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Abstract

Medical errors are a major concern in clinical practice, suggesting the need for advanced surgical 

aids for preoperative planning and rehearsal. Conventionally, CT and MRI scans, as well as 3D 

visualization techniques, have been utilized as the primary tools for surgical planning. While 

effective, it would be useful if additional aids could be developed and utilized in particularly 

complex procedures involving unusual anatomical abnormalities that could benefit from tangible 

objects providing spatial sense, anatomical accuracy, and tactile feedback. Recent advancements in 

3D printing technologies have facilitated the creation of patient-specific organ models with the 

purpose of providing an effective solution for preoperative planning, rehearsal, and spatiotemporal 

mapping. Here, we review the state-of-the-art in 3D printed, patient-specific organ models with an 

emphasis on 3D printing material systems, integrated functionalities, and their corresponding 

surgical applications and implications. Prior limitations, current progress, and future perspectives 

in this important area are also broadly discussed.
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1. INTRODUCTION

The use of anatomical models and simulators in medicine traces back to centuries ago when 

clay and stone models were utilized to replicate disease conditions (1, 2). Over the years, the 

emphasis on decreasing patient mortality, surgical complications, and operation time— 

accompanied by increased surgical training outside of operating rooms—has driven the 

evolution of different techniques for surgical planning and training (3, 4). Despite these 

efforts, one recent study has suggested that “medical errors” lead to a mean death rate of 

more than 250,000 patients each year, which would result in a rank as the third most 

prominent cause of death in the United States after heart disease and cancer (5). Indeed, over 

4,000 incidents of surgical “never events” (events that should never happen) are estimated to 

occur annually in the United States alone (6). Hence, effective clinical training and 

preoperative planning could play a vital role in mitigating these incidents.
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Imaging techniques, such as computed tomography (CT), magnetic resonance imaging 

(MRI), and 3D virtual visualization, have been employed as critical tools to obtain 

information regarding patients’ anatomies for diagnosis and preoperative planning. However, 

a precise recognition of orientation and dimension may be obscured in the images, resulting 

in misinterpretation and on-site improvisation (7). In addition, these tools lack kinesthetic 

feedback, which is important to quantify and adjust the application of the surgical tools in 

preoperative rehearsal (8). Developing physical organ models with anatomically accurate 

features and quantitative feedback could significantly improve the comprehension of 

surgical target areas in rehearsal and even be used for educating patients. In recent years, 

rapid prototyping methods, such as 3D printing coupled with 3D imaging techniques, have 

made the production of such vital models feasible.

In 3D printing processes, parts are manifested layer-by-layer from a 3D representation of the 

object in a computer-aided design (CAD) program (9). Since the emergence of 

stereolithography in the 1980s as one of the early 3D printing processes, various techniques 

have been developed to broaden the application of this technology (9). These 3D printing 

techniques can be classified into four main categories (10): (a) processes based on 

photopolymerization of liquid polymers or epoxy resins, either by focusing a light source in 

a predefined pattern on a bath of the liquid-photosensitive material (such as 

stereolithography, direct light processing, two-photon polymerization, and continuous liquid 

interface production) or by jetting droplets of the liquid photopolymer followed by curing 

via an ultraviolet (UV) light source (material jetting or PolyJet); (b) processes that involve 

extruding a thermoplastic filament [fused deposition modeling (FDM)] or viscoelastic 

materials [direct-write assembly (DWA) or robocasting]; (c) processes that create a 3D 

object from powdered materials via laser sintering, fusion, or use of a binder component, 

such as selective laser sintering, selective laser melting, electron beam melting, direct metal 

laser sintering, and binder jetting (powder bed–based inkjet 3D printing); and (d) processes 

that work based on laminating and layering sheet materials, such as laminated object 

manufacturing and selective deposition lamination.

Today, the application of 3D printing goes well beyond the conventional rapid prototyping of 

parts for design optimization. In 2016, medical applications comprised approximately 15% 

of the 3D printing market, making it the third largest market share after consumer products 

and motor vehicles (11). In this review, we particularly discuss the use of 3D printing for 

creating patient-specific organ models, with an emphasis on the material systems that can be 

used in the fabrication process. For this purpose, we review the use of commercial materials, 

including rigid-plastic, elastomeric (rubber-like), and powder-based materials, as well as 

customized tissue-mimicking materials for developing organ models and evaluating their 

efficacy for surgical applications. In addition, we further investigate the incorporation of 

enhanced functionalities, such as electronics and sensing modules, into the fabrication of 

these organ models with the purpose of developing advanced surgical aids with quantitative 

feedback for precision planning.
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2. 3D PRINTED ORGAN MODELS USING COMMERCiAL MATERIALS

The process of 3D printing patient-specific organ models starts with obtaining the 

anatomical information of the patient’s organ of interest via different imaging modalities, 

such as CT or MRI scans. These images are normally in a digital imaging and 

communications in medicine (DICOM) format, which cannot be directly utilized by 3D 

printers. Therefore, the acquired images need to be postprocessed to first identify the region 

of interest of the organ via proper segmentation of its volumetric data set (using software 

such as Vitrea and Mimics) and then generate a stereolithography (STL) file for the 3D 

printing process (12, 13). In some cases, this STL file needs to be further refined using CAD 

software packages to rectify the imperfections in the STL model (such as closing the gaps 

between segments of the model) and optimize its 3D printing (12, 13). The final STL model 

is then sliced into horizontal layers using 3D slicing software (such as Slic3r) to generate the 

G-code, which defines the printing pathways to create the 3D printed organ model (Figure 1) 

(14).

