenvironment of gliomas account for the grim prognosis of these patients.3,4 Within 

heterogeneous tumors like gliomas, multiple subregions with different phenotypic 

characteristics coexist, which often represent heterogeneous genetic and microenvironmental 

profiles, likely to respond variably to treatment.5,6 Lack of sensitive and specific quantitative 

imaging biomarkers for realizing spatial variations of gliomas and localizing the most 

aggressive portion of the tumor leads to inaccurate biopsy sampling, which hinders target-

specific diagnosis and therapies.5

Targeted biopsy procedures and surgical/treatment planning for gliomas most often rely on 

conventional contrast-enhanced T1-weighted (CE-T1w), T2-weighted (T2w) and T2-FLAIR 

images.7–9 Nonetheless, as diffuse gliomas tend to invade the brain tissue in small cell 

groups, tumor expansion and progression may precede changes in contrast enhancement.1,8 

Furthermore, CE-T1w cannot sufficiently localize the most aggressive or active tumor 

subcompartment to ensure reliable biopsy outcome.10,11 On the other hand, T2w 

hyperintense regions are incapable of characterizing the infiltrative glioma subregion 

(infiltrative edema, also referred to as nonenhancing tumor [NET]), and diffuse infiltrating 

cells can be found beyond the extent of T2w hyperintensity borders.12,13 Hence, based on 

conventional magnetic resonance imaging (MRI), stratification of the most aggressive/active 

part of the tumor and infiltrative glioma and detection of the extent of invasion from normal 

tissue remains challenging.
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Various advanced MRI contrasts have been explored for their potential in localizing and 

grading glioma brain tumors. Diffusion-weighted imaging (DWI) and diffusion tensor 

imaging (DTI) reflect the water proton mobility related to changes in cellular density, 

permeability of the cell membrane, and tissue microstructure.14,15 Perfusion-weighted 

imaging (PWI) visualizes microvascular changes and cellular proliferation; particularly, 

regional cerebral blood volume (rCBV) derived from dynamic susceptibility contrast-

enhanced (DSC)-MRI correlates with the degree of neovascularization and histopathological 

grade, surpassing the performance of CE-T1w MRI.16–18

There have been sporadic attempts to study the role of quantitative MRI methods, including 

DSC-MRI, DWI/DTI, IVIM, and T2-relaxometry for characterizing infiltrating glioma 

regions through biopsy validation.18–20 Hence, we sought to address: 1) the roles of 

individual MRI-derived parameters in differentiation of the three subregions, ie, active tumor 

(AT), infiltrative edema (IE), and normal tissue (NT), from each other; 2) the relationship 

between MRI-derived parameters with histopathological cellular density; and 3) the best 

multiparametric combination of MRI-derived features for discrimination of AT, IE, and NT 

through a quantitative methodology.

Materials and Methods

Patients

Between July 2015 and February 2016, 10 adult patients (six men and four women; mean 

age 40.4 years; age range, 20-76 years) with newly diagnosed gliomas were prospectively 

recruited for this study. The patients underwent presurgical MRI and computed tomography 

(CT) examinations, followed by image-guided neurosurgery within 1-3 days from image 

acquisition. Institutional Review Board (IRB) approval was obtained and the patients 

provided informed written consent to be included in the study, designed in compliance with 

the Health Insurance Portability and Accountability Act (HIPAA) law. Inclusion criteria for 

this study consisted of patients: 1) with suspected glioma brain tumors based on their initial 

MR scan; 2) with no prior treatment, including surgery or radiotherapy; 3) having no 

contraindications for surgery; 4) in whom the tumor was not in an eloquent area; and 5) for 

whom there were no technical challenges for performing surgery.

Patients or biopsy specimens were excluded if 1) they did not undergo surgery; 2) imaging 

was performed inadequately or some image sequences were missing; or 3) if 

histopathological assessment of gross tumor or specimens was impossible or not provided.

Image Acquisition

All patients underwent preoperative MRI acquisition within 2 days prior to their surgery. 

