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Deep learning to predict the lab-of-origin
of engineered DNA
Alec A.K. Nielsen1 & Christopher A. Voigt 1

Genetic engineering projects are rapidly growing in scale and complexity, driven by new tools

to design and construct DNA. There is increasing concern that widened access to these

technologies could lead to attempts to construct cells for malicious intent, illegal drug pro-

duction, or to steal intellectual property. Determining the origin of a DNA sequence is difficult

and time-consuming. Here deep learning is applied to predict the lab-of-origin of a DNA

sequence. A convolutional neural network was trained on the Addgene plasmid dataset that

contained 42,364 engineered DNA sequences from 2230 labs as of February 2016. The

network correctly identifies the source lab 48% of the time and 70% it appears in the top 10

predicted labs. Often, there is not a single “smoking gun” that affiliates a DNA sequence with

a lab. Rather, it is a combination of design choices that are individually common but col-

lectively reveal the designer.

DOI: 10.1038/s41467-018-05378-z OPEN

1 Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Correspondence and
requests for materials should be addressed to C.A.V. (email: cavoigt@gmail.com)

NATURE COMMUNICATIONS |  (2018) 9:3135 | DOI: 10.1038/s41467-018-05378-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-0844-4776
http://orcid.org/0000-0003-0844-4776
http://orcid.org/0000-0003-0844-4776
http://orcid.org/0000-0003-0844-4776
http://orcid.org/0000-0003-0844-4776
mailto:cavoigt@gmail.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Ted Kaczynski—the “Unabomber”—was the target of one of
the longest and most expensive investigations by the FBI.
He was caught when he published his 35,000-word man-

ifesto because of similarities with earlier letters sent to his brother
and newspapers: odd capitalization, linguistic idiosyncrasies,
hyphen usage, and misspellings1. Individually, these features are
not unique, but collectively they linked the documents. Similarly,
his mail bombs shared design choices: 4 9 V batteries without
outer casing, screws embedded in a wooden box, et cetera2.
Again, alone these are common and widely available components,
but together they pointed to a common designer.

There have been two confirmed attacks with biological weap-
ons within the United States: the poisoning of salad bars with
Salmonella in 1984 and the Anthrax letters sent in 2001. Neither
involved deliberate engineering of the strain. After an insider
informant pointed to the Rajneeshee cult, the subsequent attri-
bution of the Salmonella strain relied on classical epidemiology
(antibiotic susceptibility, plasmid profile, and metabolic char-
acteristics) and a match was made to a culture tube in a clan-
destine lab3,4. Strains isolated from the Anthrax letters showed
morphological features that were traced to genome mutations5

that aided the confirmation that the Bacillus anthracis Ames
mutant was from a flask at the United States Army Medical
Research Institute of Infectious Diseases at Fort Detrick6–8. Both
cases involved extensive screening of large collections of natural
isolates to search for strains with similar markers.

The synthetic biology era has seen rapid advances in the tools
to engineer cells, leading to the forward design of large genetic
systems9–11. Building a cell to make a product, such as a material
or pharmaceutical, requires the introduction of dozens of genes
and genetic parts and massive changes to the genome12. There are
many design choices that leave signatures in the DNA. For
example, a genetic part (e.g., a promoter) might be selected from a
favorite library or because of previous positive experience.

Computational design tools are increasingly prevalent13–23 and
multiple options lead to subtle differences, for example, particular
codon pairs that result from different gene optimization algo-
rithms24–26. Further, DNA construction methods leave identifi-
able “scar” sequences27–30. Design choices can also lead to
unintended markers, such as lab-specific mutants of plasmids or
strains. Similarly, many commonly used genes, such as lacI or gfp,
are reported identically in the literature but actually contain silent
mutations that propagate across projects. Collectively, these
design choices lead to a “signature” affiliated with an individual,
lab, or institute. Even an expert eye using existing bioinformatics
tools31,32 would find it difficult or impossible to identify sig-
natures within a long string of nucleotides (nts), such that it could
be compared against large sequence databases looking for mat-
ches for attribution.

