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Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) have a variety of potential indications that
include management of pain and inflammation as well as chemoprevention and/or treatment of
cancer. Furthermore, a specific form of ibuprofen, dexibuprofen or the S-(+) form, shows
interesting neurological activities and has been proposed for the treatment of Alzheimer’s disease.
In a continuation of our work probing the anticancer activity of small sulindac libraries, we have
prepared and screened a small diversity library of a-methyl substituted sulindac amides in the
profen class. Several compounds of this series displayed promising activity compared with a lead
sulindac analog.
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The non-steroidal anti-inflammatory drugs (NSAIDs) are widely used for the treatment of
minor pain and chronic inflammatory diseases such as rheumatoid arthritis. A number of
these drugs possess antipyretic activity in addition to having analgesic and anti-
inflammatory effects, and thus have use in the treatment of fever. These effects are attributed
to the ability of the NSAIDs to inhibit the cyclooxygenases (COX), which convert
arachidonic acid to prostaglandins (PGs) [1]. Three distinct COX isozymes have been
characterized; COX-1 is responsible for the regulation of prostaglandin biosynthesis in
normal tissues and serves an important role in gastric cytoprotection and renal homeostasis,
COX-2 is an inducible enzyme important for acute inflammatory responses and pyrexia in
the body, while COX-3 currently has no established role in humans. Evidence is mounting
that the NSAIDs may play a role in the treatment of patients with familial adenomatous
polyposis and for the chemoprevention of colorectal cancer [2,3]. Experimental data as well
as epidemiological and clinical studies suggest that the regular use of NSAIDs in a
chemoprevention regimen can reduce the incidence of colorectal cancer by approximately
30-50% [4,5]. However, upper gastrointestinal, renal, or cardiovascular side effects resulting
from COX inhibition limit the utility of NSAIDs for prevention regimens as they typically
require high dosages and chronic administration [6-10]. It is now clear that NSAIDs
demonstrate a variety of activities beyond COX inhibition and their effects on tumor cells
may be a result of multifarious activities [11]. While NSAIDs are believed to exhibit their
anticancer properties through inhibition of COX-2 that is overexpressed in various tumor
cells, several COX-2 independent mechanisms have also been suggested for the
chemopreventive and antineoplastic properties of NSAIDs. Other activities include
activation of apoptosis, inhibition of angiogenesis, modulation of the adaptive immune
system or direct inhibition of cancer cell growth by blocking signal transduction pathways
responsible for cell proliferation [12-17].

As a member of the NSAIDs, sulindac has been shown to dramatically induce regression of
adenomas in familial adenomatous polyposis (FAP) patients, prevent recurrence of
adenomas [18,19] and reduce the risk of colon cancer and prostate cancer [20-22]. As such,
it has been studied extensively and is clinically used as a chemopreventive agent [13].
Sulindac is considered a prodrug that is reductively metabolized /n vivoto the more active
sulfide as well as oxidized to the more hydrophilic and less active sulfone (see Figure 1).
While sulindac contains a chiral sulfoxide group that reduces lipophilicity of the scaffold
and improves solubility of the drug, the commercial compound is racemic, and the reversible
cycling between the methyl sulfide and the methyl sulfoxide would scramble any chirality
making the study of the effects of chirality at this center difficult in an /n vivo setting.
Oxidation to the sulfone is irreversible and the more hydrophilic product is considerably less
active as a COX inhibitor.
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The biological mechanism of the antineoplastic effect of the sulindac metabolites appears to
involve the selective induction of apoptosis as demonstrated in human breast, lung, prostate
and colon cancer cell lines [23-26]. Our earlier studies suggested that a relatively simple
alteration to sulindac in the form of sulindac sulfide amide (SSA) (Figure 2) can virtually
abolish COX-related activity and toxicity while enhancing anticancer activity /n vitroand
maintaining similar /77 vivo xenograft activity [27] in a chemoprevention protocol. It is
notable that the metabolic oxidation-reduction cycling demonstrated for sulindac (Figure 1)
has also been shown to happen for the sulindac analog SSA yielding both the sulfoxide and
sulfone metabolites /n vivo [27].

Figure 2 shows our lead agent SSA and modifications reported herein to develop a broader
SAR for the sulindac amides exemplified by SSA.