Most of the reported 3D printed organ models are fabricated based on FDM, PolyJet, 

stereolithography, or inkjet 3D printing technologies and by using commercially available 

materials (13, 15–19), which can be broadly categorized into rigid-plastic materials, 

elastomeric (rubber-like) materials, and powder-based materials such as starch/cellulose and 

plaster.

2.1. 3D Printed Organ Models Using Rigid-Plastic Materials

The early 3D printed organ models were mainly fabricated using a limited selection of 

commercial rigid plastics, primarily involving acrylonitrile butadiene styrene (ABS) and 

polylactic acid (PLA) thermoplastic filaments for FDM printing, or rigid photopolymers and 

resins for PolyJet technology (such as the Vero™ family of photopolymers from Stratasys). 

Such models are still popular due to their accuracy in representing patients’ anatomy at a 

relatively low cost (18). The term rigid-plastic is used here for polymers that have high 

cross-linking densities and/or high molecular weights with glass transition temperatures (Tg) 

above room temperature. These are mechanically rigid materials with high-impact strength 

and hardness (20). The Young’s moduli for most rigid-plastic materials are close to or within 

the gigapascal (GPa) range, i.e., at least three orders of magnitude higher than the modulus 

of soft organ tissue. This discrepancy in the materials’ elastic properties relative to the 

organs themselves limits the direct application and realism of these models for surgical 

rehearsal (14, 21). Even so, these organ models have demonstrated utility in a variety of 

medical fields, including cardiology (22–24), urology (25–28), neurology (21, 29, 30), and 

hepatology (31, 32).

In the field of cardiology, Farooqi et al. (22, 23) 3D printed cardiac models (Figure 2) via an 

FDM process using ABS filaments. These models accurately replicated the detailed anatomy 

of a healthy heart (Figure 2a) and cases with different congenital heart disease, such as 

dextro-transposition of the great arteries after performing the Mustard procedure for defect 

correction (Figure 2b). Specifically, it was speculated that the latter model (Figure 2b) could 

have been utilized for optimizing the position of the inflow cannula in the ventricular assist 

device implantation procedure required for the patient’s case (23). In another example, 
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Schievano et al. (24) created 3D printed models for the right ventricular outflow tract and 

pulmonary trunk using a thermoplastic polyester resin (P1500 Polyester, Stratasys) via an 

FDM process. Due to the anatomical accuracy, the models were used to assist two 

cardiologists participating in the study for more accurate selection of patients for 

percutaneous pulmonary valve implantation. It was shown that by using the 3D printed 

models, the accuracy of the selections made by the two cardiologists increased by 8% and 

25%, compared to only using MRI scans to make the decisions (24).

In the field of urology, Wake et al. (25) and Kusaka et al. (26) created 3D printed prostate 

(Figure 2c) and kidney models (Figure 2d), respectively, via the PolyJet process using the 

rigid Vero family of photopolymers (Stratasys). These commercial materials are available in 

a variety of colors, including clear, magenta, and cyan, and can be used to distinguish 

different printed sections and anatomical details of the organ models (18, 25, 26). The 3D 

printed models in both works were found to be helpful for recognizing the anatomical 

features of the organs in the corresponding operations. Komai et al. (27) also fabricated a 

patient-specific, full-scale 3D printed kidney model via the PolyJet process. The model 

included a removable tumor combined with its margin, which enabled both the surgeons and 

patients to envision the kidney before and after tumor resection. It was further confirmed 

during surgery that the model could be used to help surgeons perform minimally invasive 

off-clamp partial nephrectomy, because the 3D printed model provided the surgeons with 

tactile sensation and aided in effectively determining the incision line and angle. In addition, 

Bernhard et al. (28) created a 3D model of kidney and tumor anatomies via the PolyJet 

process to educate patients. Specifically, a survey that was conducted in the work indicated 

that after showing the organ models to the patients, their understanding in the categories of 

kidney physiology, kidney anatomy, tumor characteristics, and the planned surgical 

procedure increased by 16.7%, 50%, 39.3%, and 44.6%, respectively.

For neurological applications, Anderson et al. (29) 3D printed hollow intracranial aneurysm 

models (Figure 2e) with rigid walls using an FDM process and PLA filaments. The models 

could accurately replicate the patients’ aneurysm anatomy in a digital subtraction 

angiography (DSA) image (Figure 2f), and therefore they could be used for surgical aid 

applications as well as for MRI flow phantoms and computational fluid dynamic studies 

based on rigid models for simulation of aneurysm hemodynamics (29). In another case, 

Erbano et al. (30) created 3D intracranial aneurysm models using another rigid 

photosensitive liquid resin, FullCure 720 (Stratasys), via the PolyJet process. The models 

replicated the accurate location, size, and shape of the intracranial aneurysms, which were 

identical to the ones measured by DSA. It was concluded that these models can facilitate the 

selection of surgical procedures and tools (such as aneurysm clips), thus yielding better 

operational planning for intracranial aneurysms. Wurm et al. (21) initially fabricated rigid 

cerebral aneurysm models via 3D printing of a photosensitive polymeric liquid-plastic 

solution using the stereolithography process. The 3D printed models were applied for 

diagnosis, surgical planning, simulation, training of novice neurosurgeons, and informing 

patients. All neurosurgeons in the study stated that the 3D printed models were helpful in 

establishing better comprehension of the cerebrovascular anatomy, as well as the 

configuration, orientation, and dimension of aneurysms. However, the models were found to 
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be less beneficial for clipping and dissecting exercises due to the rigid nature of the material 

used for 3D printing.