Deep convolutional neural networks (CNNs) have revolutio-
nized image classification problems33. Layers of neurons are
trained to identify signatures that parse images into categories, for
example, to determine the identity of a face in a photograph from
a set of possibilities34. CNNs can be trained to play checkers,
Go35, and Atari games36 by processing the image of the board
and selecting the next move from a set. CNNs have also been
applied to categorize text based on characters, without requiring
any pre-coded knowledge of words or semantic structure (e.g.,
news articles into “sports” and “finance”)37. DNA sequences have
been similarly analyzed by CNNs to identify promoters38, reg-
ulator binding sites37, and other features40–45 by training on
functional and non-functional sequences. Here we apply a similar
approach to train a CNN to categorize DNA sequences to
predict the lab-of-origin (“Church,” “Keasling,” “Silver”, et cetera)
(Fig. 1a). This approach does not require any hand-selection of
features or sequence-function information, such as part bound-
aries, operators, or gene annotation, which is often missing or
inaccurate in public DNA sequence datasets.
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Fig. 1 Plasmid dataset and machine learning approach. a Machine learning plasmid attribution strategy. b Plasmid publication dates across the dataset. c
Depositing labs ranked by how many plasmids they have submitted in the dataset. A minimum cutoff of nine plasmids was enforced for training (dashed
line). d Plasmids ranked by how much associated DNA sequence (in bp) has been submitted. DNA sequence information is categorized as Partial
Depositor (purple), Full Depositor (green), Partial Repository (red), and Full Repository (blue). The summed DNA sequence length across all four
categories is also shown (black). Plasmid order not maintained between the five curves
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Results
Addgene dataset. The sequences of engineered DNA are main-
tained in a number of large public and private repositories46–48,
internal databases (labs, institutes, companies, consortia), appear
in published patents and papers, and in the records of DNA
synthesis companies. The DNA sequences are linked with other
metadata, including the submitting lab. We obtained a plasmid
dataset from Addgene, a nonprofit repository that archives,
maintains, and distributes plasmids to the academic commu-
nity49. Globally, labs submit their plasmids for storage and
redistribution (Fig. 1b–d). It contained 42,364 plasmids (197
million nts of associated DNA sequence) deposited by 2,230 labs
(Methods).

Prior to analysis, we pre-processed the DNA sequence data
and removed labs with fewer than nine deposited plasmids
(Methods). This resulted in a set of 36,764 plasmid sequences
from 827 labs. These were then divided into three groups. To
ensure representation from all labs, three plasmids from each
lab were selected randomly for validation and an additional three
for cross-validation. The training set comprises the remaining
31,802 sequences.

Neural network architecture and performance. There are many
ways to design a neural network. Initially, we tried different
approaches including alternative architectures for a CNN (Sup-
plementary Figure 1 and Supplementary Note 1A) as well as a
recurrent neural network including long short-term memory
units between the convolutional and fully connected layers
(Supplementary Figure 2 and Supplementary Note 1B)43. A
description and comparison of these methods is provided in
Supplementary Information. After evaluating these approaches,
we selected a CNN architecture (described below) that provided
the best performance, is straightforward to implement, and
relatively simple to interpret.

The input to the CNN is the DNA sequence encoded as a
16,048 × 4 matrix, where the identity of each nt is represented by
a one-hot vector (Fig. 2a). All sequences are 8000 nts (shorter
sequences are extended with Ns and longer sequences are
truncated) and the reverse complement is also included,
separated by 48 Ns to avoid positional effects between the two.
This feeds into a single convolutional layer of 128 filters, each
effectively a sliding window of 12 nts. The number of
convolutional layers, number of filters, and window size were
determined via Bayesian optimization (Methods, Supplementary
Figure 3, and Supplementary Note 1C). A max-pooling layer is
applied to each filter, which reduces the size of the representa-
tion. It also eliminates the position dependence of features along
the DNA sequence. The max-pooled signals from the 128 filters
then feed into two fully connected layers of 64 and 827 nodes, the
latter of which corresponds to the number of labs. The second
fully connected layer generates outputs for each lab, which are
converted to probabilities using the softmax function (Methods).
These probabilities represent the relative strength of the
prediction that a query DNA sequence is associated with each
category (lab) and are normalized to sum to unity across
categories.