Structural and physiological MRI acquisitions were performed on a 3T MRI scanner 

(Siemens Magnetom Tim Trio, Erlangen, Germany). Sagittal T2w turbo spin echo (repetition 

time/echo time [TE/TR] = 80/6000, slice thickness = 5 mm, flip angle = 140°, field of view 

[FOV] = 230 × 230 mm2, image matrix = 320 × 320, pixel size = 0.72 × 0.72 mm2). Axial 

T2w turbo spin echo (TE/TR = 106/5400, slice thickness = 5 mm, flip angle = 120°, FOV = 

200 × 200 mm2, image matrix = 232 × 256, pixel size = 0.78 × 0.78 mm2). Axial fluid 
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attenuated inversion recovery (FLAIR) (TE/TR/TI = 115/8400/2240, slice thickness = 5 mm, 

flip angle = 125°, FOV = 181 × 200 mm2, image matrix = 232 × 256, pixel size = 0.78 × 

0.78 mm2). Axial 3D magnetization-prepared rapid-acquisition gradient-echo (MP-RAGE) 

T2w spin-echo as a part of image-guided surgery protocol with TE/TR = 200/2500, slice 

thickness = 1mm, flip angle = 120°, FOV = 208 × 256 mm2, image matrix = 420 × 512, 

pixel size = 0.50 × 0.50 mm2.

Axial DWI using echo-planar imaging (EPI) sequence with TE/TR = 100/4000, slice 

thickness = 5 mm, flip angle = 90°, FOV = 200 × 200 mm2, image matrix = 136 × 136, pixel 

size = 1.47 × 1.47 mm, b-value = 50, 1000 s/mm2. Axial multi b-value DWI using EPI 

method with TE/TR = 100/4000, slice thickness = 5 mm, flip angle = 90°, FOV = 200 × 200 

mm2, image matrix = 136 × 136, pixel size = 1.47 × 1.47 mm2, b-values = 0, 50, 200, 400, 

600, 800, 1000 s/mm2. Diffusion tensor imaging (DTI) with 64 directions and TE/TR = 

90/9000, slice thickness = 5 mm, FOV = 256 × 256 mm2, flip angle = 90°, number of 

excitations (NEX) = 1, image matrix = 128 × 128 × 72, pixel size = 1.72 × 1.72 mm2, b-

value = 50, 1000 s/mm2.

Axial multiecho T2w spin-echo (T2-relaxometry) was carried out with TR = 4000 msec, TE 

= 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192 msec, slice thickness 

= 5 mm, flip angle = 180°, FOV = 200 × 200 mm2, image matrix = 232 × 256, pixel size= 

0.78 × 0.78 mm2.

After injection of 0.2 mmol/kg of Gadovist (Bayer Schering Pharma, Berlin, Germany) at a 

rate of 5 ml/s and followed by a 20-mL saline flush, DSC-MRI was acquired using a GE-

EPI sequence with TE/TR = 30/1600, slice thickness = 5 mm, FOV = 220 × 220 mm2, flip 

angle = 70°, NEX = 1, image matrix = 128 × 128 × 20, pixel size = 1.72 × 1.72 mm2, 

number of dynamic scans = 64, temporal resolution = 1.5 sec. To minimize the effects of 

contrast agent extravasation a preload of contrast agent was administered with about 25% of 

the total contrast dose about 4 minutes of incubation time before the second injection for 

DSC-MR imaging.

Pre- and postcontrast axial 3D MP-RAGE T1w spin-echo were also acquired as a part of the 

protocol required for the navigation system TE/TR = 5/17, slice thickness = 1 mm, flip angle 

= 25°, FOV = 208 × 256 mm2, image matrix = 208 × 256, pixel size = 1 × 1 mm2.

MRI pulse sequences and their parameter adjustments are summarized in Table 1.

CT images were acquired for all patients prior to surgery to ensure accurate registration of 

the images with the position of the patient during image-guided neurosurgery. 3D images 

were acquired on a 64-slice CT scanner (GE Healthcare Technologies, Milwaukee, WI) with 

no gantry tilt, slice thickness of 0.625 mm, from maxilla to the top of the head.