In the hepatology field, Zein et al. (31) created 3D printed synthetic liver models from living 

donors and their respective recipients using the PolyJet process. The 3D printed liver models 

from donor and recipient accurately mimicked their corresponding native livers (Figures 

2g,h) and were used for anatomical and geometrical evaluations before, during, and after the 

surgical procedures. The models were found to facilitate the comprehension of the spatial 

relationship between the vascular and biliary anatomies, as well as enabling hands-on 

surgical planning and training with the purpose of reducing intraoperative complications. 

Souzaki et al. (32) also 3D printed a model of a patient’s liver with a malignant tumor using 

the PolyJet process. The model was used for viewing the anatomies and the relative 

positions of the portal vein, hepatic vein, and tumor, which were identical to the anatomy of 

the patient’s liver. The surgeons utilized the model to evaluate the surgical procedure and 

determine the resection line for removing the tumor before the operation. The surgical 

outcome indicated that the tumor was entirely removed and the surgical margin was 

negative.

2.2. 3D Printed Organ Models Using Elastomeric (Rubber-Like) Materials

With the advancement of 3D printing technologies, the palette of materials that can be used 

in these processes evolved to broaden the applications. This includes the possibility of 3D 

printing elastomeric (rubber-like) and flexible materials, beyond conventional rigid plastics. 

Some examples of such materials include the Tango™ family (Stratasys) of photopolymers 

for PolyJet printing, or thermoplastic elastomer (TPE) filaments such as NinjaFlex® 

(NinjaTek), SemiFlex™ (NinjaTek), and PolyFlex™ (Polymaker) for FDM printing. In 

contrast to TPE filaments with elastic properties, rubbers are thermoset polymers with 

network structures. These thermoset network polymers are not suitable for FDM printing 

because the polymer chain motion is greatly restricted by a high degree of cross-linking after 

heating, such that they cannot be remanufactured after their initial heat forming (20). The 3D 

printable elastomeric (rubber-like) materials have low Young’s moduli and good flexibility 

compared with other 3D printing materials (33). The elasticity and flexibility in these 

materials are due to the reconfiguration of long chains of the polymers and covalent cross-

links. The 3D printed organ models fabricated by such materials provide tactile sensation 

closer to the actual organ, compared to rigid-plastic materials. Therefore, they allow 

surgeons to perform different rehearsal operations on them, such as cutting and pressing. 

Some examples for application of such models in the fields of cardiology (34–37), urology 

(25, 26), neurology (38, 39, 39a), and pulmonology (40, 41) are discussed below.

For cardiac applications, Yoo et al. (34) created cardiac models with congenital heart disease 

(Figure 3a) using the TangoPlus™ photopolymer via the PolyJet process. The models were 

used by a total of 81 professionals or trainees for performing the required surgical 

procedures (Figure 3a). Although differences in elasticity and consistency between the 

model material and human myocardium were noticed by most respondents, 88% of the 

responses indicated that the quality of the models was acceptable for surgical practice, while 

12% found it manageable. In another example, Kiraly et al. (35) fabricated a scaled-up (3×), 
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flexible, hollow heart model with a congenital defect (Figure 3b,c). The model was used to 

guide the surgical approach of arch repair at each step of the operation (Figure 3b). The 

patient operation (Figure 3c) was performed following preoperative rehearsal on the 3D 

printed model (Figure 3b), which resulted in increasing the patient’s safety, and ultimately, 

the likelihood of a positive operation outcome. Shiraishi et al. (36) also created a 3D heart 

model using a stereolithographic biomodeling technique and a photosensitive rubber-like 

urethane with tensile modulus of 0.01 GPa. The model offered detailed anatomical features 

and allowed surgeons to cut and suture in preoperative practice due to its rubber-like 

properties. Furthermore, Yang et al. (37) printed a heart model via the PolyJet process and 

used the Tango family of photopolymers with different colors to distinguish different parts in 

the heart model. It was stated that the model not only could be utilized for better 

visualization of the geometry, but it could also be disassembled for surgical practice, such as 

a rehearsal for the case of an extended septal myectomy performed in the study.

In the field of urology, Wake et al. (25) 3D printed a patient-specific, cancerous kidney 

model with accurate anatomy for applications in urological oncology (Figure 3d) using a 

transparent flexible material (HeartPrint™ Flex, Materialise) as the main cortex and the Vero 

family of rigid photopolymers in different colors as the remaining structures. Such kidney 

models with tumor sections allowed surgeons to evaluate the complexity of the tumor and its 

positional relationship with respect to other parts of the organ, thus facilitating the 

operational planning for partial nephrectomy or ablative therapy. In a real surgical case, the 

model was used to assist surgeons in the selection of an approach for partial nephrectomy, as 

well as a resection guidance during the surgery. Kusaka et al. (26) also 3D printed a kidney 

graft and pelvic cavity model via the PolyJet printing process using mainly the Tango family 

of photopolymers with different colors. The model was successfully applied for 

preoperational planning and accurate simulation of the surgical procedure for kidney 

transplantation.