This architecture consists of 1019 neurons and 69,051
parameters, which is relatively small compared to image-
processing CNNs33,50,51. Parameterization was implemented over
100 epochs, after which a training accuracy of 77% was achieved
(with a 48% validation accuracy and 48% cross-validation
accuracy) (Fig. 2b). Training required 21 h using a single
NVIDIA GRID K520 GPU. After training, the filters are
conceptually similar to 12 nt position weight matrices, a form
often used in genetics for motif detection and reporting. The 128

filters are weighted differently across labs. Once trained, the CNN
is able to rapidly analyze a sequence data stream at 980,000 bp s−1

on the same GPU (Methods). This is sufficiently fast for a single
processor to continuously scan global DNA synthesis orders
(32 bp s−1, 201552) and sequence deposits to the largest genomics
database (667 bp s−1, Genbank 201646).

On cross-validation sequences not used for training or
validation, the CNN is able to predict the correct lab-of-origin
48% of the time, as ranked by activity (Fig. 2b). Random selection
of a depositing lab out of the 827 would correspond to an accuracy
of 0.12%. Further, 70% of the time, the correct lab is ranked
within the top 10 predicted labs (Fig. 2c). For a new query
sequence, an activity is calculated for each lab in the set. Two
examples are shown in Fig. 2d: one has a strong prediction where
the activity of the correct lab is far from the distribution and
the other where the correct lab is identified, but it is much closer
to the distribution. This is captured by the softmax probability,
where a higher probability corresponds to a prediction that is
further from the activities of other labs. Simulations are used as
a means of determining the statistical significance of sequence
comparisons53,54. This allows for the calculation of the likelihood
that a match is random given the sequence length and size of
the database. We applied this approach to calculate P values
associated with activities (Methods and Fig. 2e–h). The P values
for the two examples in Fig. 2d are 0.0011 and 0.65, respectively.
This quantifies the significance of the first prediction, despite both
having approximately the same activities.

Comparison with BLAST. The most common tool for compar-
ing DNA sequences is BLAST (Basic Local Alignment Search
Tool), designed to determine whether sequences are evolutiona-
rily related31. BLAST seeks to identify target sequences in a
database that share long stretches of identical nts with the query
sequence. For our purposes, this is not ideal because many
plasmids across labs share long stretches of sequences due to
similar backbones, antibiotic resistances, fluorescent reporters,
and so on. Searches against large databases are swamped by hits
that share the long features. In contrast, the CNN focuses on
short unique regions that maximally aid classification.

When BLAST is used to compare sequences with the Addgene
dataset, it identifies the correct lab with 70% accuracy, slightly
lower than the CNN training accuracy. The overfitting is
apparent when it is used to evaluate sequences outside of training
or validation, for example, from Genbank. This effect is illustrated
by an example in Fig. 3 using a plasmid from the Voigt lab
(pCI-YFP, JQ394803.1) that is present in Genbank but not in the
Addgene dataset. This represents a hard plasmid for attribution
using database information because 64% of its 3685 bp are made
up of extremely common sequences (a p15A origin of replication,
kanR, and yfp). There are many matches for these sequences
(E-value < 10) in both the Addgene dataset/Genbank databases:
562/13904, 502/3620, and 692/1668, respectively. As such, BLAST
is unable to identify the correct lab from the plasmid training
dataset, from which 11,369 plasmids have an E-value < 10−180

and the closest Voigt lab plasmid ranking 5th (Fig. 3b). In
contrast, the CNN correctly predicts pCI-YFP as being from the
Voigt lab by a large difference (Fig. 3c). Further, using BLAST, we
identified the next 16,000 matches from Genbank that align to
pCI-YFP, all of which have very low E-values. When these are
analyzed using the CNN, only 3% are assigned to the Voigt lab
out of the 827 options (a random assignment corresponds
to 0.1%).