There are several broad classes of NSAIDs including the salicylates (e.g., aspirin) and the
acetates or 2-aryl acetic acids (e.g., indomethacin). Sulindac belongs to the NSAID acetic
acid class and is considered an indene-3-acetic acid. Addition of an a.-Me group as indicated
in Figure 2 would introduce a chiral center transforming the scaffold into the NSAID profen
class or a 2-aryl propionic acid (e.g., ibuprofen — Advil® and naproxen — Aleve®). Most
NSAID propionic acids, including ibuprofen, are sold as racemic mixtures. However,
naproxen is available commercially as the S-isomer prepared by precipitation of an insoluble
salt via the Pope-Peach method of chiral resolution. The impact of chirality at the a-Me
position has been extensively studied for ibuprofen. Dexibuprofen, or (S)-(+)-ibuprofen, has
been analyzed for toxicity and side effects, uptake, and neurological activity versus racemic
ibuprofen. In fact, dexibuprofen has demonstrated varied and improved effects for
Alzheimer’s disease [28]. Hence, we were interested in how introduction of an a.-Me group
would impact activity of SSA analogs against three common cancer cell lines from colon,
breast, and prostate cancers that are standard cell lines used for preliminary
chemoprevention and anticancer screening. We initiated a diversity program involving
preparation of a sulindac profen core (a-Me sulindac) as shown in Figure 2 followed by
diversification at both the amide position and the indene aryl group in order to study the
structure-activity relationships in the profen amide series of sulindac. Herein, we present the
preparation and preliminary screening of a series of novel sulindac amide derivatives
containing a methyl group at the a-position with various alterations in the amide and aryl
linkers. Our lead agent, SSA (Figure 2) was used as a standard control compound for
comparison, as it shows improved activity relative to the clinical NSAID sulindac against
colon cancer cells /n vitro as well as good activity /7 vivo in a murine chemoprevention
model of colon cancer [27].

Preparation of a-methyl sulindac amides 3-59 started with esterification of commercially
available sulindac sulfide (to form 3-29), (+/-)-sulindac (to prepare 30-56), or a sulindac
3,4,5-trimethoxyphenyl analog (to afford 57-59) in the presence of MeOH/thionyl chloride.
The corresponding methyl esters were formed in 90-96% yields. The introduction of the key
a-methyl group was carried out using LDA and CHsl at =78 °C to furnish racemic or
diastereomeric a-methyl sulindac ester derivatives in 73-93% yields [29]. The a-methyl
esters were subsequently hydrolyzed to give the corresponding acids 2 in quantitative yields
(Scheme 1). Finally, coupling of the a-methyl sulindac analogs 2 with various amines using
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HATU [30] as the coupling agent afforded compounds 3-59 in satisfactory yields as
diastereomeric or racemic mixtures. When acid stereoisomers 2 were treated with a chiral
amine, an inseparable mixture of diastereomeric amides was formed. However, separation of
diastereomers was achievable in one case for the sulindac sulfide amide of L-histidine
methylester (5 and epi-5 in Table 1), although relative and absolute configurations of those
epimers were not determined.

The N, N-dimethylaminoethyl amide derivatives 15 and 42 were treated with Boc-L-valine or
Boc-L-proline in the presence of HATU [30] to give the BOC-protected amides 60-63.
Removal of the BOC group with 1 N HCI yielded the target compounds in good yields
(Scheme 2). Sulindac analogs 3-63 were screened against three cancer cell lines—prostate,
colon, and breast—using a quantitative high-throughput screen (qHTS) format according to
the method of Mathew et a/[31].

Additional screening of selected compounds was performed at St. Jude Children’s Research
Hospital against a panel of cancer cell lines, which consisted of CPC300 cells derived from a
mouse model of choroid plexus carcinoma (CPC), where the mouse model has the genetic
background Trp53LoxP-RBLoxP-PtenLoxP. In addition, four acute lymphoblastic leukemia
(ALL) cell lines and one lymphoma line were included as follows: a. a cell line established
from the peripheral blood of a 12-year old girl with ALL at relapse in 1977 that carries a
near haploid karyotype (NALM16 cells); 6. RAJI: Burkitt’s lymphoma, with FAB L3 (RAJI
cells); ¢ acute T cell leukemia Jurkat e6-1 cells (JURKT cells); d. a precursor B-cell ALL
patient-derived cell line expressing only wild-type MLL and wild-type AF4 (REH cells); e. a
cell line (697) established from bone marrow cells obtained from children with ALL in
relapse.