For neurological applications, Kimura et al. (38) and Khan et al. (39) developed a hollow 

cerebral aneurysm and a cerebral vasculature physical model by using the Tango family of 

photopolymers in the PolyJet printing process. In Kimura’s work, various types of aneurysm 

clips were applied on the 3D hollow models (Figure 3e) under the operative microscope to 

optimize the clip placement (38). In Khan’s work, the 3D printed cerebral vasculature 

physical model accurately represented the patient’s aneurysm (39). The participating 

neurosurgical trainees in the study found the models beneficial for better comprehension of 

the anatomical features of the patients’ aneurysm and the corresponding vascular structures, 

as well as for the determination of proper surgical approach and tools (39). In addition, 

Wurm et al. (39a) used the PolyJet process to 3D print an aneurysm model. This model was 

used as a replaceable part for several clipping exercises in microsurgical simulation due to 

its flexible nature. The model could help neurosurgeons and trainees hone their skills in the 

clipping approach, clip selection, and clip placement.

In the pulmonology field, Bustamante et al. (40) fabricated 3D printed tracheobronchial tree 

models (Figure 3f) using the PolyJet process. The models were examined with a flexible 

fiberoptic bronchoscope, and the obtained image (Figure 3f inset) from the model was found 

to be similar to the actual views of the organ during lung isolation. The models were 
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expected to aid medical professionals to overcome issues in achieving lung isolation via 

enhanced familiarity with endoscopic bronchial anatomy. In addition, Kurenov et al. (41) 3D 

printed models of human pulmonary arteries using the TangoPlus photopolymer via the 

PolyJet process. In terms of anatomy, the models were sufficiently accurate for clinical 

purposes. In the study, the models were used to design a catheter for regional lung 

chemotherapy. It was perceived that the applications could be expanded into other areas of 

clinical care and research for thoracic surgery, such as complex thoracoscopic surgery 

lobectomies.

2.3. 3D Printed Organ Models Using Powder-Based Materials

Powder-based materials such as starch, cellulose, and plaster powder, solidified with binding 

materials via inkjet 3D printing, have also been evaluated for fabrication of different organ 

models for surgical applications. Despite the mismatch of their mechanical properties with 

real organs, such models provide accurate anatomical details with convenient low-cost 

fabrication. In the field of cardiology, Schmauss et al. (43) demonstrated an example for 

creating 3D printed cardiac models (Figure 4a) using starch/cellulose powder (zp 15e, Z 

Corporation) and a polymer as the binder (zb 60, Z Corporation) and an elastomeric 

urethane resin (Por-A-Mold 2030, EnvironMolds, LLC) for further infiltration. The 

participating surgeons could detect the bypass grafts and their position with respect to the 

sternum from the model shown in Figure 4a. The sterilized model was further used in the 

operating room for guiding the intraoperative procedures for reopening the sternum (43). In 

another example, Mottl-Link et al. (7) 3D printed a cardiac model (Figure 4b) using plaster-

based powder with a binding material. The final model allowed surgeons to obtain 

intracardiac views that are difficult to achieve during the actual operation. Additionally, the 

plaster materials were used in neurology applications. Kondo et al. (44) and Oishi et al. (45) 

developed 3D printed models of a skull base and intracranial tumors using plaster materials. 

Such models (Figure 4c) can provide a better visualization of the anatomy and size of the 

organ and tumor, and their positional relationships. The models were further used to provide 

realistic surgical practice and sensation via insertion of surgical instruments under 

microscopic observation (45).

3. LIMITATIONS OF PREVIOUS AND CURRENT 3D PRINTED ORGAN 

MODELS

Although the aforementioned 3D printed organ models have been useful for surgical 

planning and rehearsal, the efficacy of these models for applications as advanced surgical 

aids suffers from two main issues (14). Issue 1: Despite representing the correct anatomy, 

these 3D printed organ models are incapable of precisely mimicking the physical properties 

of organ tissue (16), including tactile sensation, mechanical properties (such as elastic 

modulus, viscoelastic behavior, and hardness), and color. This issue limits their effectiveness 

in preoperative planning, rehearsal with surgical tools, and other tasks such as pressing, 

suturing, cutting, clipping, and dissecting (16, 21). This also hampers the ability of 3D 

printed organ models to accurately predict and replicate organ physical behavior during 

surgical handling, including deformation and reaction force. Issue 2: These 3D printed organ 

models lack the functionality to provide quantitative feedback resulting from organ and 
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tissue handling. This function can be an important add-on for surgical trainers or simulators 

to aid medical professionals in assessing and controlling their performed tasks quantitatively, 

such as the amount of pressure applied to the organs via their hands and surgical diagnostic 

tools.

In the following two sections, we discuss some attempted efforts to address Issue 1 (Section 

4) and Issue 2 (Section 5).