Sensitivity to mutations. The impact of DNA sequence point
mutations on the predictions was then assessed. Computationally,
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random mutations were made to the pCI-YFP plasmid and
the CNN prediction re-evaluated. These mutations could
represent sequencing errors, genetic drift, or deliberate directed
evolution. On average, 316 mutations could be made to the
sequence (changing ~9% of the plasmid) before the correct
prediction was lost (Fig. 3d). This demonstrates that the lab-
specific signature is robust and would be difficult to erase
via a scheme of laboratory-driven neutral evolution55–57.

Interpretation of predictions. It is useful to identify the regions
of a DNA sequence that correspond to its assignment to a par-
ticular lab. Note that this is not always possible, as it is notor-
iously difficult to interpret how neural networks make
predictions58. To this end, we developed a method to visualize
regions that contribute strongly to the CNN prediction. Following
an approach described by Solovyev and Umarov39, a window of
50 Ns is scanned across the plasmid to obscure the underlying
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DNA sequence (Methods). The activities for the labs are calcu-
lated for each window position. A drop in the activity for a lab
indicates that that sequence contributes to the prediction and if
the activity goes up, it can be interpreted that this region makes it
look less like it came from the lab. Note that this analysis only
shows the first-order connections between sequence and the
prediction and will not reveal higher-order effects requiring
multiple regions (see below).

Profiles were generated for all of the plasmids tested during
cross-validation. Several classes of effects were observed and
representative examples are shown in Fig. 4. For most plasmids,
there is no simple combination of genetic signals to guide
classification, and deep learning is needed to learn complex
mappings from DNA sequence. One example is the pCI-YFP
plasmid, whose profile is relatively flat for the entirety of the
sequence and obscuring no 50 nt region causes it to be
improperly classified (Fig. 4a).

In some cases, a “smoking gun” sequence could be identified
that was strongly associated with a lab and the prediction changes
drastically when this sequence is obscured. This can be from a
deliberate design objective, a secondary consequence (e.g., DNA
construction methodology or at part junctions), or accidentally
due to a known or unknown silent mutation associated with a
part (e.g., a synonymous mutation in a fluorescent reporter). An
example of a deliberate design objective is the FLAG-HA-BRCC3
plasmid submitted by Wade Harper’s lab (Fig. 4b). This plasmid
contains a FLAG-HA affinity tag, whose presence is central to the
design of the plasmid (and the “FLAG-HA” in the plasmid name).
When this region of the plasmid is obscured, the plasmid can be
made to look like two other labs (David Sabatini’s and David
Baltimore’s), depending on the position of the masking window.
This is due to the prevalence of other plasmid features (pBR322
origin of replication, AmpR, lac promoter, IRES, et cetera) across
other labs.

An example of a consequential “smoking gun” is the pAAV-
CAG-tdTomato (codon diversified) plasmid from Edward Boy-
den’s lab (Fig. 4c). A region of this plasmid corresponds to a pair
of restriction sites, KpnI/BamHI (3588–3599), adjacent to one of
the plasmid inserts. Disrupting only 12 bp of this sequence makes
the plasmid appear as though it is from Roger Tsien’s lab. Note
that the origin is also associated with the Boyden lab and
changing it causes the plasmid to look as though it came from the
Liquin Luo lab.

Most plasmids do not have a single “smoking gun” but rather
have a combination of signals that collectively contribute to the
prediction. The pT7CFE1-TelR15-YPet plasmid from Thoru
Pederson’s lab is a good example (Fig. 4d). The lab-of-origin is
correctly predicted by the particular combination of features that
individually are prevalent across the Addgene dataset. If regions

of the T7 promoter, yellow fluorescent protein (YPet), ampicillin
resistance gene (AmpR), or the f1 origin of replication (f1 ori) are
obscured, then the plasmid looks like it is from Christopher
Voigt’s lab. Obscuring regions of the IRES, YPet, AmpR, or f1 ori
makes it look like it is from Susan Lindquist’s lab. Other
intergenic regions, when obscured, can make the plasmid appear
to come from six different labs. Thus it is the collective impact of
all these design choices that lead to a prediction, analogous to
correctly identifying a noun by playing “20 questions.”