Quantification of MR Images

DTI—Quantification of DTI was executed in ExploreDTI software (v, 4.8.6)21 with proper 

parameter adjustments, and after EPI and patient motion correction. Maps of mean 

diffusivity (MD), fractional anisotropy (FA), and L1, L2, and L3 eigenvalues were exported 
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from the software. Pure isotropic diffusion and pure anisotropic diffusion maps denoted by P 
and Q, respectively, were calculated based on this formula22:

P = 3MD =
λ1 + λ2 + λ3

3

Q = λ1 − MD 2 + λ2 − MD 2 + λ3 − MD 2

DSC-MRI—DSC-MRI analysis was carried out based on an algorithm developed in-house, 

which inputs signal intensity–time curves of T2
∗-based dynamic images in each pixel, 

converts them to ΔR2
∗ curves, selects the arterial input function (AIF) based on a modified 

automated algorithm, performs decorrelation using block-circulant SVD, and generates a 

regional CBV (rCBV) map.

T2/PROTON DENSITY MAPPING—In T2-relaxometry, images are acquired at multiple 

echo times to obtain an estimate of T2 and proton density by fitting the following equation to 

the signal:

S = S0e
− TE

T2

where S0 is the proton density and T2 is the spin–spin relaxation. Quantitative T2 and proton 

density (PD) maps were generated by pixelwise fitting of the mentioned equation to the 

corresponding multiecho signal.

QUANTIFICATION OF INTRAVOXEL INCOHERENT MOTION—Diffusion-weighted 

images are highly affected by flow of blood and cerebrospinal fluids at very low b-values 

(ie, less than 100–200 s/mm2).23,24 Here, to separate contributions of diffusion and 

perfusion, the bi-exponential intravoxel incoherent motion (IVIM) model is used which is 

denoted by24:

S = S0 f e−bD ∗ + 1 − f e−bD

where S0 is the signal at b-value of zero, f is the fraction of signal affected by flow, D* 

describes the decay of signal caused by flow, and D is the measured diffusion coefficient, 

which is a function of diffusion time. To nullify the effect of flow on diffusion 

measurements, diffusion coefficients (D) for each voxel were calculated using conservative 

minimum b-values of 200 s/mm2.25 As diffusion parameters are highly affected by non-

Gaussian behavior of diffusion at higher b-values, for calculation of D, this effect was 

conservatively cancelled by using maximum value of 600 s/mm2.
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To account for non-Gaussianity of the signal in higher b-values, the modified IVIM model 

including diffusion kurtosis imaging (IVIM-DKI) was considered26:

S = S0 f e−bD ∗ + 1 − f e
−bD + b2D2K

6

where K is the kurtosis factor that measures deviation from the Gaussian behavior. D for 

each voxel was estimated by fitting the equation to the segment of the signal at b-values of 

200, 400, and 600 s/mm2, and K was estimated from b-values of 600, 800, and 1000 s/mm2 

using nonlinear least-squares method.

Biopsy Site Selection

The generated maps from different modalities, including rCBV-map from DSC-MRI, ADC-

map from DWI, maps of FA, MD, P, Q from DTI, maps of D, D*, f, and K from multi-b-

value diffusion imaging, maps of T2 and PD from T2-relaxometry technique, and 

conventional images comprising of FLAIR, T2_ISO (MP-RAGE T2w), and MP-RAGE 

precontrast T1w, were coregistered with the postcontrast MP-RAGE T1w (CE-T1w) image 

using a rigid registration method with normalized mutual information (NMI) as the 

similarity measure in SPM software (http://www.fil.ion.ucl.ac.uk/spm/). The difference 

between post- and precontrast T1w images was calculated to form T1_SUB (subtracted T1w) 

image, which shows the enhanced regions (Fig. 1).

A senior radiologist (K.F. with 12 years of experience in neuroradiology) identified the 

biopsy targets, ie, active tumor, infiltration, and normal regions, based on the presence of 

hyperintensity on CE-T1w, hypointensity on T2w and FLAIR images, and according to 

quantitative ADC and rCBV maps. Rectangular regions of interest (ROIs) with sizes of at 

most 8 × 8 pixels were marked on CE-T1w images and imported into the navigation 

workstation to plan for image-guided biopsy intervention. The regions were ideally 

identified on areas with best accessibility for the neurosurgeon for specimen collection and 

distant from vessels, ventricles, and critical brain regions.