4. 3D PRINTED ORGAN MODELS USING TISSUE-MIMICKING MATERIALS 

WITH TAILORED COMPOSITIONS

4.1. Previous Work on the Development of Tissue-Mimicking Materials and Organ Models

Tissue-mimicking materials, such as biopolymers (e.g., gelatin, gellan gum, agar, and 

agarose) and synthetic polymers [e.g., polyurethane, polyvinyl alcohol (PVA), polyvinyl 

chloride (PVC), room-temperature vulcanizing silicones, and polydimethylsiloxane 

(PDMS)] (46), have been employed in various arenas of medicine for simulation purposes, 

including medical imaging modalities (47–49), cardiac strain estimation (50, 51), thermal 

therapy (52, 53), and surgical simulation and training (54, 55). The composition of these 

materials can be tailored to replicate the specific properties of soft tissue depending on the 

application. For instance, phantoms based on polymers such as gelatin (56), agar (57), PVC 

(46), and PVA (58) have been developed to mimic the acoustic properties (including the 

speed of sound, acoustic impedance, attenuation, and backscattering coefficient) of soft 

tissue and were utilized in ultrasound imaging for system calibration, development of new 

techniques, and training of technicians (47, 59). For developing organ models with 

implications in surgical planning and training, the composition of the selected material 

should be modified to closely match the mechanical properties (including elastic modulus, 

viscoelastic behavior, hardness, ultimate strength, etc.) of the biological soft tissue. Models 

fabricated with such materials provide more accurate haptic feedback and mechanical 

behavior, analogous to the real organ.

A common technique for incorporating tissue-mimicking materials in organ models is to 

first use 3D printing to create a mold and then cast it with tissue-mimicking materials. These 

molds can be created via one of the following approaches: (a) 3D printing a negative mold of 

the organ and infusing it with the tissue-mimicking material (55, 60–64) or (b) employing an 

approach similar to lost-wax casting, i.e., directly 3D printing the organ model using 

commercially available materials. This 3D printed model is then used as a template for 

creating a mold (for example, via silicone molding methods) and the mold cavity is 

subsequently filled with the tissue-mimicking material to fabricate the final organ model 

(65–69).

Although molding techniques provide a platform for using customized tissue-mimicking 

materials and fabricating organ models, they fall short in different aspects that hamper their 

widespread adaptation for clinical practice. These mold-based fabrication procedures 

typically involve several steps, which could be time, labor, and cost intensive (29, 34, 70), 

but they are also prone to the introduction of inaccuracies to the final model (34). In 
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addition, it is cumbersome, if not impossible, to utilize molding techniques for creating 

organ models with complex geometries and realistic features, such as incorporating multiple 

materials to replicate different tissue morphologies within an organ (for instance, cancerous 

tissue versus healthy tissue in an organ) or encompassing anisotropic properties of tissue. 

Therefore, the direct 3D printing of tissue-mimicking materials, in lieu of using molding 

techniques, can appreciably facilitate the fabrication of complex patient-specific organ 

models with realistic physical properties of tissue. For this purpose, the material should be 

formulated to have the required tissue-mimicking properties, along with desirable 

rheological characteristics (such as shear-thinning properties) to facilitate the 3D printing 

process. While the composition of some of the existing tissue-mimicking materials can be 

customized for 3D printing (71), they might possess specific properties that do not make 

them the best candidates for developing organ models for rehearsal with surgical tools. For 

example, widely used tissue-mimicking materials based on hydrogels, such as gelatin and 

agar, suffer from limited lifetime, mainly due to the evaporation of their water content over 

time or bacterial growth (72, 73). In addition, pure gelatin is prone to undesirable damage 

(73) due to its brittle fracture behavior (74, 75), making it unfavorable for applications in 

which surgical tools are used. Furthermore, PVA cryogels need to undergo multiple 

prolonged freeze-thaw cycles (normally over a 12-h cycle) to achieve the required 

mechanical properties (72, 73, 76). Therefore, developing 3D printable materials with 

convenient preparation and customization processes to match the properties of the biological 

tissues is of prime importance.

4.2. Development of Customized 3D Printable Polymeric Materials with Patient-Specific 
Physical Properties for Organ Models

Among the existing 3D printing technologies, DWA conveniently allows the 3D printing of 

various types of customized materials, including polymer melts, hydrogel and sol-gel 

precursors, colloidal suspensions, and metallic and semiconducting micro- and nanoparticles 

(77, 78). In this process, one or more materials of interest, commonly referred to as “inks,” 

are extruded through fine deposition nozzles under an applied pressure, while a robotic 

positioning system controls the motion of the nozzle and the printing pathways.

The DWA technique has been previously harnessed to 3D print models of the aortic root 

from household silicone for conducting surgical training on transapical aortic valve 

replacement procedures (70, 79). However, these efforts did not involve the customization of 

the ink material to precisely mimic the properties of tissue. In another recent study, von 

Rundstedt et al. (80) used two silicone-based inks in a DWA process to 3D print models of 

patients’ kidneys, including their tumor anatomies. The models were utilized for rehearsal of 

robot-assisted laparoscopic enucleation of the kidney tumor using the da Vinci® robotic 

system. It was stated that the inks could mimic the properties of the normal kidney and 

tumor tissue; however, no characterization results were provided to support this claim.

In a recent work, Qiu et al. (14) developed customized 3D printable polymeric inks with 

adjustable physical properties to quantitatively match the properties of several patients’ 

prostate tissues to address Issue 1. First, the anatomical details of the organ were extracted 

from MRI scans, followed by obtaining the physical properties of the prostate tissue, 
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including static and dynamic mechanical properties, hardness, and optical reflection (Figure 

5a). Based on the acquired tissue data, Qiu et al. developed customized polymeric inks that 

consisted of three main components (Figure 5b): (a) silicone sealant as an active agent and 

for stabilizing the structures, (b) silicone grease as a bulking agent and for adjusting the 

softness and flexibility of the material, and (c) additives for tuning the color and printability. 