Discussion
This work demonstrates that engineering DNA leaves design
signatures that can be extracted from public repositories and used
to guide an investigation into attribution. Over time, this will
become more powerful for two reasons. First, designs in synthetic
biology are growing in complexity and require more parts, genes,
and genome modifications, thus leading to more “hooks” to
create a unique signature59–61. Design tools are causing engi-
neered and natural sequences to further diverge and thus easier to
distinguish. Second, DNA datasets for training are growing and
becoming more comprehensive, for example, Genbank doubles
every 18 months and other databases are growing rapidly62,63.
DNA synthesis companies, academic and industrial Bio-Foun-
dries, and experimental cloud labs also act as centralized nodes of
sequence information64–69,76.

Tracing a DNA sequence to a perpetrator requires a combi-
nation of investigative tools, some traditional and some high-
tech4. To this end, artificial intelligence will be a powerful tool for
microbial forensics, which is currently poorly equipped to assess
engineered biology. It is important to note that detecting lab-
specific signatures within a DNA sequence does not, in itself,
indicate that that it is from that lab. Making an analogy with the
Unabomber, determining a battery is from Duracell obviously
does not mean that a Duracell employee is the perpetrator.
Similarly, the tracing of the Samonella strain used by Rajneeshee
to the commercial supplier ATCC (Rockville, MD) does not
implicate ATCC but rather provides investigable clues around
those that accessed or ordered it (an invoice was found at the cult
compound) and points to where they may have been trained. The
ability to scan engineered DNA sequences for signatures asso-
ciated with individuals, labs, centers, and even countries provides
actionable information to guide an investigation. Different
regions of the DNA may be associated with different origins and
this tool helps parse these hierarchal structures, similar to looking
for shared code across computer viruses. Looking into the future,
counters to this technology could also be developed, including
sophisticated machine learning approaches, such as variational
autoencoders70 and generative adversarial networks71, that can

Fig. 2 Convolutional neural network accuracy. a Convolutional neural network (CNN) architecture. DNA sequences are converted to 16,048 × 4 matrices,
where the identity of each nucleotide is converted to a one-hot vector. This input is scanned by 128 convolutional filters (f1–f128) each with a width, w, of 12
nucleotide positions. Per-position nucleotide filter weights are converted to Boltzmann factors and visualized using a heatmap (Methods). The maximum
activation for each filter, max(fk), across the entire input sequence is taken. Activations are fed through two fully connected layers, which generates neural
activity predictions for each lab, A(Name), before behind converted to probabilities using the softmax function, P(Name). The lab prediction is taken as the
highest softmax probability. Batch normalization layers are not shown. b Training accuracy (gray) and validation accuracy (black) per epoch for the chosen
architecture. Cross-validation accuracy was computed after training (dashed line). c Output prediction rank of the actual lab-of-origin for plasmids in the
cross-validation set. d Neural network softmax probabilities (left panel) for a Christopher Voigt lab plasmid (pVRa38_1322) and a Pamela Silver lab plasmid
(pPS1622). Labs with the highest probabilities are labeled. Normalized distribution of pre-softmax neuron activity (“Activity”, right panel) for the plasmids
of interest. Arrows highlight the activity for labeled labs at left. The vertical dashed lines mark the origin. e Normalized distribution of activity for 104

random DNA sequences with length 3685 nt. f P value distributions for random DNA sequences for lengths 8000, 3685, and 1000 nt (from left to right).
Empirical data (solid lines) and fits to P(A > x)= 1−exp(−exp(−λ(x−μ))) (dashed lines) are shown. g Distribution fit steepness parameter (λ) versus
plasmid length with a trend of λ= 0.59–6.2 × 10−6x (dashed line). h Distribution fit offset parameter (μ) versus plasmid length with a trend of μ
= 7.5–3.4 × 10−4x (dashed line)
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learn how to “fool” a classifier algorithm. These approaches
represent a more sophisticated version of classical approaches to
avoid detection, for example, altering sequence to subvert a PCR
diagnostic72. Our approach could extent to applications beyond
investigating sequences of malicious intent, for example, deter-
mining that a sequence from the environment is engineered and
tracing its origins. The ability to rapidly parse DNA sequence
information to guide the process of attribution and the under-
standing of potential countermeasures are capabilities critical to a
national biodefense strategy. This work is an early step in
achieving this, which will ultimately require more powerful
algorithms, large sequence databases, and a concerted effort to
address needs for forensics and attribution73.