Screening results for all reported compounds against prostate, colon and breast cancer cell
lines are summarized in Tables 1 and 2. The incorporation of a methyl group at the a-
position resulted in significant changes in the anticancer activity. To further explore SAR,
modifications were also made at the acetamide linker and benzylidene ring. Compounds 3-
29 have a 4-methylthiobenzylidene ring at the C-1 position and an a-methyl group at the
C-3 position while varying the amide. These compounds are racemic mixtures except in the
cases noted below where a chiral amine was used to form the terminal amide. All these
compounds showed significant activity against cancer but were less potent than the parent
SSA. Compounds 3 and 4, with a benzyl ring or furyl ring at the acetamide linker, did not
show significant activity against the three cancer cell lines. In the case of 5, both epimers
were separately screened against the cancer cells. Notably, stereoisomer 5 showed similar
activity to epi-5. The compounds with an ethylenediamino or a propylenediamino acetamide
linker at the C-3 position (6—20) displayed excellent activity against HT29, PC3 and MDA-
MB-231 cells with CCsq values ranging from 1.13-7.27 uM. The compounds (21-27)
having heterocyclic amides showed significant activity against all three cancer cell lines
similar to acyclic amide analogs 6-20. As mixtures of diastereomers, compounds 28 and 29
demonstrated excellent inhibitory activity against all three cancer cell lines, but separation
would be necessary to demonstrate differential isomer activity.
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We also explored the SAR of selected acetamide modifications in the 4-
methylsulfinylbenzylidene series (30-56). Due to the chirality of the sulfoxide and the newly
installed a-methyl groups, these compounds were produced as inseparable mixtures of
diastereomers. Several compounds in this group were found to inhibit the cancer cell lines,
but all were, in general, 10-15 fold less active than corresponding thiobenzylidene analogs,
suggesting that the 4-methylsulfinyl substitution is not favorable. For three selected
acetamides, we explored the 3,4,5-trimethoxy substituted benzylidene (57-59) as racemic
mixtures. Compounds 57 and 58 showed better activity than their corresponding 4-
methylthiobenzylidene (3, 4) or 4-methylsulfinylbenzylidene (28, 29) analogs. In contrast,
compound 59 was less active than its corresponding 4-methylthiobenzylidene analog 25, but
more active than its 4-methylsulfinylbenzylidene analog 52.

Intestinal cells, cancer cells, and other cell types are known to have specific amino acid
(AA) uptake mechanisms that have been utilized to increase drug uptake upon AA
conjugation. For example, conjugation of the active HSV agents acyclovir and penciclovir as
their valyl esters through the AA-CO,H group results in blood levels 3-5 times that of the
parent drug due to specific valine uptake mechanisms through the intestinal epithelium [32,
33]. Hence, a small diamide library was prepared by coupling L-valine and L-proline with
compounds 15 and 42 (Scheme 2) to create potential candidates for improved uptake /7 vivo.
Table 2 lists the anticancer activity of the inseparable diastereomeric diamides 60-63. The 4-
methylthiobenzylidene analogs 60 and 62 displayed comparable activity to the parent
comparison 15, and the methylsulfinyl analogs 61 and 63 showed a similar decrease in
activity relative to the parent 42. Since 15 has comparable activity to our lead control agent
SSA, both 60 and 62 may be candidates for assessment of the effects of AA (specifically
valyl or prolyl) conjugation on gastric uptake and bioavailability.

Anticancer activities of selected compounds have been evaluated against an additional panel
of cancer cell lines at St. Jude Children’s Research Hospital [four acute lymphoblastic
leukemia (ALL) cell lines, one lymphoma line, and a cell line derived from a mouse model
of choroid plexus carcinoma (CPC300)], namely, 6-29, 57, 59, 60 and 62 (see methods in
[34]). To address possible toxicity concerns associated with lipophilic basic amine scaffolds,
the series 6-29 and 59-62 were also evaluated in a BJ cytotoxicity assay (description
provided in Supplemental Materials). All screened compounds showed ECgq > 7.57 UM,
suggesting no overt cytotoxicity for any of these compounds. Compounds showing activity
against cell lines in the panel are listed in Table 3, including compound 14 with sub-
nanomolar and 20 and 24 with low micromolar inhibition against a leukemia cell line.
Racemic 57 is a promising lead for further development, since it shows good inhibitory
activity against five acute lymphoblastic leukemia cell lines used on this panel (Table 3),
while also potently inhibiting prostate, colon and breast cancer cell lines (Table 1). In
comparison, lead compound sulindac sulfide amide (SSA) showed no activity against any of
the cancer cell lines in this panel.