The developed inks, which replicate the composite nature of human tissue (81, 82), contain 

several advantages, including adjustable properties, good printability, stable structures, 

room-temperature vulcanization, convenient preparation, resistance to polymer creep before 

cross-linking, and good elasticity after cross-linking. The inks also exhibited shear-thinning 

behavior, which allowed for the extrusion of the inks through fine nozzles (14, 83). The 

mechanical properties of the inks, which are correlated with changes in the cross-linking 

density, can be modified by adjusting the primary component ratios to match the mechanical 

properties of different tissue samples (Figure 5c,d). Following development of different ink 

formulations, the fidelity of the physical properties of the printed inks to prostate tissue 

samples was quantitatively analyzed. The analysis consisted of a series of property 

comparisons via tests—for static (Figure 5d) and dynamic compression, hardness, optical 

reflection, and density—between the inks and their corresponding tissue samples. The 

results indicated that the physical properties of the inks could be accurately adjusted to 

match the properties of the corresponding tissue samples, thus adequately addressing the 

issue of lacking precise mimicry of real organ tissue.

Furthermore, Qiu et al. (14) utilized their customized inks in a custom-built, DWA 3D 

printing system to fabricate prostate models based on patients’ MRI data. The final 3D 

printed prostate models showed high anatomical fidelity with their corresponding patient 

prostate, which was confirmed via surface comparison results obtained from a quantitative 

3D registration technique (Figure 5e) (14, 84). The high fidelity in physical properties and 

anatomical structure rendered the 3D printed prostate models capable of predicting the 

physical behavior of patient organs during surgical handling. To verify the concept, Qiu and 

coworkers designed both finite element modeling simulations of the patient organ using a 

third-order Ogden model (85, 86) and compression tests on the 3D printed prostate model 

via a customized stereo vision system (14, 87, 88) for tracking the deformation. The results 

confirmed the feasibility of utilizing the 3D printed prostate models for organ physical 

behavior prediction.

Next, Qiu et al. (14) demonstrated the application of the 3D printed prostate models for 

surgical rehearsal with diagnostic and surgical tools. For instance, an endoscope was 

inserted into the urethra of the 3D printed prostate model (Figure 5f) to show an 

unobstructed endoscopic view (Figure 5g) on any region of the surface, even under the 

conditions of pressing or squeezing. Furthermore, with the aid of a surgeon, the researchers 

performed suturing on the 3D printed prostate models (Figure 5h). The models exhibited 

sufficiently good strength to mitigate excessive damage during these invasive surgical 

procedures involving needle penetration. Feedback from the participating surgeon indicated 

that the 3D printed prostate model remained robust during the suturing procedure, without 

tearing or pulling through of the surgical knot.
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Finally, to further establish the merits of the customized polymeric inks, a comparison 

between the Young’s modulus of biological tissues with the developed inks, other tissue-

mimicking materials, and commercial rigid-plastic and elastomeric (rubber-like) polymers 

has been compiled in Figure 6.

5. ORGAN MODELS WITH INTEGRATED FUNCTIONALITY

5.1. Preliminary Work on Organ Models with Integrated Functionalities

Integration of advanced functionalities, such as electronics and sensing modules, into 

biological organs or organ simulators has paved new avenues in biomedical research. For 

instance, the integration of sensing features into organ-on-chip microphysiological models 

has facilitated the quantitative monitoring of organ responses for drug screening applications 

(98, 99). In addition, various efforts have been focused on the development of biointegrated 

electronics that can be mounted on the epidermis or on organs with the purpose of sensing 

and assessing physiological biomarkers (100–104) or introducing new functionalities, 

including energy harvesting from the dynamic motions of organs (105, 106).

The same strategy can be adapted for integrating advanced functionalities into physical 

organ models to broaden their applicability and enhance their efficacy for surgical planning 

and training. Previous work has shown the feasibility of incorporating such functions into 

organ models (107, 108). For instance, Laufer et al. (107) integrated force sensors (Figure 

7a) into a mold-fabricated breast model (Figure 7a inset). The developed simulator can be 

used for measuring the applied force during clinical breast examination and assessing 

clinical skills and performance (Figure 7b). Poniatowski et al. (108) incorporated UV light-

sensitive assessment lines into a patient-specific mold-fabricated pyeloplasty simulation 

model. The lines are not visible under normal light (Figure 7c) or endoscopic conditions but 

can be visualized under UV light (Figure 7d). Therefore, with this integrated function, the 

model can be used to evaluate the twist angle at the anastomosis in training for laparoscopic 

pyeloplasty using the post-task Black Light Assessment of Surgical Technique (BLAST™).

5.2. 3D Printed Prostate Organ Model with Integrated Soft Tactile Sensors for Quantitative 
Surgical Rehearsal

Qiu et al. (14) successfully incorporated sensing capabilities into their 3D printed prostate 

models for quantitative surgical rehearsal, which can be expected to address Issue 2. The 

researchers first fabricated 3D printed soft capacitive tactile sensors (14, 109, 110) that 

respond to applied pressures in the form of changes in the device capacitances. The sensors 

consisted of a polyacrylamide-based ionic hydrogel (as electrodes) and a silicone-based 

dielectric elastomer (the electroactive component) (Figure 8a), with the same order of 

magnitude elastic moduli as the organ model inks (14). The capacitance change and the 

external applied pressure on the sensor exhibited a linear correlation at a pressure range of 

20 to 120 kPa (Figure 8b). Therefore, this correlation can be utilized to translate the 

capacitance change of the sensor to the amount of applied pressure during the application. 