Methods
Plasmid dataset. Plasmid DNA sequences and metadata were obtained in the
form of a JavaScript Object Notation (JSON) file obtained upon request from
Addgene, dated February 2016. We parsed this file to record each plasmid’s
associated PubMed ID (PMID) and Digital Object Identifier (DOI). To determine a
plasmid’s publication year, we first attempted to locate the PMID within a locally
stored manuscript ID conversion file (ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/PMC-
ids.csv.gz). If the PMID was not found, we then attempted to locate the corre-
sponding DOI. If either the PMID or DOI was found, then the publication year was
stored. If neither could be found within the locally stored file, then a PubMed
lookup tool (https://pypi.python.org/pypi/pubmed-lookup) was used to request the
information from the NCBI server. While slower than the local approach, we were
able to locate all remaining publication dates with the exception of 15 plasmids,
which had no date information provided and were excluded from Fig. 1b. We also
parsed the JSON file to store each plasmid’s depositing lab and associated DNA
sequences. For plasmids with multiple depositing labs listed, the lab combination
was treated as its own unique depositor. All unique depositors were then ranked
based on their number of deposited plasmids (Fig. 1c). Plasmid DNA sequences in
the JSON file came labeled as either: (1) “Full Repository”, where the entire DNA
sequence was submitted by Addgene, (2) “Full Depositor”, where the depositing lab
submitted the entire DNA sequence, (3) “Partial Repository”, where one or more
sections of the plasmid were submitted by Addgene, or (4) “Partial Depositor”,
where one or more sections of the plasmid were submitted by the depositing lab.

We summed the total number of nts associated with a plasmid in each category
(and also the sum of all four categories) and then ranked the plasmids accordingly
(Fig. 1d).

Input pre-processing and encoding. In order to have sufficient plasmid sequences
to learn lab-of-origin from, we first eliminated any labs and their associated
plasmids if the lab had deposited fewer than nine plasmids. If a plasmid had
associated DNA sequence that came categorized as Full Repository, we used only
that DNA sequence for training and ignored all other associated sequence infor-
mation. If there was no Full Repository DNA sequence, but instead there was Full
Depositor sequence, we used only that DNA sequence for training and ignored
other sequences. If instead there was only Partial Repository and/or Partial
Depositor DNA sequence for a plasmid (often resulting from Sanger sequencing
reads), we concatenated all such partial sequences separated by spacer sequences
of 48 Ns to create the training sequence.

Subsequently, to reduce training time we truncated long DNA sequences to
8000 nts. In the rare case that any DNA sequence characters were not A, T, G, C, or
N, the character was converted to N. We padded the resulting sequences with Ns to
a total length of 8000 bp, and then concatenated the sequence’s reverse
complement to itself separated by a spacer sequence of 48 Ns. Lastly, we encoded
each nt in the final sequence as a one-hot vector where A= [1 0 0 0], T= [0 1 0 0],
G= [0 0 1 0], C= [0 0 0 1], and N= [0 0 0 0] (Fig. 2a). Similarly, the identity of
the depositing lab was also encoded as a one-hot vector with length 827. These one-
hot vector sequence inputs and depositor labels were used to train the neural
network.

Convolutional neural network. We implemented and trained neural network
architectures using Keras (version 2.0.4) using the Tensorflow backend (version
1.1.0) in Python (version 3.5.2) with NumPy (version 1.13.0) and SciPy (version
0.19.0). Other packages include Pickle for data serialization, json (version 2.0.9) to
parse the Addgene data file, and pubmed_lookup (version 0.2.1). Neural networks
were trained on an NVIDIA GRID K520 GPU using Amazon Web Services Elastic
Cloud Compute (EC2) running Ubuntu 16.04.1 LTS.