Image-Guided Tissue Biopsy Procedure

The specimens were sampled from the patients by a senior neurosurgeon (M.Z. with 10 

years of experience in neurosurgery) using a disposable biopsy needle (Stryker, 

Switzerland). The coordinates of the ROIs were recorded by the navigation system 

(OpticVision, Parseh Intelligent Surgical Systems [PARSISS], Iran), which were used to 

overlay on the images and MRI-derived quantitative maps. Based on the guide provided by 

navigation, needle biopsy was performed on all target points. For each patient, 4–6 

specimens with at least 1-cm of distance were collected for histopathological assessments.

These technical considerations were addressed during the biopsy to minimize intraoperative 

brain shift and error:
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1. The target points were presurgically marked in the order of normal tissue, edema, 

tumor, and necrosis;

2. Serum manitol, corticosteroids, or any other diuretics pre/intraoperative were not 

given to patients prior to biopsy procedure;

3. Hypo/hyperventilation during surgery was avoided;

4. Minimal dural opening was performed to prevent CSF egress resulting in brain 

shift;

5. The target points in proximity of the ventricles were the last points for biopsy, to 

avoid unwanted entrance into the ventricles, resulting in CSF drainage and 

therefore changing navigation accuracy due to brain shift;

6. For the target points in proximity of cystic portions within the tumor, a similar 

strategy was adopted.

After needle biopsy, the dura was opened and based on preoperative images, complete 

resection of the tumor was performed and the resected gross tumor volume was transferred 

for histopathological grading.

Histopathological Assessment of Tissue Samples

After being removed from the brain, the specimens were fixed in 10% buffered formalin and 

routinely processed for histopathological assessment. Five micrometer sections were stained 

using the hematoxylin and eosin (H&E) method and reviewed by a pathologist (F.A. with 20 

years of experience in neuropathology). For each specimen, the pathologist determined the 

presence of tumor cells and scored the samples as “normal tissue” where no tumor cells 

were identified, “positive tumor cells” when infiltrating tumor cells were present, and 

“tumor core” when tumor constituted the majority of tissue. Tumor was identified, 

classified, and graded based on morphological features, such as density and distribution of 

cells, nuclear atypia, mitotic activity, vascular proliferation, and necrosis. Throughout this 

article we refer to the pathological term “tumor core” as “active tumor (AT),” “positive 

tumor cells” as “infiltrating edema (IE),” and “normal tissue” as “normal tissue (NT).”

For each specimen, the area with the highest cellularity was selected and one image was 

captured at ×40 magnification. Quantitative assessment of histology images was performed 

automatically by a cell segmentation method which applies decorrelation and stretching of 

the colorspace in the preprocessing step for improving the performance of cell segmentation 

(Fig. 2).27 Cellular count (CC) within the specified area was calculated from the segmented 

images and used as a representative parameter of cellular density. The relationship between 

the calculated CC on all regions and interpretation of the pathologist, as the gold standard, 

was examined.

Statistical Analysis

The statistical analysis comprised of the following steps: 1) evaluating the association of 

MRI-derived parameters with each other and with statistically significant quantitative 

histopathological feature (cellular count); 2) assessing mean values of the extracted features 
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among the three tissue subtypes, ie, IE, NT, and AT; 3) investigating the diagnostic 

performances of individual MRI-derived features for distinguishing the histopathologically 

identified regions and their combinations based on a machine-learning technique, including 

automatic feature selection and classification procedures.

The computed MRI-based features (n = 15) include morphological parameters, ie, T1_SUB, 

T2_ISO, FLAIR, diffusion-related parameters, ie, ADC, MD, FA, P, Q, D, D*, K, perfusion-

related parameters, ie, CBV, and f, and T2-relaxometry parameters, ie, T2 and PD. The 

histopathological CC metric was also evaluated for its potential in discriminating the 

subregions. All statistical analysis and machine-learning procedures were performed in R 

Statistical Software (R3.0.2, Vienna, Austria).