The 3D printed sensors were then conformally integrated onto the prostate model (Figure 

8c). Subsequently, a series of quantitative surgical rehearsal applications were conducted on 

the model. Different surgical tools were applied on the sensors integrated on the outer 

Qiu et al. Page 11

Annu Rev Anal Chem (Palo Alto Calif). Author manuscript; available in PMC 2019 June 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



surface (Figure 8d) and urethra surface (Figure 8e) with three quick press-release and three 

press-hold-release cycles, and the pressure values were deduced from the capacitance 

changes of the sensor. This capability could be advantageous for medical professionals to 

quantitatively control the applied pressure and its duration prior to performing the actual 

procedure.

6. PERSPECTIVES

Recently, significant advances in 3D printing organ models and their corresponding surgical 

applications have been achieved. However, there is still plenty of room for further 

improvement in the field, and future studies are expected to focus on several different 

directions (14). First, most 3D printed organ models are static, meaning they lack the ability 

to simulate dynamic conditions of organ models, such as pulsations of the heart. Therefore, 

incorporation of convenient and accurate dynamic functionalities (such as actuation) into the 

organ models will be useful for more realistic surgical rehearsal. Second, although the initial 

integration of 3D printed soft electronics has been achieved, the functionalities are still 

limited. For more complicated, multidimensional feedback applications, different types of 

conformal electronics with more powerful functionalities need to be developed and 

integrated into the organ models. Third, virtual and assisted reality tools can be used in 

conjunction with the organ models for visualization of fine features such as vasculature 

during surgical simulation. Fourth, the 3D printed organ models with integrated 

functionalities should be evaluated in real-use cases under various operative environments 

for statistical surveys of surgical outcomes and patient safety to accurately and quantitatively 

evaluate their effectiveness with large data assessment criteria. Finally, anisotropic properties 

can possibly be introduced into the 3D printed organ models by controlling the orientation of 

printing pathways (111, 112) and imbedding fillers (113, 114).

7. SUMMARY

The investigation of 3D printed organ models for surgical applications is an important field 

that may enhance surgical outcomes, reduce medical errors, and improve patient safety. 

Effort in this area has vastly expanded over the past decade. In this review, we have provided 

an overview of the most significant progress in the underlying materials research for 3D 

printing organ models and summarized the corresponding surgical planning and rehearsal 

applications. This included (a) 3D printed organ models using commercial materials, 

including rigid-plastic materials, elastomeric (rubber-like) materials, and powder-based 

materials, such as cellulose/starch and plaster, for surgical applications in different medical 

fields; (b) critical limitations of current 3D printed organ models using commercial-grade 

materials; (c) tissue-mimicking materials and their current applications for the development 

of 3D printed organ models in advanced surgical applications; (d) next-generation integrated 

functionalities on organ models for quantitative feedback; and (e) future directions in the 

field of 3D printed organ models for surgical applications. Indeed, the development of 3D 

printed patient-specific organ models with physical properties of tissue and integrated 

functionalities may revolutionize preoperative planning and surgical rehearsal.
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Figure 1. 
The general procedure for converting a magnetic resonance imaging (MRI) scan of a 

patient’s organ (a prostate in this figure) to G-code for the process of 3D printing a patient-

specific organ model from a stereolithography (STL) file. Adapted with permission from 

Reference 14. Copyright 2017, John Wiley & Sons.
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Figure 2. 
3D printed organ models using rigid-plastic materials. (a) A 3D printed cardiac model 

without congenital disease and (b) a 3D printed cardiac model after the Mustard procedure 

for correcting the congenital heart defect using a commercial ABS thermoplastic filament 

for printing. Panel a adapted with permission from Reference 22. Copyright 2016, Springer 

Nature. Panel b adapted with permission from Reference 23. Copyright 2016, American 

College of Cardiology Foundation. (c) A 3D printed prostate model and (d) a 3D printed 

kidney model using the Vero™ family of polymers. Panel c adapted with permission from 

Reference 25. Copyright 2016, Royal College of Radiologists. Panel d adapted with 

permission from Reference 26. Copyright 2015, Elsevier. (e) A 3D printed intracranial 

aneurysm model using polylactic acid as the rigid walls and (f) its corresponding digital 

subtraction angiography image for patient aneurysm. Panels adapted with permission from 

Reference 29. Copyright 2016, British Medical Journal. (g) A 3D printed liver model and (h) 

a right liver lobe model using the PolyJet process and their corresponding actual organs. 

Panels adapted with permission from Reference 31. Copyright 2013, American Association 

for the Study of Liver Diseases.
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Figure 3. 
3D printed organ models using elastomeric (rubber-like) materials. (a) A 3D printed cardiac 

model with a congenital defect using the TangoPlus™ photopolymer for hands-on surgical 

training. Adapted with permission from Reference 34. Copyright 2017, American 

Association for Thoracic Surgery. (b) A 3D printed hollow aortic arch model. The black 

dotted lines, red dotted lines, and red arrows represent the proposed incision lines, the 

internal obstructive ridge to be resected after opening the model, and arch augmentation, 

respectively. Adapted with permission from Reference 35. Copyright 2016, Oxford 

University Press. (c) The obstructive ridge is resected (yellow dotted line) in a real 

operation, guided via simulation on the corresponding 3D printed model in b. Adapted with 

permission from Reference 35. Copyright 2016, Oxford University Press. (d) A 3D printed 

kidney model using flexible material as the kidney’s main cortex showing the relative 

position of the renal tumor with respect to the renal artery, vein, and collecting system. 