The CNN architecture comprises from input to output: the 16,048 × 4 one-hot
vector DNA sequence input layer, a single convolutional layer with multiple filters,
a max-pooling layer for each filter over the entire input length, a batch
normalization layer, a fully connected layer, a second batch normalization layer, a
second fully connected layer where each node corresponds to a depositing lab, and
a conversion to probability using the softmax function. Softmax is computed by
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taking the signal zj generated for each lab’s output node j and converting to

probability using the equation: σ zj
� �

¼ ezjP
k
ezk
.

For the convolutional layer, we used the Keras border mode same to
generate output vectors with the same size as the input. Batch normalization layers
(used after the max-pool layer and the first fully connected layer) have been shown

to accelerate deep network training by reducing covariate shift74. We used
the rectified linear unit (ReLU) activation function for the convolutional and
fully connected layers, the adam optimizer function for training, a categorical
cross-entropy loss function to back-propagate errors from the output, and a mini-
batch size of 8 inputs per update. To compensate for skewed plasmid deposit
numbers across labs, we used the Keras class_weight variable to weight
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the loss function during training by the reciprocal of training plasmid number for
that lab.

Training data was split into six subsets due to memory constraints, and subsets
were loaded and trained sequentially during each epoch. After training for 100
epochs, we stored the final neural network architecture and parameters for
downstream use. We visualized filter weights (Fig. 2a) by converting the per-
position nt filter weights (w) to Boltzmann factors using the following formula,
where the temperature parameter T was selected by eye to maximize contrast in a
heatmap: f wð Þ ¼ e�w=T

To calculate the number of DNA sequences that could be analyzed per second,
we used the validation and cross-validation sets each containing 2481 plasmid
sequences. Before timing, we pre-processed the input data, concatenated the
sequence with 48 Ns followed by the reverse complement sequence, and then
encoded them as one-hot vectors (previous section). Using the stored neural
network architecture from above, we predicted lab-of-origin for the entire encoded
validation and cross-validation sets while tracking the seconds elapsed. Evaluation
took 40.5 s to make predictions for both sets, which corresponds to 4962 sequences
of 8000 bp each, or a rate of 980,000 bp s−1.

Bayesian optimization of hyperparameters. To explore different hyperparameter
sets for filter length, number of filters, and number of fully connected nodes, we
used a Bayesian optimization technique that models the generalization perfor-
mance of the hyperparameter landscape as a Gaussian process75. We used a
Bayesian optimization Python package available on Github (https://github.com/
fmfn/BayesianOptimization).

We optimized for validation accuracy per wall-clock time at the end of 5 epochs
using the “upper confidence bound” exploration strategy with alpha equal to 10−5

and kappa equal to 5. We varied the number of convolutional filters between 1 and
512, the length of the convolution filters between 1 and 48 nts, and the number of
nodes in the fully connected layer between 1 and 256. Hyperparameter upper
bounds were chosen due to memory constraints. Training 23 different architectures
yielded a range of training accuracies, validation accuracies, and wall-clock times.
Many architectures failed to learn after five epochs, and these were characterized by
few filters, small filter length, or both. The hyperparameters resulting in the greatest
validation accuracy per training time (128 filters, a filter length of 12 nt, and 64
fully connected nodes) were selected for extended training.

Permutation of plasmid authorship. As an additional control to test for over-
fitting, we scrambled the depositing lab labels across all the plasmids and then split
them into training, validation, and cross-validation sets. Plasmid DNA sequences
were unmodified. The frequency of each lab from the non-scrambled dataset was
maintained in the scrambled dataset and we used the class_weight variable in the
same manner as above to compensate for differences in lab depositing frequency.
We trained the network for 100 epochs, after which the validation accuracy was
0.04%, comparable to what would be expected from randomly choosing a lab from
the list (0.12%).