COMPARISON OF MEAN VALUES—The one-way analysis of variance (ANOVA) 

method was applied to evaluate the discrimination of NT, IE, and AT tissue subtypes based 

on the MRI-derived parameters and cellular count. P < 0.05 was considered significant for 

differentiation of the three tissue regions simultaneously. For each parameter, pairwise 

differentiation of the regions, namely, NT from IE, NT from AT, and IE from AT, was 

assessed by post-hoc tests: Tukey’s honest significant difference (Tukey-HSD) or Games-

Howell methods, to avoid Type I errors by adjusting the calculated P-values for multiple 

comparisons. The HSD test is based on assumptions of normality and equality of variance; 

the former was evaluated using normality tests and the latter by the Bartlett method. If 

equality of variance assumption passed, Tukey-HSD was performed; otherwise, Games-

Howell nonparametric test was applied.

ASSOCIATION OF PARAMETERS—Relationships between MRI-derived parameters 

with each other and also between them and cellular count were obtained using Spearman’s 

rank correlation. To correct for multiple comparisons, Holm’s method for multiple testing28 

was applied and, after correction, a level of 0.05 was considered statistically significant.

ASSESSMENT OF DIAGNOSTIC PERFORMANCES OF INDIVIDUAL MRI-
DERIVED PARAMETERS—Fischer’s linear discriminant analysis (LDA) method was 

used to assess performances of MRI-derived and CC parameters in discrimination of NT 

from IE, NT from AT, and IE from AT. LDA was implemented with leave-one-out 

crossvalidation (LOOCV), where in each iteration (number of iterations equals the number 

of samples), the dataset is partitioned into the training set composed of whole data excluding 

one sample, which is separated as the test object. Assessment metrics, namely sensitivity, 

specificity, accuracy, and area under the receiver operating characteristic (ROC) curve 

(AUC) were calculated on test samples and averaged over loops of crossvalidation.

COMBINATION OF MRI-DERIVED PARAMETERS THROUGH CLASSIFICATION
—To identify the complementary/competitive roles of MRI-derived features, feature 

selection was carried out using Akaike Information Criterion (AIC)29 and Schwarz Bayesian 

Information Criterion (BIC)30 in forward selection, backward elimination, and stepwise 

selection strategies (constructing six feature selection methods) on a feature space consisting 

of the 15 MRI-derived parameters.
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The feature selection algorithm was adjusted to avoid choosing similar parameters in a set, 

eg, the algorithm should select only one feature among diffusion-related features: ADC, D, 

MD, P; anisotropy-related features: FA, Q; perfusion-related features: f, CBV; T2-related 

features: T2, T2_ISO.

Feature selection was performed in loops of LOOCV and the most frequently selected 

feature subsets by each of the feature selection methods were the representative feature 

subset.31 This was followed by a classification step based on Fischer’s linear discriminant 

analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) 

methods32 for discrimination of tissue subtypes. To avoid bias, classification was also 

performed using LOOCV.

Results

Among the 10 recruited patients, six were diagnosed with low-grade glioma (WHO Grade 

II: low-grade astrocytoma [n = 3], diffuse oligoastrocytoma [n = 2], oligodendroglioma [n = 

1]), one with anaplastic oligoastrocytoma (WHO Grade III), and three with glioblastoma 

multiforme (WHO Grade IV). A total of 51 tissue specimens were collected from 10 

patients. Three patients (two GBM and one Grade II oligodendroglioma) were excluded due 

to the absence or distorted multi-b-value, multiecho, DTI, or DSC-MRI. Finally, seven 

patients with 34 samples were included in the study. Based on qualitative histopathological 

assessment, six samples were diagnosed as the “tumoral core,” 20 samples as “positive 

tumor cells,” and 8 samples as “normal tissue.”

Relationship of MRI Parameters

The summary results for correlations among the MRI parameters with each other and with 

CC are provided in Table 2. The statistically significant correlations are shown in boldface 

type and are shaded in gray.