Adapted with permission from Reference 25. Copyright 2016, Royal College of 

Radiologists. (e) A 3D printed left middle cerebral bifurcation aneurysm for surgical 

clipping rehearsal. Adapted with permission from Reference 38. Copyright 2009, Oxford 

University Press. (f) A 3D printed tracheobronchial tree model. (Inset) Fiberoptic view of 

the 3D printed tracheobronchial tree model through the bronchus intermedius. Adapted with 

permission from Reference 40. Copyright 2014, Elsevier.
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Figure 4. 
3D printed organ models using powder-based materials. (a) A 3D printed cardiac model 

using starch/cellulose showing the relative position of the right coronary artery bypass graft 

(shown in red and labeled 1) with respect to the patient’s sternum (labeled 2). Adapted with 

permission from Reference 43. Copyright 2014, Oxford University Press. (b) A 3D printed 

cardiac model using plaster. Adapted with permission from Reference 7. Copyright 2008, 

Elsevier. (c) A 3D printed skull model with a mesh tumor using plaster. Adapted with 

permission from Reference 44. Copyright 2016, Springer Nature.
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Figure 5. 
Development of customized polymeric inks with physical properties mimicking patient 

tissue samples for 3D printing of prostate models and their corresponding surgical rehearsal. 

(a) Mechanical and optical tests for obtaining the physical and optical properties of human 

patient prostate tissue samples to guide the ink development process. (b) Schematic of the 

composite structure of the customized polymeric inks. (c) A plot of primary component 

weight ratios versus Young’s moduli for the customized polymeric inks. (d) Static 

compression fidelity via stress-strain curves between different patient prostate tissue samples 

(Tissue 1, 2, 3) and samples of customized polymeric inks (Ink 1, 2, 3). (e) Calibrated 

distance map via 3D registration for comparison of anatomical fidelity (difference in mm) 

between a patient prostate and a 3D printed prostate model. (f) Surgical rehearsal 

demonstration with an endoscope inserted into the urethra of the 3D printed prostate model. 

(g) Endoscopic view of the urethra inside of the prostate model. (h) Surgical suturing 

demonstration on the 3D printed prostate model. Figure adapted with permission from 

Reference 14. Copyright 2017, John Wiley & Sons.
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Figure 6. 
Comparison of Young’s modulus of biological tissues (green) with different materials 

including customized polymeric ink (blue), tissue-mimicking materials (orange), 

commercial 3D printing elastomeric (rubber-like) materials (red), and commercial 3D 

printing rigid plastics (purple). Data for all human biological tissues are retrieved from 

Reference 46. Myocardium and kidney are porcine tissue retrieved from References 89 and 

90, respectively. Data for customized polymeric ink are retrieved from Reference 14. Data 

for all tissue-mimicking materials are retrieved from Reference 46. Data for commercial 3D 

printing materials including NinjaFlex®, SemiFlex™, PolyFlex™, HeartPrint™ Flex, 

TangoPlus™, Vero™ family, and ABS/PLA are retrieved from References 91–97, 

respectively. Abbreviations: ABS, acrylonitrile butadiene styrene; PDMS, 

polydimethylsiloxane; PLA, polylactic acid; PU, polyurethane; PVA, polyvinyl alcohol; 

PVC, polyvinyl chloride; RTV silicone, room-temperature vulcanizing silicone.
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Figure 7. 
Organ models or simulators with integrated functions. (a) Force sensors were shaped to fit a 

breast model for a breast examination simulator. (Inset) Breast examination simulator with 

an integrated sensor. (b) Demonstration of the clinical breast examination on the simulator 

with integrated force sensor. Panels a and b adapted with permission from Reference 107. 

Copyright 2016, IOS Press. (c,d) Top view of a pyeloplasty simulator model with the 

integrated ultraviolet (UV) light–sensitive assessment lines, under room light (c) and UV (d). 

Panels c and d adapted with permission from Reference 108. Copyright 2014, Mary Ann 

Liebert, Inc.
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Figure 8. 
Quantitative surgical rehearsal using the 3D printed prostate model with integrated 

functionalities. (a) Schematic of the structure of the 3D printed soft tactile sensor (left) and 

photograph of the corresponding 3D printed sensor (right). (b) Calibration of the 3D printed 

sensor based on the correlation between capacitance change and the applied pressure. (c) 
Photograph of the 3D printed prostate model integrated with the soft tactile sensor. (d) 
Quantitative surgical rehearsal involving the 3D printed prostate model upon applying a 

surgical grasper on the sensor integrated on the outer surface of the model and its 

corresponding pressure responses (indicated at each of the peaks) from the capacitance 

changes of the sensor. (e) Quantitative surgical rehearsal involving the 3D printed prostate 

model when applying surgical scissors on the sensor integrated on the urethra surface inside 

of the model and its corresponding pressure responses (indicated at each of the peaks) from 

the capacitance changes of the sensor. Figure adapted with permission from Reference 14. 

Copyright 2017, John Wiley & Sons.
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