As a critical step in further selection of candidates for development, metabolic profiling is
crucial to determine likely /n vivo stability. Such information can be useful in moving
candidates into various anticancer animal models. As such, we assessed the effects of the
various acetamide linker modifications on metabolic vulnerability utilizing the robust
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CYP3A4 metabolism model implemented in StarDrop (from Optibrium Ltd.) to predict
metabolic sites that may contribute to the metabolism of various analogs. For these
computations, we selected compounds with low micromolar potencies against HT29, PC3
and MDA-MB-231 cancer cell lines comparable to SSA that also retained the 4-
methylthiobenzylidene group at the C-1 position of the indene moiety. This allowed for a
focused comparison of the metabolic stability of the altered linker region with respect to
SSA. Although the N, A-dimethylaminoethyl group in the acetamide linker of SSA contains
two labile sites (Figure S-1), we identified a number of analogs that contain linkers devoid of
predicted labile sites, namely, compounds 22, 23, 26, 27, 60 and 62 as shown in
Supplemental Figures S-2 through S-7, respectively. We also identified analogs 21, 24, 28
and 29 as compounds with reduced predicted metabolic lability in the linker region
compared to SSA. These results suggest that metabolically labile sites in the linker region of
SSA may be removed through cyclization or substitution of the basic amine moiety leading
to analogs with reduced vulnerability to metabolic transformation in this region. This
information may be useful in selecting particular compounds in this series for /n vivo
evaluation or in generation of additional synthetic analogs to reduce metabolic liabilities.

In conclusion, we identified a series of a-methyl sulindac amides with good anticancer
activity compared to the lead agent SSA. 4-Methylthiobenzylidene analogs (3-29) displayed
better activity relative to 4-methylsulfinylbenzylidene or 3,4,5-trimethoxybenzylidene
analogs (30-59). A number of new analogs with comparable activity to the lead SSA were
identified. In general, a-methylation of the sulindac amide scaffold results in only slightly
diminished activity relative to the parent unmethylated analogs suggesting that alterations at
this position have limited impact on overall potency, although potentially leading to distinct
chemotypes with interesting activity profiles. For example, racemic compound 57 is a
neutral analog at physiological pH and is a reasonably potent inhibitor in the three cancer
cell lines screened as well as being active against four acute lymphoblastic leukemia cell
lines and one lymphoma line (while showing no toxicity against a normal human foreskin
fibroblast BJ cell line). Future studies relating to the mechanism of action, cyclo-oxygenase
inhibition and selectivity of these derivatives may further elucidate the potential value of this
substitution relative to known drugs that contain an a-methyl function. For example, the
profen class of NSAIDs is generally a racemic mixture at the a-methyl position. When
enantiomers are separated (e.g., in flurbiprofen), the two analogs exhibit altered target
activities and differential toxicity profiles, once again demonstrating the variety of target
activities of the broad NSAID class [35]. In fact, the R-enantiomer of flurbiprofen, like
dexibuprofen, has been examined for the treatment of early stage Alzheimer’s disease [28,
35]. For the more promising analogs reported herein, future work will entail preparation and
analysis of individual stereoisomers and more detailed profiling of toxicity and mechanisms
of activity in an effort to better assess the potential role of a-methylation in NSAID SAR,
not only as it relates to cancer chemoprevention, but also other possible indications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

NSAID non-steroidal anti-inflammatory drug

COX cyclooxygenase

PG prostaglandin

FAP familial adenomatous polyposis

SSA sulindac sulfide amide
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CPC choroid plexus carcinoma

ALL acute lymphoblastic leukemia
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Page 10
. Anticancer activities of 60 new a-Me analogs of sulindac sulfide amide are
reported.
. Several compounds (6—29 and 60) show comparable inhibition of prostate,
colon, breast cancer.
. Addition of an a-methyl group to the lead scaffold does not dramatically alter

activity.

. Several analogs (6, 8, 11, 14, 20, 21, 24, 29, 57) show activity against several
other cell lines.

. Separated isomers, 5 and epi-5, show similar activities.
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Figure 1.
In vivo metabolic cycling (oxidation/reduction) of the sulindac sulfoxide moiety.
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Overview of our structural modifications relative to our lead agent SSA in order to study the
SAR of this class
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Scheme 1.
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Synthetic pathways to analogs 3-59. Reagents and conditions: (a) SOCl,, MeOH (b) LDA,
Mel, THF, =78 °C (c) KOH, EtOH/H,0 (d) HATU, DIEA, MeCN
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Synthetic pathways to analogs 60-63. Reagents and conditions: (a) Boc-L-valine, HATU,

DIEA, MeCN (b) 1 N HCI (c) Boc-L-proline, HATU, DIEA, MeCN
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Table 2

Screening data compounds 60-63.

CCso (M)
Compounds
HT29 PC3 MDA-MB-231
60 2.22#0.10  4.83x0.24 3.86+0.24
61 26.04+2.07 28.84+1.52  47.57+19.45
62 2.06+0.13 5.21+0.31 3.99+0.24
63 20.05+1.37  27.89+1.86 >50.00
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