DIFFUSION-BASED PARAMETERS—ADC parameter significantly correlated with 

MD, P, D, T2_ISO, and T2 and negatively with FA and K. This parameter showed the 

strongest correlations with D (R = 0.96), MD (R = 0.91), P (R = 0.88), and T2 (R = 0.80), 

but showed no significant correlation with CC.

D is directly correlated with ADC, FA, MD, P, T2_ISO, T2, and inversely correlated with K. 

The strongest correlation of D was with ADC (R = 0.96), MD (R = 0.90), and P (R = 0.88). 

It showed significant correlation with CC (R = 0.40).

D* was correlated poorly and inversely with T2. K correlated inversely with ADC, MD, P, 

and T2 (in all, R ≤0.62). Besides the correlations mentioned earlier that included MD, this 

parameter was strongly correlated with P (R = 0.98) and T2 (R = 0.84), and showed 

moderate correlations with T2_ISO. P was highly related to T2 (R = 0.81), and moderately 

correlated with T2_ISO. Both MD and P were correlated with CC (R = 0.36).
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FA was strongly correlated with Q (R = 0.86) and indicated a modest inverse association 

with ADC, D, MD, P, and T2. Furthermore, FA showed an inverse correlation with CC (R = 

−0.37). Q was directly correlated with FA, and showed no relationships with CC.

PERFUSION-BASED PARAMETERS—CBV only showed statistically significant 

correlation with the f parameter derived from IVIM, which was not strong (R = 0.35). 

Additionally, it indicated a significant correlation with CC (R = 0.46). Parameter f correlated 

with none of the parameters except CBV.

CMRI PARAMETERS—FLAIR only correlated with T2_ISO with a correlation coefficient 

of 0.67. T2_ISO was significantly associated with ADC, D, MD, FA, FLAIR, and P (for all, 

R <0.70). T1_SUB showed no significant correlations with any of the parameters.

T2-MAPPING PARAMETERS—As mentioned in previous sections, T2 demonstrated 

correlations with ADC, D, K, MD, P, and T2_ISO. The PD-map correlated with none of the 

parameters.

Association of Tissue Subtypes With Quantitative MRI-Derived Parameters

Comparison of the mean values of individual parameters based on the ANOVA test for 

differentiation of the three tissue subtypes from each other is shown in Table 3. The results 

suggest that among MRI-derived parameters, T2_ISO, FLAIR, ADC, CBV, MD, FA, P, D, 

and T2 show statistically significant differences among the three subregions, ie, NT, IE, and 

AT. The histopathologically derived parameter, CC, showed statistically significant 

differences among the three tissue subregions (P = 8.9E-06).

The details of classification performances of individual parameters in differentiation of each 

of the two subregions from each other and based on the crossvalidated LDA method are 

given in Table 3. For differentiation of NT from IE (requiring high sensitivity), the highest 

performances were for T2_ISO, FLAIR, ADC, MD, P, D, and T2. T2-based features, ie, 

T2_ISO, FLAIR, and T2 resulted in AUCs >84% for this discrimination. The four diffusion-

related parameters, ie, ADC, MD, P, and D, resulted in AUCs of over 90% (and sensitivities 

>90%) for discrimination of NT from IE. In this context, T1_SUB, CBV, and f were highly 

sensitive (100%) but lacked specificity.

All MRI-derived parameters except for D*, f, and PD were accurate for separation of NT 

from AT, implying high sensitivity of these metrics.

The only statistically significant MRI-derived feature for identification of IE from AT was 

DSC-MRI-derived parameter, ie, CBV, with high specificity of 95%.

CC showed high AUCs for differentiation of the three two-by-two subregions (>84%), 

although its specificity for separation of NT from IE was rather low.

Combination of Quantitative MRI-Derived Parameters

For classification of the three tissue subtypes from each other, ie, NT, IE, and AT, four 

feature combinations were selected by the feature selection methods: 1) CBV, MD, FLAIR, 
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T2_ISO (selected by backward AIC); 2) CBV, MD (selected by backward BIC); 3) CBV, D, 

T2_ISO (forward/stepwise AIC); and 4) CBV, D (selected by backward BIC) (Table 4). 