Simulation and calculation of P values. To determine the statistical
significance of pre-softmax neuron activities generated by the CNN, we calculated
P values from an activity distribution for random DNA sequences51,52. We
first generated 104 random DNA sequences of length nt with the same
frequencies of A, T, G, and C as the Addgene training set. We repeated this
for DNA sequence lengths 1000 nt, 3685 nt (the length of pCI-YFP), and 8000 nt
(the maximum allowable length in our architecture). For each random DNA
sequence, we padded and concatenated the sequence reverse complement in
the same manner as the Addgene set (see above), before converting the sequence
to a one-hot encoding. We then used the trained CNN to compute the maximum
pre-softmax neural activity across all labs for each sequence. A normalized histo-
gram of the max activities can be approximated by an extreme value distribution,
which has a cumulative distribution function of y= exp(−exp(−λ(x−μ))). The
probability of observing an activity, A, greater than x is therefore P(A > x)= 1−exp
(−exp(−λ(x−μ))), where λ is the steepness parameter and μ is the distribution’s
offset from 0. We fit the empirical distributions to this equation, which was then
used to calculate the P value of the pre-softmax neural activity for a DNA sequence
of length N.

BLAST analysis. For the alignment of the pCI-YFP sequence to sequences in
Genbank, BLAST was performed against the nr/nt nt collection using the web
interface (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Default parameters were used
except the Entrez Query is “NOT genome,” Max target sequences was 20,000,
Expect threshold was 0.1, and the Max matches in a query range was 5000. The
match/mismatch scores are 1,−2, and the gap cost was linear. For plasmid features
KanR, p15A, and YFP, web BLAST was performed against the nr/nt collection
using the megablast default parameters and the number of alignments reported.
Additionally, for each feature BLAST was performed locally against the training set
and the number of alignments in the output file recorded. To do so, FASTA files
were created for each feature, and a BLAST database was created from a FASTA file
with all Addgene training DNA sequences. For a FASTA file containing the entire
pCI-YFP sequence, BLAST was performed against the Addgene training set and

the scores for the top 10 labs were recorded (Fig. 3b). The alignment of the
entire pCI-YFP plasmid to the Addgene training set returned >104 matches. We
found the smallest non-zero E-value (4 × 10−180) and then counted the number of
alignments with an E-value of zero to conclude that 11,369 plasmid alignments
have an E-value < 10−180.

Mutational trajectories. Point mutations were introduced to the pCI-YFP DNA
sequence iteratively over 1000 generations for a single trajectory. Each point
mutation in a trajectory was made at a unique position compared to all previous
mutations (i.e., mutation positions were selected without replacement). The
identity of the nt post-mutation was one of the three nts not present at that
position pre-mutation. After each mutation, the new DNA sequence was evaluated
by the fully trained neural network and the probability prediction for Christopher
Voigt’s lab was recorded. Thirty such mutational trajectories were performed,
each starting from the original pCI-YFP sequence. The geometric mean of the
probabilities at each mutation step was calculated.

Sequence scanning to determine signature. In order to determine the impor-
tance of different regions within a plasmid toward the predictions, a window of 50
Ns was scanned across the plasmid to mask the underlying sequence at each
position. For each plasmid, the starting DNA sequence was the training DNA
sequence before it was padded to a length of 8000 bp and concatenated with its
reverse complement. Using this sequence, a periodic boundary condition was
applied so that, when any of the Ns in the 50 N scanning window extended past the
end boundary of the DNA sequence, those Ns were placed back at the beginning of
the DNA sequence. For each position of the window scan, the resulting masked
DNA sequence was padded to 8000 bp, concatenated with a spacer of 48 Ns fol-
lowed by the reverse complement, converted to a one-hot vector, and input into the
fully trained neural network. The pre-softmax neural activities and softmax
probabilities for the top predicted labs were evaluated. For each nt in a plasmid, the
CNN predictions from all 50 frames where the sliding window masked that nt
were averaged and visualized (Fig. 4, line traces). The top lab prediction for each
position of the masking window was also visualized (Fig. 4, colored bars, widths
not to scale).

Code availability. Source code is available from Github at https://github.com/
VoigtLab/predict-lab-origin.

Data availability. The authors declare that all data supporting this study are
available within the article and its Supplementary Information file or are available
from the corresponding author upon request.
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