Table 3.
Comparison of nuclear segmentation between the fused ENet with UNet, fused UNet, and multitask learning
| Input size | Recall | Precision | F1-Score | Standard Error |
|---|---|---|---|---|
| UNet | 0.86 | 0.81 | 0.83 | 1.2786e-06 |
| Fused-UNet | 0.89 | 0.86 | 0.87 | 1.1921e-06 |
| Multi-task UNet | 0.87 | 0.77 | 0.81 | 1.3117e-06 |
| ENet | 0.83 | 0.88 | 0.84 | 1.1412e-06 |
| Fused-ENet | 0.94 | 0.88 | 0.91 | 1.1124e-06 |
| Multi-task ENet | 0.89 | 0.83 | 0.86 | 1.2690e-06 |
The italic items illustrate the best results