Three classification methods, namely, LDA, QDA, and SVM, were applied on the selected 

combinations. As Table 4 summarizes, using the classifiers the most accurate feature set was 

“CBV, MD, FLAIR, T2_ISO” with AUC of ~90% for all three classifiers. Additionally, the 

feature combination “CBV, D, T2_ISO” resulted in AUC of ~92% using the LDA 

classification scheme.

Table 5 shows the performances of classification schemes (each classifier on the selected 

feature subsets) for two-by-two discrimination of the three subregions from each other. The 

combination of “CBV, MD, FLAIR, T2_ISO” using either QDA or SVM classifiers produces 

accurate results for all three discrimination purposes, ie, NT from IE, NT from AT, and IE 

from AT. Using QDA, this combination indicates an AUC of 92.3% for characterization of 

NT from IE, 100% for NT from AT, and 89.2% for IE from AT. SVM classification based on 

this combination results in AUC of 98.8% for identification of NT from IE, 100% for NT 

from AT, and 100% for IE from AT.

Additionally, “CBV, D, T2_ISO” using the QDA classifier can generate AUC of 85.6% for 

differentiation of NT from IE, 100% for NT from AT, and 91.6% for IE from AT.

Discussion

Conventional MRI lacks accuracy in assessing physiological variations and regional 

heterogeneity within tumors. During the past years, several quantitative methods, such as 

DWI/DTI and DSC-MRI, have been investigated for their potential as adjuncts to 

conventional MRI. Yet the comparative and complementary roles of these methods and 

emerging techniques, such as T2-relaxometry and IVIM, are not explored, especially through 

histopathologically proven specimens and objective classification techniques.

In this preliminary study, we attempted to tackle this problem by evaluation of the 

aforementioned techniques on localized biopsy specimens, which were histopathologically 

assessed and attributed to AT, IE, and NT subregions. Among individual MRI-derived 

parameters, diffusion-related ADC, MD, P, D parameters, as markers of cellular 

proliferation, indicated high classification performance for identification of NT from IE, and 

NT from AT, but were not suitable for IE from AT separation. This finding along with 

significant correlation of D, MD, and P with histopathological CC parameter suggests that 

changes in cellular distribution captured by diffusion-based parameters can be early markers 

of glioma infiltration (NT from IE discrimination). But these changes in low-grade glioma 

are not significantly different among IE and AT subregions; therefore, these parameters may 

not be diagnostically valuable for localizing the most active part of the tumor and other 

features must be explored. Among FA and Q as indicators of diffusion anisotropy, FA was 

statistically significant for discrimination of the three subregions and showed significant 

inverse correlation with CC, and accurately discriminated NT from AT. However, FA did not 

result in statistically significant differences for isolation of NT from IE or IE from AT in our 

sample population.
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In animal studies, DTI has been shown to identify microinfiltration of tumor cells in the 

surrounding brain tis- sue.33,34 Early investigations on human brain glioma indicate that 

DWI/DTI can provide helpful information for assessment of peritumoral edema and to 

define margins of tumor invasion.3,35,36 Specifically, ADC20,37 or MD and FA19,38,39 have 

shown correlations with NET based on histopathologically proven biopsy specimens.

Unlike other MRI-derived parameters, CBV was the only statistically significant feature for 

discrimination of IE from AT. Hence, early vascularization is a discriminative factor for 

identifying the most active component of gliomas. This parameter was not statistically 

significant for identification of NT from IE, indicating that in the early stages of infiltration 

and before transforming into the most active subpopulations, neoangiogenesis may not have 

a role in gliomas. CBV was evidently statistically significant for characterization of NT from 

AT. Nonetheless, the classification performance was lower than that of diffusion-based 

parameters. The suboptimal performance of CBV in contrast to diffusion-based parameters 

in this context can be attributed to our sample population of low-grade gliomas, in which 

neovascularization has not become largely prominent in the infiltrative or active tumor 

regions.

The best combination of these parameters was sought using crossvalidated feature selection 

and classification methods. Three classifiers with increasing complexity, namely, LDA, 

QDA, and SVM, were implemented to obtain insights about the capability of the selected 

feature combinations in tissue identification irrespective of classifier formulation. In all four 

selected feature sets, CBV and a diffusion- based parameter like D or MD were present, 

signifying the importance of perfusion and diffusion parameters in subregion 

characterization. Incorporation of T2_ISO and FLAIR to perfusion and diffusion parameters 

in the form of the “CBV, MD, T2_ISO, and FLAIR” combination resulted in high 

classification performance for characterization of the three tissue subregions from each 

other, using the classifiers (AUC ~90%). This feature set revealed high classification 

performance in pairwise subregion classification as well. T2_ISO and FLAIR are important 

factors for illustrating the pathogenic changes within glioma borders. Similar integration of 

parameters has been intuitively employed in brain tumor segmentation elsewhere.40–42

A combination of fewer parameters including “CBV, D, T2_ISO” based on the QDA 

classifier generated a relatively high classification performance for pairwise differentiation 

of tissue subregions. For occasions with high risk of patient discomfort and motion, IVIM 

acquisition combined with DSC-MRI perfusion and anatomical high-resolution T2w, 

required for image-guided neurosurgery, could be performed without addition of DTI 

acquisition, which is highly susceptible to motion.

Nonetheless, our study and the results achieved are limited by the included patient 

population and small sample size. Furthermore, even though in this work we used 

crossvalidation for reducing bias in classification, an independent validation dataset is 

required for generalizing the findings. Finally, in this work our research imaging protocol 

had to be adapted to the clinical setup constraints of our academic educational institution 

and, therefore, some of the imaging parameters may not be optimal; for example, in 
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quantitative imaging sequences, the voxel sizes are nonisotropic. Future works may benefit 

from optimization of parameter specifications for quantitative imaging sequences.

In conclusion, through investigation of a variety of conventional and quantitative MRI 

techniques applied on histopathologically proven tissue specimens, we demonstrated that 

incorporation of a few imaging techniques (comprising conventional MRI [T2w and FLAIR] 

and DSC-MRI with DTI or IVIM) can form a multiparametric surrogate marker, predictive 

of tissue subregions prior to image-guided biopsy procedures.
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FIGURE 1. 
MR images and quantitative maps of a 20-year-old female with histopathologically 

confirmed grade II oligodendroglioma (images are coregistered with CE-T1w image).
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FIGURE 2. 
Automated segmentation of cells in microscopic images (×40 magnification): (A) sample 

image from tumor core of the same patient indicated in Fig. 1; (B) automated cell 

segmentation result.
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TABLE 4

Evaluating Accuracy and Diagnostic Performances (AUC) of LDA, QDA, and SVM Classifiers on the 

Selected Featuresa

Feature selection method Selected features Accuracy (%) AUC (95% CI) (%)

Cross-Validated LDA

Backward AIC CBV, FLAIR, MD, T2_ISO 82.8 89.3 (75.9-100)

Backward BIC CBV, MD 75.4 74.7 (55.0-94.4)

Forward/Stepwise AIC CBV, D, T2_ISO 82.1 91.9 (83.1-100)

Backward BIC CBV, D 74.8 73.2 (54.4-91.6)

Cross-Validated QDA

Backward AIC CBV, FLAIR, MD, T2_ISO 85.1 92.4 (84.1-100)

Backward BIC CBV, MD 79.9 80.0 (61.8-98.0)

Forward/Stepwise AIC CBV, D, T2_ISO 83.4 85.3 (71.2-99.1)

Backward BIC CBV, D 81.2 84.8 (69.1-99.4)

Cross-Validated SVM

Backward AIC CBV, FLAIR, MD, T2_ISO 91.3 91.9 (79.6-100)

Backward BIC CBV, MD 80.2 79.8 (61.4-98.1)

Forward/Stepwise AIC CBV, D, T2_ISO 79.3 83.0 (65.9-99.7)

Backward BIC CBV, D 79.3 81.4 (63.6-98.8)

a
The gray-shaded cells with bold-type face numbers or letters indicate highest diagnostic performances.
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